5880134
 MA 26100-FILL 2023 DR. HOOD

(Fall 2022 Final Exam \#10)
Given $\overrightarrow{\boldsymbol{F}}=\left\langle-y, x, z^{3}\right\rangle$ and surface S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ above $z=1$. Compute $\iint_{S}(\nabla \times \overrightarrow{\boldsymbol{F}}) \cdot d \overrightarrow{\boldsymbol{S}}$ Stokes' Theorem
a) -6π

$$
\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d S=\oint_{C} \vec{F} \cdot d \vec{r}
$$

b) 6π
where c is $x^{2}+y^{2}+1^{2}=4$
c) 0 $x^{2}+y^{2}=\sqrt{3}$
$\vec{r}(t)=\langle\sqrt{3} \cos (t), \sqrt{3} \sin (t), 1\rangle$
d) 3π

$$
\begin{aligned}
& \vec{r}(t)=\langle 63 \cos (t), \sqrt{3} \cos (t), 0\rangle \\
& \vec{F}^{\prime}(t)=\langle-\sqrt{3} \sin (t)
\end{aligned}
$$

e) -3π

$$
\begin{array}{r}
=\int_{0}^{2 \pi}\left\langle-\sqrt{3} \sin (t), \sqrt{3} \cos (t),\left.\right|^{3}\right\rangle \cdot\langle-\sqrt{3} \sin (t), \sqrt{3} \cos (t) \cdot 0\rangle \\
=\int_{0}^{2 \pi} 3 \sin ^{2}(t)+3 \cos ^{2}(t)+0 d t=3 \int_{0}^{2 \pi} d t \\
-\quad-\quad 6 \pi
\end{array}
$$

ANNOUNCEMENTS

- Exam 2 booklets returned in Recitation on Tue Nov 28
- HW 37 and Quiz 11 are optional and will not be graded
- Grade Calculator:
https://www.math.purdue.edu/~kthood/docs/MA261 Fallz 023/grade calculator ma261 sp23.xlsx
- There is an error - I will repost when it has been corrected

Consider $\overrightarrow{\boldsymbol{F}}=\left\langle 0,1-x^{2}, 0\right\rangle$ for $0 \leq x \leq 1$. You place a paddle wheel with its axis in the z-direction at the point $\left(\frac{1}{2}, 0,0\right)$. Will it spin? If so, in which direction?
a) Does not spin
b) Spins clockwise
c) Spins counterclockwise

$$
\begin{aligned}
\vec{\nabla} \times \vec{F} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\imath} & \hat{k} \\
\partial / 2 x & 2 / 2 y & \partial / 2 z \\
0 & 1-x^{2} & 0
\end{array}\right| \\
& =\langle 0,0,-2 x\rangle
\end{aligned}
$$

Find $\iint_{S}(\nabla \times \overrightarrow{\boldsymbol{F}}) \cdot \overrightarrow{\boldsymbol{n}} d S$ where $\overrightarrow{\boldsymbol{F}}=\langle x, y, z\rangle$ and S is the surface of the plane $3 x+2 y+z=6$ in the first octant with upward pointing normal. Hint: Calculate curl first
a) 0
b) 6
c) 9
d) 12

$$
\begin{aligned}
& \vec{\nabla} \times \overrightarrow{F F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial / 2 x & 2 / 2 y & \partial / 2 z \\
x & y & z
\end{array}\right| \\
& =\langle 0,0,0\rangle \\
& \iint_{S}\left(\vec{\delta} \times F \cdot \vec{n} d S=\iint_{S} 0 \cdot d S=0\right.
\end{aligned}
$$

(Spring 2023 Final Exam \#18)
Let S be an open surface in \mathbb{R}^{3} with a boundary curve C where C is a circle in the xy-plane with radius 1 and center ($0,0,0$) and is oriented counterclockwise when viewed from above. Evaluate
$\oint_{C} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$ where $\overrightarrow{\boldsymbol{F}}(x, y, z)$ is such that $\nabla \times \overrightarrow{\boldsymbol{F}}=\left\langle\frac{1}{2},-\frac{3}{2}, \frac{1}{4}\right\rangle$.
(a) $\frac{\pi}{4}$

$$
\begin{aligned}
& \oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d S \\
& \text { Disk: } \quad z=0 \quad \vec{n}=\langle 0,0,1\rangle
\end{aligned}
$$

c) π

$$
\begin{gathered}
\iint_{D}\left\langle\frac{1}{2},-\frac{3}{2}, \frac{1}{4}\right\rangle \cdot\langle 0,0,1\rangle d A \\
=\frac{1}{4} \iint_{D} d A=\frac{1}{4} \pi
\end{gathered}
$$

(Spring 2017 Final Exam \#19)

19. Let S be the semi-ellipsoid $z=2 \sqrt{1-x^{2}-y^{2}}$, oriented so that the normal \mathbf{n} is upward pointing. Let

$$
\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \tan x y \mathbf{k} .
$$

Use Stokes' Theorem to to evaluate $\iint_{S} \operatorname{curlF} \cdot \mathbf{n} d S$.
A. 2π
B. 4π
C. 0
D. $\frac{4 \pi}{3}$
E. $\frac{2 \pi}{3}$

