LESSON 2 MA 16200•SPRING 2023 DR. HOOD

SUPPLEMENTAL INSTRUCTION

SI Leader	Session 1	Session 2	Session 3	Office hour
Alex Hunton	Mon @ 7:30 PM UNIV 001	Tue @ 7:30 PM UNIV 003	Thu @ 4:30 PM UNIV 117	Thu @ 2:00 PM WILY C215
Phoebe Bailey	Sun @ 6:30 PM WILY C215	Mon @ 6:30 PM WTHR 420	Wed @ 6:30 PM WTHR 420	Wed @ 10:30 AM WILY C215

WARM UP

$$
\begin{aligned}
& \vec{u}=\left\langle u_{1}, u_{2}\right\rangle \\
& |\vec{u}|=1=\sqrt{u_{1}^{2}+u_{2}^{2}} \vec{d} \vec{d}_{3}
\end{aligned}
$$

Which of the following is not a unit vector?
a) $\langle 0,1\rangle$

b) $\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle$
c) $\left.\left(\frac{1}{3}, \frac{2}{3}\right\rangle\right) \rightarrow|\vec{c}|=\sqrt{\left(\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}}=\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{3} \neq 1$
d) $\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle$

ANNOUNCEMENTS

- MyLab Math Technical Problems
- Down Tuesday Jan 10 from 1pm - 8pm
- Now resolved - try again to register
- Check status: https://status.pearson.com/s/
- Pearson Help Table (in person)

DATE: Thursday, January $12^{\text {th }}$
TIME: 12:30-4pm
LOCATION: Krannert Drawing Room. This
is in the lobby area near the Hub corner

apply calculus to data science

- Would you like to earn honors credits for MA16200? Are you interested in learning how to apply calculus to data science problems? If so, consider taking the companion (one-credit) course MA16290: "Data Science Lab: Calculus." In this course, you will
- explore applications of calculus to data science
- learn to program in Python
- learn to use Arduino sensors and microprocessors to acquire data
- More information here: https://engineering.purdue.edu/~mboutin/Data Science labs.html

OFFICE HOURS

- Dr. Hood's Office Hours:
- Mon, Wed, Fri at 12:30-1:30pm in MATH 844
- (may change slightly after first week)
- TA's have office hours in the Math Resource Room (MRR)
-WTHR 313
-Schedule posted online on Wed Jan 11:
- https://www.math.purdue.edu/academic/courses/helproom

GETTING TO KNOW YOU

Question 1

Check the two or three values that are most important to you.

POLL 1

If $\vec{u}=\langle 1,1,1\rangle$ and $\vec{v}=\langle 2,7,6\rangle$, what is $\vec{v}-2 \vec{u}$?
a) $\langle-3,-13,-11\rangle$

$$
\begin{aligned}
& \vec{v}-2^{2 \vec{u}} \\
& \langle 2,7,6\rangle-2\langle 1,1,1\rangle
\end{aligned}
$$

b) $\langle 1,6,5\rangle$

$$
\langle 2-2,7-2,6-2\rangle
$$

c) $\langle 0,5,4\rangle$

$$
\langle 0,5,2\rangle
$$

4010
 POII 2

Give a geometric description of the inequality:

$$
(x-0)^{2}+(y-1)^{2}+(z-3)^{2} \leq 2^{2}
$$

$|\overrightarrow{P Q}| \leq 2$

$$
|\overrightarrow{P Q}|^{2} \leq 2^{2}
$$

a) A sphere of radius 2 centered at $(0,1,3)=$
b) A ball of radius 2 centered at $(0,1,3)$
c) Every point outside the ball of radius 2 centered at $(0,1,3) \geqslant$

$$
\left|\vec{P}_{Q}\right| \geqslant 2
$$

POLL 3

Find a vector with length 7 that has the same direction as
$\vec{v}=\langle 1,-3,4\rangle$.
a) $\left(\frac{7}{\sqrt{26}}, \frac{-21}{\sqrt{26}}, \frac{28}{\sqrt{26}}\right)$
b) $\langle 7,-21,28\rangle$
c) $\left(\frac{7}{\sqrt{26}}, \frac{7}{\sqrt{26}}, \frac{7}{\sqrt{26}}\right)$

