F8SOM 9
 WA 26100-FALL 2023 DR. HOOD

LESSON 9- WARM UP

(Fall 2016 Exam 1 \#6) The curvature of the curve

$$
\overrightarrow{\boldsymbol{r}}(t)=\langle 9 \cos (t), 9 \sin (t)\rangle
$$

At $t=\pi$ is:

$$
R=q
$$

a) 9
b) 3

$$
K=\frac{1}{R}=\frac{1}{9}
$$

c) $\frac{1}{3}$
d) $\frac{1}{9}$

SUPPLEMENTAL INSTRUCTION

SI Leader	Session 1	Session 2	Session 3	Office hour
Anna Szakats	Sun @ 4:30 PM Academic Success Center	Tue @ 4:30 PM UNIV 001	Thu @ 4:30 PM UNIV 001	Thu @ 12:00 PM WILY C215 + Zoom
Jorge Mendoza	Sun @ 6:30 PM Academic Success Center	Mon @ 6:30 PM WALC 3122	Wed @ 6:30 PM WALC 3122	Wed @ 10:30 AM WILY C215 + Zoom

$$
\begin{gathered}
f(x, y)=c \\
c=x+\sqrt{x^{2}+y^{2}+1} \\
(c-x)^{2}=\left(\sqrt{x^{2}+y^{2}+1}\right)^{2}
\end{gathered}
$$

(Fall 18 Exam 1 \#7) The level curves of

$$
f(x, y)=x+\sqrt{x^{2}+y^{2}+1}
$$

are:

$$
c^{2}-2 c x+x^{2}=x^{2}+y^{2}+1
$$

a) Hyperbolas

$$
-2 c x=y^{2}+1-c^{2}
$$

b) Ellipses
c) Sometime lines and sometimes ellipses
d) Circles
e) Parabolas

$$
x=\frac{y^{2}+1-c^{2}}{-2 c}
$$

PLOTTING SURFACES

Sketch the level curves and surface of $z=\cos (x y)$

PLOTTING SURFACES

Sketch the level curves and surface of $z=\sin (x y)$

PLOTTING SURFACES

Sketch the level curves and surface of $z=\cos \left(x^{2}+y^{2}\right)$

POLI 2

(Spring 22 Exam 1 \#5) Suppose $z=f(x, y)$ has level curves shown here. The surface formed by the graph of f could be which of the following?
a) Hyperbolic paraboloid
b) Hyperboloid of 2 sheets
c) Elliptic paraboloid
d) Elliptic cone

MUDDIIEST POINT

What was the muddiest point from today's lecture?
a) Function of two variables
b) Level curves
c) Plotting surfaces
d) None - understood everything today

