LESSON 29 MA 26100-FALL 2023 Dr. Hood

 $\vec{F} = \vec{\nabla} \phi \quad W = \int \vec{F} \cdot \vec{F} = \phi(b) - \phi(a)$ (Spring 23 Final Exam #11) Let $\vec{F}(x, y, z) = \langle 3x^2yz - 3y, x^3z - 3x, x^3y + 2z \rangle$, you may assume \vec{F} is conservative. Calculate the work done by \vec{F} moving an object along C where C is the straight-line segment from (0,0,2) to (0,3,0). $\phi = \int (3x^2y^2 - 3y) dx = x^3y^2 - 3xy + a(y_1z)$ $= \int (x^{3}z - 3x) dy = x^{3}y - 3xy + b(x) =$ *a*) 0 $= \int (x^{3}y + 2z) dz = x^{3}yz + z^{2} + c(x,y)$ *b)* –9 *c*) 5 $\phi = \chi^3 y^2 - 3\chi y + z^2 + C$ *d*) 12 $W = \int_{C} \vec{F} \cdot d\vec{r} = \phi(0,3,0) - \phi(0,0,a) = 0 - a^{2} = 0$ *e*) -4

Let $\vec{F}(x, y) = \vec{\nabla} \varphi$ be a conservative vector field. What is the curl 言: マヤーく説, 歌う $\vec{\nabla} \times \vec{F}$? *a*) 1 $\forall xF = \frac{\partial}{\partial x} \left(\frac{\partial d}{\partial y} \right) - \frac{\partial}{\partial y} \left(\frac{\partial d}{\partial x} \right)$ *b*) 0 $\partial^2 \varphi$ $\partial^2 \varphi$ *C*) = 0 $\partial \gamma^2$ $d) \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial v^2}$

Use Green's Theorem to calculate the work done on an object by the force field $\vec{F}(x, y) = \langle y + \sin(x), e^y - x \rangle$ on the path C that is the circle $x^2 + y^2 = 4$ starting at the point (2,0) and making exactly one full loop. W = $\oint F \cdot dr = \iint (2Q - 2P) dA$ *a*) 0 $c) = \pi = \iint_{D} \frac{\partial}{\partial x} (e^{y} - x) - \frac{\partial}{\partial y} (y + \sin(x)) dA$ $= \iint_{D} -1 - 1 dA = -2 \iint_{D} dA = -2 \operatorname{area} (D)$ $= -2(\pi a^{2}) = -8\pi$ Which of the following vector fields has $\vec{\nabla} \times \vec{F} = 1$?

a)
$$\vec{F}(x,y) = \langle 0, -x \rangle$$

b) $\vec{F}(x,y) = \langle x,y \rangle$
c) $\vec{F}(x,y) = \langle -\frac{y}{2}, \frac{x}{2} \rangle$

Use the flux form of Green's Theorem to calculate the flux $\oint_C \vec{F} \cdot \vec{N} \, ds$ of $\vec{F}(x, y) = \langle x, y \rangle$, across the circle of radius 5. *a)* 0 *b)* 5π

c) 50π

(Fall 22 Final Exam #5)

5. Consider the circle C centered at 0 with radius 3. A particle travels once around C, counterclockwise. It is subject to the force

$$\mathbf{F}(x,y) = \left\langle y^3, \, x^3 + 3xy^2 + 1 \right\rangle \,.$$

Use Green's theorem to find the work done by \mathbf{F} .

A.
$$\frac{3\pi}{4}$$

B. $\frac{4\pi}{3}$
C. $\frac{243\pi}{4}$
D. $\frac{117\pi}{4}$
E. $\frac{23\pi}{3}$