F8SON
 WA 26100-FALL 2023 DR. HOOD

$$
\begin{aligned}
& x=\sqrt{2} t \\
& y=t^{2}+1 \\
& z=1-4 t
\end{aligned}
$$

(Fall 16 Exam 1 \#4) Let (a, b, c) be the point of intersection of the curve $\overrightarrow{\boldsymbol{r}}(t)=\left\langle\sqrt{2} t, t^{2}+1,1-4 t\right\rangle$ with the surface $x^{2}+2 y-z=0$. What is the value of $a^{2}+2 b$?

$$
x^{2}+2 y-z=0
$$

a) 3

$$
\begin{array}{cl}
(\sqrt{2} t)^{2}+2\left(t^{2}+1\right)-(1-4 t)=0 \\
2 t^{2}+2 t^{2}+2-1+4 t=0 \\
4 t^{2}+4 t+1=0 & (a, b, c) \\
=>\left(-\frac{1}{2}\right)
\end{array}
$$

c) 5
d) 6

$$
\begin{aligned}
& a^{2}+2 b= \\
& \left(-\frac{\sqrt{2}}{2}\right)^{2}+2\left(\frac{5}{4}\right)=\frac{12}{4}=3 \quad t=-\frac{1}{2}
\end{aligned}
$$

$$
=\left(-\frac{\sqrt{2}}{2},\left(-\frac{1}{2}\right)^{2}+1,1-4 \frac{1}{2} \frac{1}{2}\right)
$$

$$
=\left(-\frac{\sqrt{2}}{2}, \frac{5}{4}, 3\right)
$$

labor day holiday

- Labor Day Holiday is Monday Sep 4, 2023
- No lecture on Monday
- No HW due Monday
- No Office Hours on Monday
- Math Resource Room is closed

QUIZ RUBRIC

- Quiz Grading:
- (2 points) Write your name on the paper
- (3 points) Multiple Choice Question
- (5 points) Partial Credit Question
- Must show your work to receive full credit
- If you just write D, you will earn 1 point, even if D is the correct choice
- Link to Quiz Rubric:

Write your name below (2 points). One problem will be graded correct/incorrect (3 points). Another problem will be graded for partial credit based on work shown (5 points).

Quiz Grading:

- (2 points) Write your name on the paper
A. $3 / 2$
B. $\sqrt{2}$
C. 2
- (3 points) Multiple Choice Question
D. $7 / 2$
- (5 points) Partial Credit Question
- Must show your work to receive full credit

Problem 3
(5 points)
A line l passes through the points $A(1,-2,1)$ and $B(2,3,-1)$. At what point does this line intersect with the $x y$ -plane?
/I To receve the fill 5 poins s. you usts show all your workon this problem. 1
A. $\left(\frac{5}{2}, \frac{-1}{2}, 0\right)$

- If you just write D, you will earn 1 point, even if D is the correct choice
B. $\left(\frac{5}{2} \frac{1}{2}, \frac{1}{2}\right)$
c. $\left(\frac{3}{2} \frac{1}{2}, \frac{1}{2}, 0\right)$
D. $\left(\frac{3}{2},-\frac{1}{2}, 0\right)$

The area of the triangle with vertices $(2,1,1),(1,2,1),(1,1,2)$ is
Answer =

Problem 2

E. $\left(\frac{3}{2}-1,0\right)$

POLL 1

$$
\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}
$$

Find the unit tangent vector of $\vec{r}^{\prime}(t)=\langle-\sin (t), \cos (t), 2\rangle$

$$
\overrightarrow{\boldsymbol{r}}(t)=\langle\cos (t), \sin (t), 2 t\rangle
$$

$$
\begin{aligned}
\left|\vec{r}^{\prime}\right| & =\sqrt{(-\sin t)^{2}+(\cos t)^{2}+2^{2}} \\
& =\sqrt{1+4}
\end{aligned}
$$

a) $\overrightarrow{\boldsymbol{T}}(t)=\frac{1}{\sqrt{5}}\langle-\sin (t), \cos (t), 2\rangle$

$$
=\sqrt{5}
$$

b) $\overrightarrow{\boldsymbol{T}}(t)=\left\langle-\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle$
c) $\overrightarrow{\boldsymbol{T}}(t)=\langle-\sin (t), \cos (t), 2\rangle$

$$
\begin{aligned}
\vec{r}(t)= & \left\langle 2 t-1, t^{2}, t^{2}-2\right\rangle=\langle 3,4,2\rangle \\
& 2 t-1=3 \\
& t=2
\end{aligned}
$$

(Spring 18 Exam 1 \#2) If L is the tangent line to the curve $\overrightarrow{\boldsymbol{r}}(t)=\left\langle 2 t-1, t^{2}, t^{2}-2\right\rangle$ at $(3,4,2)$, find the point where L intercepts the $x y$-plane.
tangent vector:
a) $(2,1,0)$
b) $(1,2,0)$

$$
\begin{aligned}
& \text { pent vector: } \\
& \vec{r}^{\prime}(t=2)=\left.\langle 2,2 t, 2 t\rangle\right|_{t=2} \\
&=\langle 2.4,4\rangle \text { dircetio }
\end{aligned}
$$

c) $(2,-2,0)$

Tangent

$$
=\langle 2,4,4\rangle \text { direction }
$$

Line!
d) $(2,2,0) \quad x y$-plane:

$$
\begin{aligned}
& y-p \text { plane: } \\
& z=0 \quad x=3+2\left(-\frac{1}{2}\right)=2
\end{aligned}
$$

$$
\begin{aligned}
&\langle x, y, z\rangle=\langle 3,4,2\rangle+t\langle 2,4,4\rangle \\
&=\langle 3+2 t, 4+4 t, 2+4 t) \\
&{ }^{\prime \prime} \quad{ }^{\prime \prime} \quad y^{\prime} \quad z^{\prime} \quad t=\frac{-1}{2} \\
& x=3+2\left(-\frac{1}{2}\right)= 2 \quad y=4+4\left(\frac{-1}{2}\right)=2 \quad 11 \\
& 0
\end{aligned}
$$

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Derivatives of Vector-Valued Functions
b) Tangent Vector
c) Unit Tangent Vector
d) Integrals of Vector-Valued Functions
e) None - understood everything today

