Exam 2 Review

Lessons 11 - 12: The Chain Rule and Derivative of Natural Log

Chain Rule

$$\frac{d}{dx}[f(g(x))] = f'(g(x)) * g'(x)$$
OR

$$\frac{d}{dx}[Out(In)] = Out'(In) * In'$$

The derivative of the *outside* (with the *inside* plugged back in) times the derivative of the *inside*.

- * Special Case: $\frac{d}{dx}(e^{f(x)}) = f'(x) * e^{f(x)}$ (Note: the exponent does NOT change.) * $\frac{d}{dx}(\ln(x)) = \frac{1}{x}$
- * Use rules for logs and exponents to potentially make computing derivatives easier.

$$\ln(xy) = \ln(x) + \ln(y) \qquad e^{x}e^{y} = e^{x+y} \qquad x^{a}x^{b} = x^{a+b}$$

$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y) \qquad \frac{e^{x}}{e^{y}} = e^{x-y} \qquad \frac{x^{a}}{x^{b}} = x^{a-b}$$

$$\ln(x^{y}) = y\ln(x) \qquad \frac{1}{e^{x}} = e^{-x} \qquad \frac{b}{\sqrt{x^{a}}} = x^{\frac{a}{b}}$$

$$x^{-a} = \frac{1}{x^{a}} \qquad (e^{x})^{y} = e^{xy} \qquad (x^{a})^{b} = x^{ab}$$

Lesson 13: Higher Order Derivatives

* $f^{(n)}(x)$, $\frac{d^n y}{dx^{n}}$, $y^{(n)}$ all mean to take the derivative *n* times. * If s(t) is a position function, s'(t) = v(t) is velocity, and s''(t) = v'(t) = a(t) is acceleration.

Implicit Differentiation

$$\frac{d}{dx}[f(y)] = \frac{dy}{dx} * f'(y)$$

- * Use when y is not explicitly solved for. For instance: $y^2 = e^x$, $\cos(xy) = x$, etc.
- * Basically, anytime we "touch/change" a y, we need to multiply $\frac{dy}{dx}$ or y' to the term, so take the derivative of what you see and put the $\frac{dy}{dx}$ or y' next to it.
- * For example,

$$\frac{d}{dx}(e^{y}) = \frac{dy}{dx} * e^{y}$$

$$\frac{d}{dx}(\ln(y)) = \frac{dy}{dx} * \frac{1}{y}$$

$$\frac{d}{dx}(x * y) = 1 * y + x * \frac{dy}{dx} \text{ (product rule)}$$

$$\frac{d}{dx}(e^{xy}) = \left(y + x\frac{dy}{dx}\right)e^{xy} \text{ (chain rule and product rule)}$$

$$\frac{d}{dx}(y^{2}) = \frac{dy}{dx} 2y$$

* Your $\frac{dy}{dx}$ or y' will **not** appear inside a trig function, denominator, or exponent.

Lessons 15-16: Related Rates

- * Determine what formula you need to use.
- * Plug in any *constant* quantities, i.e. quantities that do NOT change with *time*.
- * Take derivative of both sides with respect to *time*.
- * Pay attention to units!

Shape	Perimeter <i>P</i> or Surface Area <i>S</i>	Area A or Volume V
Rectangle with sides <i>l</i> and <i>w</i>	P=2l+2w	A = lw
Square with side <i>x</i>	P=4x	$A = x^2$
Circle with radius r	(Circumference <i>C</i>) $C = 2\pi r$	$A = \pi r^2$
Cube with side <i>x</i>	$S = 6x^2$	$V = x^3$

Trapezoid	(with sides a, b, c, d) P = a + b + c + d	(with base b_1 and b_2 and height h) $A = \frac{1}{2} h (b_1 + b_2)$
Rectangular prism with sides <i>l</i> , <i>w</i> , <i>h</i>	S = 2lw + 2lh + 2wh	V = lwh
Triangle	(with sides a , b , and c) P = a + b + c	(with base b and height h) $A = \frac{1}{2}bh$

- * For right triangles, we use the Pythagorean Theorem $x^2 + y^2 = D^2$.
- * For angles, pick the trig identity that has a *constant* quantity and the *rate* of the other quantity given.

Lessons 17-18: Relative Extrema, Critical Numbers, and the First Derivative Test

- * We can use the *first derivative* to find out information about the *function* itself.
- * Critical Numbers: where the derivative of a function (f'(x)) is = 0 or is *undefined*.
- * A critical number must be in the *domain* of the function!
- * **Relative Extrema:** minimums or maximums of the entire function; function must be defined at the point; can have no relative extrema or can have multiple relative minimums or maximums
- * f(x) is increasing when f'(x) > 0
- * f(x) is **decreasing** when f'(x) < 0
- * Relative extrema **only** occur at critical numbers, but not *all* critical numbers have relative extrema.
 - We *find* the critical numbers (always *x*-values) then *check* at each *x* coordinate to see if we have a relative minimum, a relative maximum or neither.
- ***** First Derivative Test: Let *c* be a critical number for f(x).
 - If f'(x) goes from positive to negative at x = c, (i.e., f(x) goes from increasing to decreasing),

f(**c**) is a *relative maximum*.

• If f'(x) goes from negative to positive at x = c, (i.e., f(x) goes from decreasing to increasing),

f(c) is a *relative minimum*.

- If f'(x) does not change sign at x = c, f(c) is neither a min nor a max.
- * Use the original function to find the value of the minimum or maximum, i.e. f(c).
- * Notation: x = c is where the relative min or max occurs; f(c) is the value of the minimum or maximum. If they ask you to find the minimum or maximum, they want you to find the value of the function at that point.

Table of Derivatives

* Derivatives of specific functions

$$\frac{d}{dx}(c) = 0$$

$$\frac{d}{dx}(x^{n}) = n x^{n-1}$$

$$\frac{d}{dx}(e^{x}) = e^{x}$$

$$\frac{d}{dx}(\sin(x)) = \cos(x)$$

$$\frac{d}{dx}(\tan(x)) = \sec^{2}(x)$$

$$\frac{d}{dx}(\sec(x)) = \sec(x)\tan(x)$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

$$\frac{d}{dx}(\cos(x)) = -\sin(x)$$
$$\frac{d}{dx}(\cot(x)) = -\csc^{2}(x)$$
$$\frac{d}{dx}(\csc(x)) = -\csc(x)\cot(x)$$

★ Differentiation Rules

$$\frac{d}{dx}(c f(x)) = c f'(x)$$

$$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$$

$$\frac{d}{dx}(f(x) - g(x)) = f'(x) - g'(x)$$

$$\frac{d}{dx}(f(x) g(x)) = f'(x)g(x) + f(x)g'(x)$$

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \quad \mathbf{OR} \quad \frac{d}{dx}\left(\frac{Top}{Bottom}\right) = \frac{Top' * Bottom - Top * Bottom'}{(Bottom)^2}$$

* New Derivative Types

Chain Rule

$$\frac{d}{dx}[Out(In)] = Out'(In) * In'$$

$$\frac{d}{dx}[e^{f(x)}] = f'(x) e^{f(x)}$$

$$\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}$$

Implicit Differentiation

$$\frac{d}{dx}[f(y)] = f'(y) * \frac{dy}{dx}$$

$$\frac{d}{dt}[x+y] = \frac{dx}{dt} + \frac{dy}{dt}$$