[88017
 WA 26100-FALL 2023 DR. HOOD

LESSON 7
(Spring 17 Exam 1 \#3)
Suppose the trajectories of two particles are given by:

11
Collision:

$$
\begin{aligned}
& \vec{r}_{1}(t)=\vec{r}_{2}(t) \\
& t+1=2 t \quad t=1 \\
& 2 \sqrt{t}=t^{2}+1 \\
& \sqrt{2} t=t^{2}-2 t+\sqrt{2}+1
\end{aligned}
$$

Find the angle between their tangent vectors at their point of collision.
a) $0 \quad \vec{r}_{1}^{\prime}(t=1)=\left.\left\langle 1,2 \cdot \frac{1}{2} t^{-1 / 2}, \sqrt{2}\right\rangle\right|_{t=1}=\langle 1,1, \sqrt{2}\rangle$
b) $\frac{\pi}{6} \quad \vec{r}_{2}(t=1)=\left.\langle 2,2 t, 2 t-2\rangle\right|_{t=1}=\langle 2,2,0\rangle$
c) $\frac{\pi}{4}$
d) $\frac{\pi}{2}$

$$
\cos \theta=\frac{\vec{r}_{1}^{\prime} \cdot \vec{r}_{2} \mid}{\left|\vec{r}_{1}^{\prime}\right|\left|\vec{r}_{2}^{\prime}\right|}=\frac{\langle 1,1, \sqrt{2}\rangle \cdot\langle 2,2,0\rangle}{\sqrt{1^{2}+2^{2}+\sqrt{2}^{2}} \cdot \sqrt{2^{2}+2^{2}+0^{2}}}=\frac{4}{2 \cdot 2 \sqrt{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{\theta=\frac{\frac{\pi}{4}}{2}}
$$

OFFICE HOURS

- Dr. Hood's Office Hours:
- Mon, Wed, Fri at 2:00-3:00pm in MATH 844
- TA's have office hours in the Math Resource Room (MRR)
- Room WTHR 182
- Mon - Thurs 9:30am - 5:20pm and Friday 9:30am - 1:20pm
- Schedule is posted online:
- https://www.math.purdue.edu/academic/courses/helproom

POLL 1

elliptical motion

Determine whether the following trajectory lies on a circle:

$$
\overrightarrow{\boldsymbol{r}}(t)=\langle\cos (t), 5 \sin (t)\rangle
$$

a) Yes, circular motion
b) No, not circular motion

$$
\begin{aligned}
|\vec{r}(t)| & =\sqrt{(\cos t)^{2}+(5 \sin t)^{2}} \\
& =\sqrt{\cos ^{2} t+25 \sin ^{2}(t)} \\
& =\sqrt{\cos ^{2}(t)+\sin ^{2}(t)+24 \sin ^{2}(t)} \\
& =\sqrt{1+24 \sin ^{2}(t)} \neq \text { cons }
\end{aligned}
$$

POLL 2
The position of a cannonball is given by:

$$
\overrightarrow{\boldsymbol{r}}(t)=\left\langle 320 \sqrt{3} t,-16 t^{2}+320 t+336\right\rangle=\langle x(t), y(t)\rangle
$$

When does the cannonball hit the ground?

$$
y(t)=0
$$

a) $t=1 \mathrm{~s}$

$$
\begin{aligned}
& y(t)=0 \\
& -\frac{16 t^{2}+320 t+336}{-16}=0 \\
&
\end{aligned}
$$

b) $t=21 \mathrm{~s}$
c) $t=20 s$

$$
\begin{gathered}
t^{2}-20 t-21=0 \\
(t-21)(t+1)=0 \quad t=21 \\
t=-1,21
\end{gathered}
$$

MUDDIIEST POINT

What was the muddiest point from today's lecture?
a) Point of Collision
b) Circular Motion
c) Projectile Motion
d) Time of Flight
e) None - understood everything today

