Quiz Study Guide
 MA 261 • Fall 2023

Quizzes:

- Quizzes are given weekly on Tuesdays during Recitation. They must be taken in-person.
- Two problems - each chosen from a pool of past exam problems (green column below).
- View the problems on the Past Exam Archive: https://www.math.purdue.edu/academic/courses/oldexams.php?course=MA26100
- Naming Convention:
- F18FE\#1 - Fall 2018 Final Exam Question \#1
- S19E1\#7 - Spring 2019 Exam 1 Question \#7
- One problem will be graded for partial credit. The other will be graded as multiple choice (all or nothing).
- Quizzes are 15 minutes long and will take place during the last 15 minutes of the recitation (from $\mathrm{X}: 05-\mathrm{X}: 20$)

\#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
1	Review of Vectors	$\begin{aligned} & 13.1 \\ & 13.2 \\ & 13.3 \\ & 13.4 \end{aligned}$	1	- Compute vector operations - Find magnitude of a vector - Find a position vector - Find the equation of a sphere, ball, or circle - Find equations of simple planes - Compute dot products - Find angles between vectors - Calculate orthogonal projections - Compute cross products - Find areas of parallelograms and triangles - Find orthogonal vectors	Vector, scalar, magnitude, zero vector, position vector, unit vector, parallel, sphere, ball, circle, plane, dot product, orthogonal, orthogonal projection, cross product, determinant, coordinate unit vectors ($\mathbf{i}, \mathbf{j}, \mathbf{k}$)	Few exam questions test these concepts directly. However, you will need these concepts to complete the more difficult questions from the past exams. S18E1\#4 S18FE\#1 S16E1\#1
2	Lines \& Planes in Space	13.5	1	- Find equations of lines and line segments - Find equations of planes - Determine whether planes are parallel, intersecting, or identical - Find intersections between lines and/or planes	Parallel, intersecting, skew, orthogonal planes	S19E1\#1 S19E1\#2 S19FE\#1 F19E1\#1 F19FE\#1 F18E1\#1 F18FE\#1

\#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	Quadratic Surfaces	13.6	2	- Sketch graphs of cylinders and quadratic surfaces - Identify surfaces from equations	Trace, elliptic paraboloid, ellipsoid, cylinder, elliptic cone, hyperboloid of one sheet, hyperboloid of two sheets, hyperbolic paraboloid	S19FE\#2 F19E1\#2 S18E1\#1 F18E1\#3 F18FE\#2
5	Vector-Valued Functions	14.1	2	- Graph curves described by vector-valued functions - Find domains of vector-valued functions - Find the intersection of planes and curves defined by vector-valued functions	Vector-valued function, domain, limit of a vectorvalued function	S22E1\#4 S19E1\#3 F19FE\#2 F18E1\#2 F16E1\#4 S14E1\#9
6	Calculus of Vector-Valued Functions, Motion in Space	$\begin{aligned} & \hline 14.2 \\ & 14.3 \end{aligned}$	3	- Find first derivatives of vector-valued functions - Find tangent vectors and tangent lines for vector-valued functions - Evaluate definite integrals of vector-valued functions - Find velocity, speed, and acceleration of objects	Tangent vector, unit tangent vector, tangent line, derivative rules	S18E1\#2 S18E1\#3 S17E1\#3 S16E1\#5
7	Motion in Space	14.3	3	- Compare trajectories of objects - Solve applications involving 2d and 3d motion	Velocity, acceleration, trajectories	$\begin{aligned} & \text { S19E1\#6 } \\ & \text { S19FE\#20 } \\ & \text { F19E1\#3 } \\ & \text { F19E1\#6 } \\ & \text { S18FE\#3 } \\ & \text { F18E1\#6 } \end{aligned}$
8	Length of Curves, Curvature	$\begin{aligned} & 14.4 \\ & 14.5 \end{aligned}$	3	- Find arc lengths of vector-valued functions - Parameterize curves by arc length - Find unit tangent vectors and curvatures - Use velocity to find curvature	Arc length, curvature	Arc Length S19E1\#5 F19E1\#5 F19FE\#3 S18FE\#2 Curvature S19E1\#4 F19E1\#4 F18E1\#4

\#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
9	Functions of Several Variables	15.1	4	- Find domains of functions - Graph surfaces - Graph level curves of functions	Function of several variables, level curves	S19E1\#7 S18E1\#5 F18E1\#7
10	Limits and Continuity	15.2	4	- Evaluate limits of functions - Evaluate limits at boundary points - Determine where functions are continuous	Limit laws, boundary point, interior point, two-path test, continuity	$\begin{array}{\|l\|} \hline \text { F19E1\#7 } \\ \text { F18E1\#8 } \\ \text { S17E1\#6 } \end{array}$
11	Partial Derivatives	15.3	4	- Find first partial derivatives - Find second partial derivatives	Partial derivative, differentiable,	S19E1\#8 S19FE\#7 F19E1\#8 F19FE\#6
12	The Chain Rule	15.4	5	- Use the chain rule to find derivatives - Differentiate implicitly - Evaluate partial derivatives at specified points	Chain rule, implicit differentiation	S19E1\#9 F19FE\#7 S18FE\#5 F18E1\#10 F18FE\#5
13	Directional Derivatives and the Gradient	15.5	5	- Compute gradients and/or directional derivatives - Find directions or paths of change - Compute slopes of lines tangent to level curves	Gradient, directional derivative, directions of change, level curves, steepest descent	$\begin{aligned} & \hline \text { S19E1\#10 } \\ & \text { S19FE\#8 } \\ & \text { F19E1\#9 } \\ & \text { F19FE\#4 } \\ & \text { S18FE\#7 } \\ & \text { F18E1\#11 } \\ & \text { F18FE\#4 } \end{aligned}$
14	Tangent Plane and Linear Approximation	15.6	5	- Find equations of planes tangent to surfaces - Find linear approximations - Use differentials to approximate changes in functions	Tangent plane, differential, linear approximation	$\begin{aligned} & \hline \text { S19E1\#11 } \\ & \text { S19FE\#5 } \\ & \text { F19FE\#5 } \\ & \text { S18FE\#6 } \\ & \text { F18E1\#9 } \\ & \text { F18FE\#3 } \\ & \hline \end{aligned}$
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	Maximum and Minimum Problems	15.7	-	- Find and analyze critical points for functions - Find local and absolute extrema for functions	Local extrema, critical point, saddle point, second derivative test, absolute extrema	S19E1\#12 S19FE\#9 F19E1\#10 F19E1\#11 F19FE\#8 S18FE\#9 F18FE\#7 F18E1\#12 F18E2\#1

$\#$	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
17	Lagrange Multipliers	15.8	6	- Use Lagrange multipliers to find extreme values	Lagrange multiplier	S19E2\#1
F19E2\#1						

\#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
24	Integrals for Mass Calculation	16.6	8	- Find centers of mass of two-dimensional objects - Find centers of mass of three-dimensional objects - Calculate the mass of variable density solids	Center of mass, variable density	$\begin{array}{\|l} \hline \text { F19E2\#8 } \\ \text { S18FE\#10 } \\ \text { F18E2\#6 } \end{array}$
25	Vector Fields	17.1	8	- Graph vector fields - Find gradient fields for a given potential function	Vector field, radial vector field, potential function, equipotential curves, flow curves, streamlines.	S19E2\#8 F19E2\#9 F18E2\#11 F18E2\#12
$\begin{aligned} & 26 \\ & 27 \end{aligned}$	Line Integrals of Functions and Vector Fields	17.2	8 (Only Less. \#26 scalar line ints)	- Evaluate line integrals - Find the work required to move an object on an oriented curve - Find the circulation and flux of a vector field on a plane curve	Line integral, work, circulation, flux	Scalar: S19E2\#10 F19E2\#10 F19E2\#11 F19FE\#11 Vector: S19E2\#9 S19FE\#15 F19FE\#19 S18FE\#12 F18FE\#12
28	Conservative Vector Fields \& the Fundamental Theorem of Line Integrals	17.3	9	- Determine whether a vector field is conservative and find potential functions - Evaluate line integrals - Compute the work done in force fields	Conservative vector field, potential function, Fundamental Theorem for Line Integrals, independent of path	S19FE\#3 F19FE\#12 F18FE\#13
29	Green's Theorem	17.4	9	- Use a line integral to determine the area of a region - Use Green's theorem to evaluate line integrals - Find the circulation and flux across the boundary of a region	Green's Theorem, twodimensional curl, twodimensional divergence, stream function, Laplace's equation	S19FE\#4 F19FE\#13 F19FE\#14 S18FE\#13 F18FE\#16 F18FE\#14
30	Divergence \& Curl	17.5	9	- Find the divergence of vector fields - Find the curl of vector fields	Divergence, Curl, source-free, irrotational	S19FE\#6 F19FE\#15 S18FE\#14 F18FE\#15

\#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
$\begin{aligned} & 31 \\ & 32 \\ & 33 \end{aligned}$	Surface Integrals	17.6	10	- Find a parametric description of a surface and describe surfaces parametrically - Find the surface area using the parametric description of a surface - Evaluate surface integrals - Evaluate flux integrals	Surface integral	Scalar S19E2\#4 S19FE\#16 S19FE\#17 S18FE\#15 S18FE\#16 S18FE\#17 F19FE\#16 F18FE\#17 Vector S18FE\#18 F19FE\#17 F18FE\#18
$\begin{aligned} & 34 \\ & 35 \end{aligned}$	Stokes' Theorem	17.7	-	- Use Stokes' Theorem to evaluate line integrals and surface integrals - Use Stokes' Theorem to find circulation	Stokes' Theorem	S19FE\#18 F19FE\#19 S18FE\#19 F18FE\#19
$\begin{aligned} & 36 \\ & 37 \end{aligned}$	The Divergence Theorem	17.8	-	- Use the Divergence Theorem to compute net outward flux	Divergence Theorem	S19FE\#19 F19FE\#18 F19FE\#20 S18FE\#20 F18FE\#20

