LESSON 5 MA 26100-FALL 2023 Dr. Hood

LESSON 5 - WARM UP
Find the equation of the line through the points
$$(s,7,7)$$

 $(1,2,3)$ and $(5,7,9)$.
 $a) \langle x, y, z \rangle = \langle 1, 2, 3 \rangle + t \langle 4, 5, 6 \rangle$
 $b) \langle x, y, z \rangle = \langle 1, 2, 3 \rangle + t \langle 5, 7, 9 \rangle$
 $c) \langle x, y, z \rangle = \langle 5, 7, 9 \rangle + t \langle 1, 2, 3 \rangle$
 $PQ = \langle 4, 5, 6 \rangle$

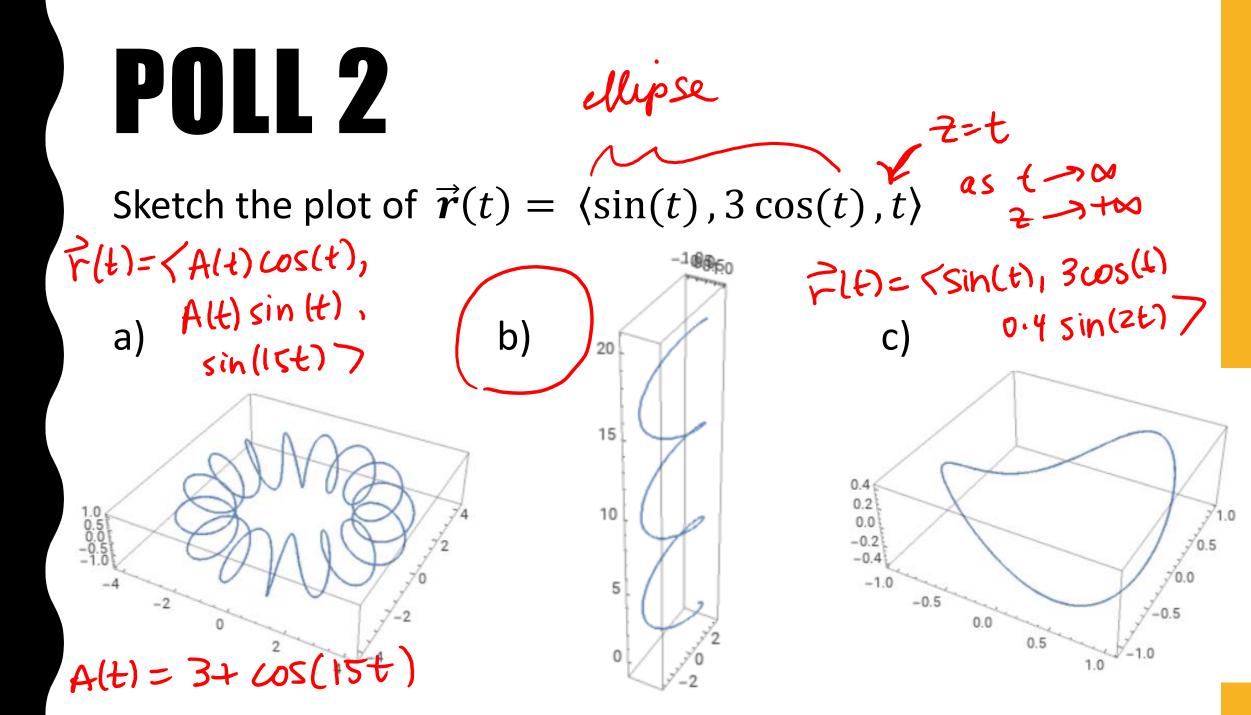
MATH RESOURCE ROOM

- TA's have office hours in the Math Resource Room (MRR)
 - Room: WTHR 182
 - -Opens Wednesday, Aug 30
 - Hours:
 - Monday Thursday: 9:30am 5:20pm
 - Friday: 9:30am 1:20pm
 - Schedule is posted online:
 - <u>https://www.math.purdue.edu/academic/courses/helproom</u>

QUIZ 1 POLL

How did Quiz 1 go in recitation yesterday?

a) Good! 🙂


b) Meh

c) Bad ତ

POLL 1

What is the domain of the vector-valued function

$$\vec{r}(t) = \left\langle e^{-4t}, t \ln(t), \sqrt{4 - t^2} \right\rangle \quad \begin{array}{c|c} \text{function} & \text{domain} \\ \hline e^{-4t} & (-\infty, \infty) \\ \hline e^{-4t} & (-\infty, \infty) \\ \hline b) (-2, 2) & t \ln(t) \\ \hline c) [0, 4] & \gamma 4 - t^2 & [-2, 2] \\ \hline d) [-4, 4] \end{array}$$

POLL3
$$x+y+z=1$$

 $x-zy+zz=9$

Given two planes x + y + z = 1 and x - 2y + 2z = 4, which vector-valued function describes the intersection of these two planes? (a) $\chi + y + \chi = 1$

a)
$$\vec{r}(t) = \langle 2+t, -1-t, -2t \rangle$$

b) $\vec{r}(t) = \langle 2+4t, -1-t, -3t \rangle$
c) $\vec{r}(t) = \langle 2+4t, 2-t, -3t \rangle$
there $(2+4t) - 3(-1-t) + 3(-3t) = 1$
for all t
 $(2+4t) + (-1-t) + (-3t) = 1$
 $(2+4t) + (-1-t) + (-3t) = 1$
 $(2+4t) + (-1-t) + (-3t) = 1$

POLL 4

(Spring 22 Exam 1 #4)

Find a vector-valued function that represents the curve of the intersection of the cylinder $y^2 + z^2 = 1$ and the plane x + 2y + z = 1.

a) $\vec{r}(t) = \langle 1 - 2\cos(t) - 2\sin(t), \cos(t), \sin(t) \rangle$ b) $\vec{r}(t) = \langle 1 - 2\cos(t) - \sin(t), \cos(t), \sin(t) \rangle$ c) $\vec{r}(t) = \langle 1 - \cos(t) - \sin(t), 2\cos(t), \sin(t) \rangle$

MUDDIEST POINT

What was the muddiest point from today's lecture?

- a) Vector-Valued Functions
- b) Domains of Vector-Valued Functions
- c) Plotting Vector-Valued Functions
- d) Finding Intersections
- e) None understood everything today