$\square 581030$
 WA 26100-FALL 2023 DR. HOOD

(Fall 22 Final Exam \#5)

$$
W=\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

5. Consider the circle C centered at 0 with radius 3 . A particle travels once around C, counterclockwise. It is subject to the force

$$
\mathbf{F}(x, y)=\langle{\underset{\mathbf{P}}{ }}_{y^{3}}^{\underbrace{3}+\underbrace{x^{3}+3 x y^{2}+1}_{\mathbb{Q}}}\rangle .
$$

Use Green's theorem to find the work done by $\mathbf{F} \cdot 2 \pi \sim^{3}$
$\begin{aligned} & \text { A. } \frac{3 \pi}{4} \\ & \text { B. } \frac{4 \pi}{3}\end{aligned}=\iint_{D}\left(3 x^{2}+3 y^{2}-3 y^{2}\right) d A=\int_{0}^{2 \pi} \int_{0}^{3} 3 r^{2} \cos ^{2} \theta r d r d \theta$
$\frac{\text { C. } \frac{243 \pi}{4}}{\text { D. } \frac{117 \pi}{4}}=3 \int_{0}^{2 \pi} \cos ^{2} \theta\left[\frac{r^{4}}{4}\right]_{0}^{3} d \theta=\frac{3^{5}}{4} \int_{0}^{2 \pi} \frac{1+\cos (2 \theta)}{2} d \theta$
E. $\frac{23 \pi}{3}=\frac{3^{5}}{2 \cdot 4}\left[\theta+\frac{\sin (2 \theta)}{2}\right]_{0}^{2 \pi}=\frac{3^{5}}{2 \cdot 4} \cdot 2 \pi$

ANNOUNCEMENTS

- There will be class on Friday Nov 10
- Instead, class on Mon Nov 20 will be cancelled
- Recitation on Tue Nov 21 is also cancelled
- HW 29 and HW30 due Fri Nov 10 at 11:59pm
- Pearson is back online
- You can always check the status here:
https://status.pearson.com/

Here is a vector field $\overrightarrow{\boldsymbol{F}}(x, y)$. If you put a square in the first quadrant and let it change size according to the vector field, would the square expand or contract?
a) Expand
b) Contract
c) Neither

$$
\begin{aligned}
& \vec{F}=\langle x y, y\rangle \\
& \vec{\nabla} \cdot F=\frac{\partial}{\partial x}(x y)+\frac{\partial}{\partial y}(y) \\
&=y+1 \quad>0 \\
& \text { if } y \geq 0
\end{aligned}
$$

Which of the following vector fields is irrotational?

General rotational field

$$
\vec{a}=\langle 1,2,3\rangle
$$

$$
\overrightarrow{\boldsymbol{F}}(x, y, z)=\langle 2 z-3 y, 3 x-z, y-2 x\rangle
$$

What is $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}$?

$$
\begin{aligned}
& \frac{\partial}{\partial x}(2 z-3 y)+\frac{\partial}{\partial y}(3 x-z)+\frac{\partial}{\partial z}(y-2 y) \\
& \text { What is } \vec{\nabla} \times \overrightarrow{\boldsymbol{F}} \text { ? } \\
& =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial / \partial x & \partial / 2 y & 2 / 2 z \\
2 z-3 y & 3 x-z & y-2 x
\end{array}\right| \\
& =\langle 1-(-1), 2-(-2), 3-(-3)\rangle \\
& =2\langle 1,2,3\rangle=2 \vec{a}
\end{aligned}
$$

Let $\overrightarrow{\boldsymbol{F}}(x, y, z)=\langle P, Q, R\rangle$. Find $\vec{\nabla} \cdot(\vec{\nabla} \times \overrightarrow{\boldsymbol{F}})$
a) 1
b) 0

$$
\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial / \partial x / \partial y & \partial z \\
0 & \partial & R
\end{array}\right|=\left\langle\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right\rangle
$$

c) $\frac{\partial^{2} P}{\partial x^{2}}+\frac{\partial^{2} Q}{\partial y^{2}}+\frac{\partial^{2} R}{\partial z^{2}}$
$\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F})=\frac{\partial}{\partial x}\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)$
d) $2 \frac{\partial^{2} P}{\partial z \partial y}+2 \frac{\partial^{2} Q}{\partial x \partial z}+2 \frac{\partial^{2} R}{\partial y \partial x}$
$+\frac{\partial}{\partial y}\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)+\frac{\partial}{\partial z}\left(\frac{\partial Q}{\partial y}-\frac{\partial P}{\partial y}\right)$
$=\frac{\partial^{2} \alpha}{\partial x \partial y}-\frac{\partial^{2} x}{\partial x \partial z}+\frac{\partial^{2} p}{\partial y \partial z}-\frac{\partial^{2} R}{\partial \gamma^{2} x}$

$$
+\frac{\partial^{2} x}{2 z 2 x}-\frac{2^{2} p}{2 z 2 y}=0
$$

(Fall 22 Final Exam \#19)

19. Let $\mathbf{F}=\langle a x, c z-a x, c z+b y\rangle$ be a vector field, where $a, b, c \in \mathbb{R}$. Find conditions on a, b and c so that \mathbf{F} is not conservative and such that $\operatorname{curl}(\mathbf{F})$ is parallel to \mathbf{k}.
A. $b=c$
B. $a=c$
C. $b=c$ and $a=0$
D. $b=c$ and $a \neq 0$
E. $a=b=c=0$

(Fall 17 Final Exam \#14)

14. Let $\mathbf{F}=\left\langle x^{2} y z, x y^{2} z, x y z^{2}\right\rangle$. Compute $\operatorname{grad}(\operatorname{div} \mathbf{F})-\operatorname{curl}(\operatorname{curl}(\mathbf{F}))$.
A. $\langle 2 y z, 2 x z, 2 x y\rangle$
B. $\langle 0,0,0\rangle$
C. $\langle 6 y z, 6 x z, 6 x y\rangle$
D. $\langle 4 y z, 4 x z, 4 x y\rangle$
E. $\langle y z, x z, x y\rangle$
