LESSON 2 MA 26100-FALL 2023 Dr. Hood

SUPPLEMENTAL INSTRUCTION

SI Leader	Session 1	Session 2	Session 3	Office hour
Anna Szakats	Sun @ 4:30 PM Academic Success Center	Tue @ 4:30 PM FRNY 1043 WIV 00	Thu @ 4:30 PM F RNY 1043 UNI V <i>P</i> O	Thu @ 12:00 PM WILY C215 + Zoom
Jorge Mendoza	Sun @ 6:30 PM Academic Success Center	Mon @ 6:30 PM WALC 3122	Wed @ 6:30 PM WALC 3122	Wed @ 10:30 AM WILY C215 + Zoom

LESSON 2 - WARM UP

What does it mean for the vectors \vec{u} and \vec{v} to be parallel? $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| (o \le \theta) \rightarrow \theta = \frac{1}{2} \cdot \frac{1}{2}$ $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| (o \le \theta) \rightarrow \theta = \frac{1}{2} \cdot \frac{1}{2}$ $\vec{u} \cdot \vec{v} = 0$

a)
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$$

b) $\mathbf{\vec{u}} = k \, \mathbf{\vec{v}}$, for some scalar k
c) $\mathbf{\vec{u}} \times \hat{\mathbf{i}} = \mathbf{\vec{v}}$
 $z \, \mathbf{\vec{u}} \parallel \mathbf{\vec{u}}$
 $-1 \, \mathbf{\vec{u}} \parallel \mathbf{\vec{u}}$
 $\mathbf{v} \in \mathbf{u} \times \mathbf{v} = \mathbf{v}$

MYLAB MATH

- Need an **access code** for the Pearson MyLab Math platform to complete your homework online in MyLab Math.
 - Video Instructions: How to Register for MLM
- 24-month access code Pearson had a glitch

• HW1 is now due on Monday Aug 28 at 11:59pm

DATA SCIENCE LABS

These are 1-credit laboratories that explore applications of your math classes to data science through Arduino/Python projects.

As a Calc 3 student, you are eligible to take either of these two labs:

- MA16290: The Data Science Labs on Calculus 2- Start here if you have no Python experience.
- MA290: The Data Science Labs on Calculus 3 Requires Python experience.
 Possibility to upgrade MA261 to an honors course.

Both count towards the Applications in Data Science Certificate.

More info at https://engineering.purdue.edu/~mboutin/Data_Science_labs.html

OFFICE HOURS

- Dr. Hood's Office Hours:
 - Mon, Wed, Fri at 2:00-3:00pm in MATH 844

- Extra office hour to review vectors:
 - -Thursday Aug 24 at 11am 12pm in MATH 844

POLL 1

A2 R PR Y

Find the equation of the line passing through the points (1,4,-2) and (3,5,0)

a)
$$\frac{x-1}{-3} = \frac{y-1}{5} = \frac{z+2}{1}$$

b) $\frac{x+3}{1} = \frac{y-5}{1} = \frac{z+0}{-2}$
c) $\frac{x-1}{-4} = \frac{y-4}{1} = \frac{z+2}{2}$

Need a vector parallel to line V = PR = (-3 - 1, 5 - 4, 0 - (-2))= <-4,1,27 $\vec{r}_{0} = \langle 1, 4, -2 \rangle$

POLL 2

Find the relationship between the lines: $\gamma_{1} = \langle 1, 0 \rangle$ $L_1 = t \langle 1, 0, 0 \rangle$ $v_{2} = < 1, 0, 07$ $L_2 = \langle 0, 0, 3 \rangle + t \langle 1, 0, 0 \rangle$ $L_{3} = \langle 0, 0, 3 \rangle t_{S} \langle 0, 1, 0 \rangle \vec{V}_{3} = \langle 0, 1, 0 \rangle$ a) Equal b) Parallel L1 = L3 +<1,0,07= <0,0,37+ 5<0,1,07 c) Intersecting $(t_{10}, 0) = (0, 5, 3)$ t=0 no 0=5 intersection d) Skew () Land Ly

POLL 3

Find the angle between the planes 2x - 3y + 2z = 3 and 6x + 2y - 3z = 1.

a) $\theta = 0$ b) $\theta = \frac{\pi}{2}$ c) $\theta = \frac{\pi}{4}$

MUDDIEST POINTS

What was the muddiest point from today's lecture?

- a) The equation of a line
- b) Definition of skew lines
- c) The equation of a plane
- d) Finding the angle between planes
- e) None understood everything today