4880134
 MA 26100-FILL 2023 DR. HOOD

(Spring 2016 Final Exam \#18)

$$
\vec{n}=\langle 2,1,-1\rangle
$$

If $\overrightarrow{\boldsymbol{F}}(x, y, z)=\langle 1,2,1\rangle$ and S is the intersection of the solid cylinder $x^{2}+y^{2} \leq 1$ with the plane $2 x+y-z=1$, compute $\iint_{S} \overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{n}} d S$ (using the upward pointing $\overrightarrow{\boldsymbol{n}}$).
a) $-\pi$
b) -3π
c) 2π

$$
\begin{gathered}
\vec{n}=\langle-2,-1,1\rangle \\
\iint_{S} \vec{F} \cdot \vec{n} d S=\iint_{D}\langle 1,2,1\rangle \cdot\langle-2,-1,1\rangle d A \\
=\iint_{D}(-2-2+1) d A=-3 \iint_{D} d A \\
=-3 \operatorname{arca}(D)=-3 \pi(1)^{2} \\
=-3 \pi
\end{gathered}
$$

d) 3π
e) $\frac{\pi}{2}$

ANNOUNCEMENTS

- Class cancelled on Monday Nov 20
- Recitation cancelled on Tuesday Nov 21

Let S be the surface of the paraboloid $z=x^{2}+y^{2}$ for $z \leq 4$ oriented with $\overrightarrow{\boldsymbol{n}}$ pointing downward. Find C and parameterize it so that it has right-handed orientation.
a) $\overrightarrow{\boldsymbol{r}}(t)=\langle 2 \cos (t), 2 \sin (t), 4\rangle$
b) $\overrightarrow{\boldsymbol{r}}(t)=\langle 2 \cos (t), 4,-2 \sin (t)\rangle$
c) $\vec{r}(t)=\langle 2 \cos (t),-2 \sin (t), 4\rangle$
d) $\overrightarrow{\boldsymbol{r}}(t)=\langle 2 \cos (t), 4,2 \sin (t)\rangle$

Use Stokes' Theorem to rewrite the line integral as a surface integral: $\oint_{C} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$ where $\overrightarrow{\boldsymbol{F}}=\left\langle z^{2}, y^{2}, x\right\rangle$ and C is the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$ oriented with counterclockwise rotation.
a) $\int_{0}^{1} \int_{0}^{1-u}(1-2 u-2 v) d v d u$

$$
x+y+z=1
$$

b) $\int_{0}^{1} \int_{0}^{1}\left((1-u-v)^{2}+v^{2}+u\right) d v d u$

$$
\begin{aligned}
& \vec{n}=\langle 1,1,1\rangle \\
& \vec{r}(u, v)=\langle u, v, 1-u-v\rangle
\end{aligned}
$$

c) $\int_{0}^{1} \int_{0_{z}}^{1-u}(2 u+2 v) d v d u$

$$
\begin{aligned}
& \iint_{D} \vec{\nabla} \times \vec{F} \cdot n d A \\
&=\iint_{D}(1-2 u-2 v) d A=\langle 0,2 z-1,0\rangle \\
&=\langle 0,2(1-u-v)-1,0\rangle
\end{aligned}
$$

(Fall 2022 Final Exam \#10)

Given $\overrightarrow{\boldsymbol{F}}=\left\langle-y, x, z^{3}\right\rangle$ and S is the part of the sphere $x^{2}+y^{2}+$ $z^{2}=4$ above $z=1$. Compute $\iint_{S}(\nabla \times \overrightarrow{\boldsymbol{F}}) \cdot d \overrightarrow{\boldsymbol{S}}$
a) -6π
b) 6π
c) 0
d) 3π
e) -3π

