Quiz Study Guide

MA 261 · Fall 2023

Quizzes:

- Quizzes are given weekly on Tuesdays during Recitation. They must be taken in-person.
- Two problems each chosen from a pool of past exam problems (green column below).
 - View the problems on the Past Exam Archive: <u>https://www.math.purdue.edu/academic/courses/oldexams.php?course=MA26100</u>
 - Naming Convention:
 - F18FE#1 Fall 2018 Final Exam Question #1
 - S19E1#7 Spring 2019 Exam 1 Question #7
- One problem will be graded for partial credit. The other will be graded as multiple choice (all or nothing).
- Quizzes are 15 minutes long and will take place during the last 15 minutes of the recitation (from X:05 X:20)

#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
1	Review of Vectors	13.1 13.2 13.3 13.4	1	 Compute vector operations Find magnitude of a vector Find a position vector Find the equation of a sphere, ball, or circle Find equations of simple planes Compute dot products Find angles between vectors Calculate orthogonal projections Compute cross products Find areas of parallelograms and triangles Find orthogonal vectors 	Vector, scalar, magnitude, zero vector, position vector, unit vector, parallel, sphere, ball, circle, plane, dot product, orthogonal, orthogonal projection, cross product, determinant, coordinate unit vectors (i , j , k)	Few exam questions test these concepts directly. However, you will need these concepts to complete the more difficult questions from the past exams. S18E1#4 S18FE#1 S16E1#1
2	Lines & Planes in Space	13.5	1	 Find equations of lines and line segments Find equations of planes Determine whether planes are parallel, intersecting, or identical Find intersections between lines and/or planes 	Parallel, intersecting, skew, orthogonal planes	S19E1#1 S19E1#2 S19FE#1 F19E1#1 F19FE#1 F18E1#1 F18FE#1

#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
3 4	Quadratic Surfaces	13.6	2	 Sketch graphs of cylinders and quadratic surfaces Identify surfaces from equations 	Trace, elliptic paraboloid, ellipsoid, cylinder, elliptic cone, hyperboloid of one sheet, hyperboloid of two sheets, hyperbolic paraboloid	S19FE#2 F19E1#2 S18E1#1 F18E1#3 F18FE#2
5	Vector-Valued Functions	14.1	2	 Graph curves described by vector-valued functions Find domains of vector-valued functions Find the intersection of planes and curves defined by vector-valued functions 	Vector-valued function, domain, limit of a vector- valued function	S22E1#4 S19E1#3 F19FE#2 F18E1#2 F16E1#4 S14E1#9
6	Calculus of Vector-Valued Functions, Motion in Space	14.2 14.3	3	 Find first derivatives of vector-valued functions Find tangent vectors and tangent lines for vector-valued functions Evaluate definite integrals of vector-valued functions Find velocity, speed, and acceleration of objects 	Tangent vector, unit tangent vector, tangent line, derivative rules	S18E1#2 S18E1#3 S17E1#3 S16E1#5
7	Motion in Space	14.3	3	- Compare trajectories of objects - Solve applications involving 2d and 3d motion	Velocity, acceleration, trajectories	S19E1#6 S19FE#20 F19E1#3 F19E1#6 S18FE#3 F18E1#6
8	Length of Curves, Curvature	14.4 14.5	3	 Find arc lengths of vector-valued functions Parameterize curves by arc length Find unit tangent vectors and curvatures Use velocity to find curvature 	Arc length, curvature	Arc Length S19E1#5 F19E1#5 F19FE#3 S18FE#2 Curvature S19E1#4 F19E1#4 F18E1#4

#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
9	Functions of Several Variables	15.1	4	 Find domains of functions Graph surfaces Graph level curves of functions 	Function of several variables, level curves	S19E1#7 S18E1#5 F18E1#7
10	Limits and Continuity	15.2	4	 Evaluate limits of functions Evaluate limits at boundary points Determine where functions are continuous 	Limit laws, boundary point, interior point, two-path test, continuity	F19E1#7 F18E1#8 S17E1#6
11	Partial Derivatives	15.3	4	 Find first partial derivatives Find second partial derivatives 	Partial derivative, differentiable,	S19E1#8 S19FE#7 F19E1#8 F19FE#6
12	The Chain Rule	15.4	5	 Use the chain rule to find derivatives Differentiate implicitly Evaluate partial derivatives at specified points 	Chain rule, implicit differentiation	S19E1#9 F19FE#7 S18FE#5 F18E1#10 F18FE#5
13	Directional Derivatives and the Gradient	15.5	5	 Compute gradients and/or directional derivatives Find directions or paths of change Compute slopes of lines tangent to level curves 	Gradient, directional derivative, directions of change, level curves, steepest descent	S19E1#10 S19FE#8 F19E1#9 F19FE#4 S18FE#7 F18E1#11 F18FE#4
14	Tangent Plane and Linear Approximation	15.6	5	 Find equations of planes tangent to surfaces Find linear approximations Use differentials to approximate changes in functions 	Tangent plane, differential, linear approximation	S19E1#11 S19FE#5 F19FE#5 S18FE#6 F18E1#9 F18FE#3
15 16	Maximum and Minimum Problems	15.7	-	 Find and analyze critical points for functions Find local and absolute extrema for functions 	Local extrema, critical point, saddle point, second derivative test, absolute extrema	S19E1#12 S19FE#9 F19E1#10 F19E1#11 F19FE#8 S18FE#9 F18FE#7 F18E1#12 F18E2#1

#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
17	Lagrange Multipliers	15.8	6	- Use Lagrange multipliers to find extreme values	Lagrange multiplier	S19E2#1 F19E2#1 F18FE#6 F18E2#2
18	Double Integrals in Rectangular Regions	16.1	6	 Evaluate iterated integrals Evaluate double integrals over rectangular regions Compute average values of functions over plane regions 	Double integral, average value	F19E2#2 S18E2#2 F18E2#3
19	Double Integrals over General Regions	16.2	6	 Evaluate double integrals over general regions Change the order of integration 	Order of integration	S19E2#2 S19E2#4 S19FE#10 F19E2#3 F19FE#9 F18E2#4
20	Double Integrals in Polar Coordinates	16.3	6	 Find volumes of solids using polar coordinates Evaluate double integrals using polar coordinates 	Polar coordinates	S19E2#3 S19FE#11 F18FE#8 F18E2#5
21	Triple Integrals	16.4	7	 Find volumes of solids using triple integrals Evaluate triple integrals Change the order of integration 	Triple integrals	S19E2#5 S19FE#12 F19E2#4 F18FE#9 F18E2#7
22 23	Triple Integrals in Cylindrical and Spherical Coordinates	16.5	7	- Evaluate triple integrals in cylindrical and spherical coordinates	Cylindrical coordinates, spherical coordinates	Cylindrical S19E2#6 S19FE#13 F19E2#5 F19FE#10 S18FE#8 F18E2#9 F18E2#8 Spherical S19E2#7 S19FE#14 F19E2#6 F19E2#7 F18E2#10 F18FE#10 F18FE#11

#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
24	Integrals for Mass Calculation	16.6	8	 Find centers of mass of two-dimensional objects Find centers of mass of three-dimensional objects Calculate the mass of variable density solids 	Center of mass, variable density	F19E2#8 S18FE#10 F18E2#6
25	Vector Fields	17.1	8	 Graph vector fields Find gradient fields for a given potential function 	Vector field, radial vector field, potential function, equipotential curves, flow curves, streamlines.	S19E2#8 F19E2#9 F18E2#11 F18E2#12
26 27	Line Integrals of Functions and Vector Fields	17.2	8 (Only Less. #26 – scalar line ints)	 Evaluate line integrals Find the work required to move an object on an oriented curve Find the circulation and flux of a vector field on a plane curve 	Line integral, work, circulation, flux	Scalar: S19E2#10 F19E2#10 F19E2#11 F19FE#11 Vector: S19E2#9 S19FE#15 F19FE#19 S18FE#12 F18FE#12
28	Conservative Vector Fields & the Fundamental Theorem of Line Integrals	17.3	9	 Determine whether a vector field is conservative and find potential functions Evaluate line integrals Compute the work done in force fields 	Conservative vector field, potential function, Fundamental Theorem for Line Integrals, independent of path	S19FE#3 F19FE#12 F18FE#13
29	Green's Theorem	17.4	9	 Use a line integral to determine the area of a region Use Green's theorem to evaluate line integrals Find the circulation and flux across the boundary of a region 	Green's Theorem, two- dimensional curl, two- dimensional divergence, stream function, Laplace's equation	S19FE#4 F19FE#13 F19FE#14 S18FE#13 F18FE#16 F18FE#14
30	Divergence & Curl	17.5	9	 Find the divergence of vector fields Find the curl of vector fields 	Divergence, Curl, source-free, irrotational	S19FE#6 F19FE#15 S18FE#14 F18FE#15

#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Past Exam Problems:
31 32 33	Surface Integrals	17.6	10	 Find a parametric description of a surface and describe surfaces parametrically Find the surface area using the parametric description of a surface Evaluate surface integrals Evaluate flux integrals 	Surface integral	Scalar S19E2#4 S19FE#16 S19FE#17 S18FE#15 S18FE#16 S18FE#17 F19FE#16 F18FE#17 Vector S18FE#18 F19FE#17 F18FE#18
34 35	Stokes' Theorem	17.7	-	 Use Stokes' Theorem to evaluate line integrals and surface integrals Use Stokes' Theorem to find circulation 	Stokes' Theorem	S19FE#18 F19FE#19 S18FE#19 F18FE#19
36 37	The Divergence Theorem	17.8	-	- Use the Divergence Theorem to compute net outward flux	Divergence Theorem	S19FE#19 F19FE#18 F19FE#20 S18FE#20 F18FE#20