GS81129
 WA 26100-FALL 2023 DR. HOOD

(Spring 23 Final Exam \#11)

$$
\vec{F}=\vec{\nabla} \phi \quad w=\int_{c} \vec{F} \cdot d \vec{r}=\phi(b)-\phi(a)
$$

Let $\overrightarrow{\boldsymbol{F}}(x, y, z)=\left\langle 3 x^{2} y z-3 y, x^{3} z-3 x, x^{3} y+2 z\right\rangle$, you may assume $\overrightarrow{\boldsymbol{F}}$ is conservative. Calculate the work done by $\overrightarrow{\boldsymbol{F}}$ moving an object along C where C is the straight-line segment from $(0,0,2)$ to $(0,3,0)$.

$$
\phi=\int\left(3 x^{2} y z-3 y\right) d x=x^{3} y z-3 x y+a(y, z)
$$

a) 0
b) -9
c) 5

$$
\begin{aligned}
& =\int\left(x^{3} z-3 x\right) d y=x^{3} y z-3 x y+b(x, z) \\
& =\int\left(x^{3} y+2 z\right) d z=x^{3} y z+z^{2}+c(x, y) \\
&
\end{aligned}
$$

d) 12

$$
\oint=x^{3} y z-3 x y+z^{2}+C
$$

$$
\begin{aligned}
& \oint=x^{3} y z-3 x y+z \\
& w= \int_{c} \vec{F} \cdot d \vec{r}=\phi(0,3,0)-\phi(0,0,2)=0-2^{2}=-4
\end{aligned}
$$

Let $\overrightarrow{\boldsymbol{F}}(x, y)=\vec{\nabla} \varphi$ be a conservative vector field. What is the curl $\vec{\nabla} \times \overrightarrow{\boldsymbol{F}}$?
a) 1
b) 0
c) $\frac{\partial^{2} \varphi}{\partial x^{2}}-\frac{\partial^{2} \varphi}{\partial y^{2}}$
d) $\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}$

$$
\begin{aligned}
\vec{F} & =\vec{\nabla} \phi=\left\langle\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}\right\rangle \\
\vec{\nabla} \times \vec{F} & =\frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial y}\right)-\frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial x}\right) \\
& =\frac{\partial^{2} \phi}{\partial x \partial y}-\frac{\partial^{2} \phi}{\partial y \partial x}=0
\end{aligned}
$$

Use Green's Theorem to calculate the work done on an object by the force field $\overrightarrow{\boldsymbol{F}}(x, y)=\left\langle y+\sin (x), e^{y}-x\right\rangle$ on the path C that is the circle $x^{2}+y^{2}=4$ starting at the point $(2,0)$ and making exactly one full loop.
a) 0

$$
W=\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

b) -4π $=\iint_{D} \frac{\partial}{\partial x}\left(e^{y}-x\right)-\frac{\partial}{\partial y}(y+\sin (x)) d A$
c) -8π

$$
=\iint_{D}-1-1 d A=-2 \iint_{D} d A=-2 \operatorname{arca}(D)
$$

Which of the following vector fields has $\vec{\nabla} \times \overrightarrow{\boldsymbol{F}}=1$?
a) $\boldsymbol{\vec { F }}(x, y)=\langle 0,-x\rangle$
b) $\overrightarrow{\boldsymbol{F}}(x, y)=\langle x, y\rangle$
c) $\overrightarrow{\boldsymbol{F}}(x, y)=\left(-\frac{y}{2}, \frac{x}{2}\right)$

Use the flux form of Green's Theorem to calculate the flux $\oint_{C} \overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{N}} d s$ of $\overrightarrow{\boldsymbol{F}}(x, y)=\langle x, y\rangle$, across the circle of radius 5 .
a) 0
b) 5π
c) 50π

(Fall 22 Final Exam \#5)

5. Consider the circle C centered at 0 with radius 3 . A particle travels once around C, counterclockwise. It is subject to the force

$$
\mathbf{F}(x, y)=\left\langle y^{3}, x^{3}+3 x y^{2}+1\right\rangle .
$$

Use Green's theorem to find the work done by \mathbf{F}.
A. $\frac{3 \pi}{4}$
B. $\frac{4 \pi}{3}$
C. $\frac{243 \pi}{4}$
D. $\frac{117 \pi}{4}$
E. $\frac{23 \pi}{3}$

