\mathbb{R}^{3} - denotes 3D space
position vector: $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$
magnitude of \vec{v} :

$$
|\vec{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

unit vector: a vector \vec{u} with magnitude $|\vec{u}|=1$ coordinate unit vectors:

$$
\hat{\imath}=\langle 1,0,0\rangle \quad \hat{\jmath}=\langle 0,1,0\rangle \quad \hat{k}=\langle 0,0,1\rangle
$$

distance between two points P and Q

$$
\begin{aligned}
d & =|\overrightarrow{P Q}| \\
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
\end{aligned}
$$

equation of sphere:
radius r
center $\left(x_{0}, y_{0}, z_{0}\right)$

sphere is the set of all points Q such that $|\overrightarrow{P Q}|^{2}=r^{2}$

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}
$$

dot product of \vec{u} and \vec{v} :

$$
\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle
$$

$$
\hat{\theta} \longrightarrow \vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle
$$

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} \\
& =|\vec{u}||\vec{v}| \cos \theta
\end{aligned}
$$

the dot product is a Scalar
orthogonal: \vec{u} and \vec{v} are orthogonal if and only if $\vec{u} \cdot \vec{v}=0$

Orthogonal projection of \vec{u} onto \vec{v} :

$$
\vec{p}=\operatorname{proj}_{\vec{v}}(\vec{u})=\left(\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right) \vec{v}
$$

cross product of \vec{u} and \vec{v} :

$$
\begin{aligned}
\vec{w} & =\vec{u} \times \vec{v} \\
& =\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\hat{\imath}\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|-\hat{\jmath}\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|+\hat{k}\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}\right) \hat{\imath}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \hat{\jmath}+\left(u_{1} v_{2}-v_{1} u_{2}\right) \hat{k}
\end{aligned}
$$

\vec{w} is orthogonal to both \vec{u} and \vec{v}, \vec{v}
magnitude of the cross product:

$$
|\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}| \sin \theta
$$

Area of parallelogram with sides \vec{u} and \vec{v} :

$$
A=|\vec{u} \times \vec{v}|
$$

Area of triangle with sides \vec{u} and \vec{v} :

$$
A=\frac{1}{2}|\vec{u} \times \vec{v}| \quad \vec{v} \quad \vec{u}
$$

