[8SOM 7
 MA 26100-FILL 2023 DR. HOOD

(Fall 2017 Final Exam \#20)

$$
\vec{\nabla} \cdot \vec{F}=6 x y z
$$

Let $\overrightarrow{\boldsymbol{F}}=\left\langle x^{2} y z, x y^{2} z, x y z^{2}\right\rangle$. Using the outward pointing normal on the surface S of the solid box defined by $0 \leq x \leq 1$, $0 \leq y \leq 2,0 \leq z \leq 2$, evaluate $\iint_{S} \overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{n}} d S$
(a) 12

$$
\iint_{S} \vec{F} \cdot \vec{h} d S=\iiint_{E} \vec{\nabla} \cdot \vec{F} d V
$$

b) 24
c) 9

$$
=\int_{0}^{1} \int_{0}^{2} \int_{0}^{E} 6 x y z d z d y d x
$$

d) 18
e) 6
$\left.=6 \int_{0}^{1} \int_{0}^{2}\left(\frac{z}{2}\right)^{2} x y\right]_{0}^{2} d y d x=12 \int_{0}^{1} x\left(\frac{y^{2}}{2}\right)_{0}^{7} d$

$$
=24\left[\frac{x^{2}}{2}\right]_{0}^{1}=12
$$

Evaluate $\iint_{S} \overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{n}} d S$ where $\overrightarrow{\boldsymbol{F}}=\left\langle x^{2}, x y, x^{3} y^{3}\right\rangle$ and S is the surface consisting of all the faces of the tetrahedron bounded by the plane $x+y+z=1$ and the coordinate planes, with outward pointing normal.
a) $\frac{1}{24}$
b) $\frac{1}{12}$

$$
\iint_{S}^{y} \vec{F} \cdot \vec{h} d S=\iiint_{E_{1-x-y}} \vec{\nabla} \cdot \vec{F} d V \quad \vec{\nabla} \cdot \vec{F}=3 x
$$

c) $\frac{1}{8}$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{E_{1-x-y}^{1-x}} 3 x d z d y d x \\
& =\cdots=\frac{1}{8}
\end{aligned}
$$

(Fall 2015 Final Exam \#18)

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{F}= & 3 x^{2}+y^{z}+z^{2} \\
& +x^{2}+3 y^{2}+z^{2}=5\left(x^{2}+y^{2}+z^{2}\right) \\
& +x^{2}+y^{2}+3 z^{2}=5 \rho^{2}
\end{aligned}
$$

$$
\mathbf{F}(x, y, z)=\left\langle x^{3}+x y^{2}+x z^{2}, x^{2} y+y^{3}+y z^{2}, x^{2} z+y^{2} z+z^{3}\right\rangle
$$

and let S be the sphere of radius 2 centered at the origin with positive orientation, ie. outward pointing normal. Compute the flux

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \vec{\nabla} \cdot \overrightarrow{\mathbf{F}} d \mathbf{V}
$$

A. -4π
B. -2π

$$
=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{2} 5 \rho^{2} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

C. $\frac{4}{3} \pi$
D. 64π

$$
=\int_{0}^{2 \pi} \int_{0}^{\pi}\left[\frac{5 \rho^{5}}{5}\right]_{0}^{2} \sin \phi d \phi d \theta
$$

(E.) $128 \pi=2^{5} \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi d \phi d \theta=2^{5.4 \pi}=128 \pi$

