E8SOM 28
 WA 26100-FALL 2023 DR. HOOD

(Spring 22 Exam 2 \#11)
Given the force field $\overrightarrow{\boldsymbol{F}}(x, y, z)=\langle y, z, x\rangle$, find the work required to move an object along the straight-line segment from $(0,0,0)$ to $(2,3,4)$.

$$
\vec{v}=\langle 2,3,4\rangle
$$

$$
F(t)=\langle 2 t, 3 t, 4 t\rangle \quad 0 \leq t \leq 1
$$

a) 13
b) $9 W=\int_{c} \vec{F} \cdot d \vec{r}=\int_{0}^{1}\langle 3 t, 4 t, 2 t\rangle \cdot\langle 2,3,4\rangle d t$
c) 29
d) 26

$$
\begin{aligned}
& F \cdot d \vec{r}=\int_{0}^{1} 63 t, 4 t, 2 t / 12 t+8 t d t=26 \int_{0}^{1} t d t \\
& =\int_{0}^{1} 6 t+1271
\end{aligned}
$$

e) 18

$$
=26\left[\frac{t^{2}}{2}\right]_{0}^{1}=13
$$

ANNOUNCEMENTS

- Exam 2 is Tue Nov 7 at 8:00-9:00pm
- Similar format as Exam 1
- Study Guide and Practice Exams posted on Brightspace
- HW 29 is now due Fri Nov 10 at 11:59pm
- Course calendar is now up to date

Using the Fundamental Theorem of Line Integrals, evaluate $\int_{C} \vec{\nabla} f \cdot d \overrightarrow{\boldsymbol{r}}$ where $f(x, y)=\frac{x^{2}}{y}$ and C is the curve parameterized by $\overrightarrow{\boldsymbol{r}}(t)=\left\langle t^{2}, t\right\rangle$ for $1 \leq t \leq e \quad a=1 \quad b=e$
a) $e^{4}-1$
(b) $e^{3}-1$
c) e^{3}

$$
\begin{aligned}
\int_{c} \vec{\nabla} f \cdot d \vec{r} & =f(\vec{r}(b))-f(\vec{r}(a)) \\
& =f(\vec{r}(e))-f(\vec{r}(1)) \\
& =f\left(\left\langle e^{2}, e\right\rangle\right)-f(\langle 1,1\rangle) \\
& =\frac{\left(e^{2}\right)^{2}}{e}-\frac{1^{2}}{1}=e^{3}-1
\end{aligned}
$$

Which of the following vector fields $\overrightarrow{\boldsymbol{F}}(x, y)$ is not conservative?

$$
\vec{F}=\langle P, Q\rangle \quad \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

a) $\overrightarrow{\boldsymbol{F}}(x, y)=\langle x, y\rangle$

$$
\begin{gathered}
\frac{\partial}{\partial y}(-y)=-1 \stackrel{?}{=} \frac{\partial}{\partial x}(x)=1 \\
x \text { NOT }
\end{gathered}
$$

b) $\overrightarrow{\boldsymbol{F}}(x, y)=\langle-y, x\rangle$
c)

$$
\begin{aligned}
\overrightarrow{\boldsymbol{F}}(x, y)= & \left\langle 2 x y, x^{2}\right\rangle \\
& \langle P, Q\rangle \\
2 x & =\frac{\partial}{\partial y}(2 x y)=\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(x^{2}\right)=2 x \text { is conservative }
\end{aligned}
$$

Which of the following is a potential function f for the vector field $\overrightarrow{\boldsymbol{F}}=\left\langle e^{x} \cos (y),-e^{x} \sin (y)+3 y^{2}\right\rangle$?
a) $f=-e^{x} \sin (y)+y^{3} \quad \int e^{x} \cos (y) d x=e^{x} \cos (y)+a(y)$
b) $f=e^{x} \cos (y)+1$

$$
\int\left(-e^{x} \sin (y)+3 y^{2}\right) d y
$$

c) $f=e^{x} \cos (y)+y^{3}+5$

$$
=e^{x} \cos (y)+y^{3}+b(x)
$$

$$
f(x, y)=e^{x} \cos (y)+y^{3}+c
$$

(Spring 23 Final Exam \#11)
Let $\overrightarrow{\boldsymbol{F}}(x, y, z)=\left\langle 3 x^{2} y z-3 y, x^{3} z-3 x, x^{3} y+2 z\right\rangle$, you may
assume $\overrightarrow{\boldsymbol{F}}$ is conservative. Calculate the work done by $\overrightarrow{\boldsymbol{F}}$ moving an object along C where C is the straight-line segment from ($0,0,2$) to $(0,3,0)$.
a) 0
b) -9
c) 5
d) 12
e) -4

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Fundamental Theorem of Line Integrals
b) Independent of Path
c) Checking if a vector field is conservative
d) Finding the potential function
e) None - understood everything today

