B8SOM
 WA 26100-FALL 2023 DR. HOOD

LESSON 5 - WARM UP
Find the equation of the line through the points $\quad(5,7,9)$ $(1,2,3)$ and $(5,7,9)$.

$$
\text { (at } t=\frac{1}{2}=\left\langle 5, x^{9}\right\rangle
$$

(a) $\langle x, y, z\rangle=\langle 1,2,3\rangle+t\langle 4,5,6\rangle$
b) $\langle x, y, z\rangle=\langle 1,2,3\rangle+t\langle 5,7,9\rangle$
c) $\langle x, y, z\rangle=\langle 5,7,9\rangle+t\langle 1,2,3\rangle$

MATH RESOURCE ROOM

- TA's have office hours in the Math Resource Room (MRR)
- Room: WTHR 182
-Opens Wednesday, Aug 30
- Hours:
- Monday - Thursday: 9:30am - 5:20pm
- Friday: 9:30am - 1:20pm
- Schedule is posted online:
- https://www.math.purdue.edu/academic/courses/helproom

QUIZ 1 POLL

 How did Quiz 1 go in recitation yesterday?a) Good! ()
b) Meh
c) $\operatorname{Bad}: 8$

POLL 1
What is the domain of the vector-valued function $\overrightarrow{\boldsymbol{r}}(t)=\left\langle e^{-4 t}, t \ln (t), \sqrt{4-t^{2}}\right\rangle$
a) $(0,2] \quad(0,2]$
b) $(-2,2)$
c) $[0,4]$
d) $[-4,4]$

function	domain
$e^{-4 t}$	$(-\infty, \infty)$
$t \ln (t)$	$(0, \infty)$
$\sqrt{4-t^{2}}$	$[-2,2]$

POLL 2
ellipse
Sketch the plot of $\overrightarrow{\boldsymbol{r}}(t)=\underbrace{\swarrow_{i \rightarrow \infty}^{z=t} \text { as } t \rightarrow+\infty}_{\langle\sin (t), 3 \cos (t), t\rangle}$

$$
\vec{r}(t)=\langle A(t) \cos (t),
$$

a) $A(t) \sin (t)$.
$\sin (15 t)>$

$$
A(t)=3+\cos ^{2}(15 t)
$$

b)

$$
\vec{r}(t)=\langle\sin (t), 3 \cos (t)
$$

c) $\quad 0.4 \sin (2 t) 7$

$1 \pm \frac{\left\{\begin{array}{l}x+y+z=1 \\ x-2 y+2 z=4\end{array}\right.}{\text { solve }}$
Given two planes $x+y+z=1$ and $x-2 y+2 z=4$, which vector-valued function describes the intersection of these two planes?
a)

$$
\begin{gathered}
x+y+z=1 \\
(2+t)+(-1-t)+(-2 t)=1 \\
1-2 t=1 \\
t=0
\end{gathered}
$$

b) $\overrightarrow{\boldsymbol{r}}(t)=\langle 2+4 t,-1-t,-3 t\rangle$
b) $x+y+z=1$
c) $\overrightarrow{\boldsymbol{r}}(t)=\langle 2+4 t, 2-t,-3 t\rangle$
$(2+4 t)+(-1-t)+(-3 t)=1$
Check $(2+4 t)-2(-1-t)+2(-3 t)=4$
for all t

POLL 4

(Spring 22 Exam 1 \#4)
Find a vector-valued function that represents the curve of the intersection of the cylinder $y^{2}+z^{2}=1$ and the plane $x+2 y+z=1$.
a) $\overrightarrow{\boldsymbol{r}}(t)=\langle 1-2 \cos (t)-2 \sin (t), \cos (t), \sin (t)\rangle$ b) $\overrightarrow{\boldsymbol{r}}(t)=\langle 1-2 \cos (t)-\sin (t), \cos (t), \sin (t)\rangle$
c) $\overrightarrow{\boldsymbol{r}}(t)=\langle 1-\cos (t)-\sin (t), 2 \cos (t), \sin (t)\rangle$

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Vector-Valued Functions
b) Domains of Vector-Valued Functions
c) Plotting Vector-Valued Functions
d) Finding Intersections
e) None - understood everything today

