Lesson 3: Finding Limits Graphically

<u>Ex.1</u> Fill in the table and draw a graph to find

$$\lim_{x \to 2^{-}} f(x)$$
$$\lim_{x \to 2^{+}} f(x)$$

and

$$\lim_{x \to 2} f(x)$$

for
$$f(x) = \begin{cases} x^2 + 1 & x \le 2 \\ -2x + 1 & x > 2 \end{cases}$$
.

Table:

	x	1.9	1.99	1.999	1.9999	2	2.0001	2.001	2.01	2.1
	f(x)	4.61	4.9601	4.9960	4.9996	-	-3.0002	-3.002	-3.02	-3.2
T_{1} (1 (/1 0) (/1 00) (/1 000) (/1 000) (1 000) (1 000)										000 1

To find f(1.9), f(1.99), f(1.999), f(1.999), we need to plug 1.9, 1.99, 1.999, 1.999 into $x^2 + 1$ because 1.9, 1.99, 1.999, 1.999 are all less than 2.

To find f(2.0001), f(2.001), f(2.01), f(2.1), we need to plug 2.0001, 2.001, 2.01, 2.1

into -2x + 1 because 2.0001, 2.001, 2.01, 2.1 are all greater than 2.

Looking at the values on the left side of the table, we see that $\lim_{x\to 2^-} f(x) =$

5, and looking at the values on the right side of the table, we see that

 $\lim_{x \to 2^+} f(x) = -3.$

Since the left and right sided limits are not equal, $\lim_{x\to 2} f(x)$ DNE.

Graph:

 $x^2 + 1$ is a parabola with vertex (0,1)

-2x + 1 is a line with slope -2 and y-intercept (0,1).

- **<u>Ex.2</u>** Use the graph to find the following:
 - $\lim_{x \to -2^-} f(x) = 0$
 - $\lim_{x \to -2^+} f(x) = 0$
 - $\lim_{x \to -2} f(x) = 0$
 - f(-2) = 0
 - $\lim_{x\to 0^-} f(x) = 2$
 - $\lim_{x \to 0^+} f(x) = 0$
 - $\lim_{x\to 0} f(x) = \text{DNE}$
 - f(0) = 2

- $\lim_{x\to 2^-} f(x) = 4$
- $\lim_{x \to 2^+} f(x) = 4$
- $\lim_{x\to 2} f(x) = 4$
- f(2) =UNDEFINED

- **<u>Ex.3</u>** Use the graph to find the following:
 - $\lim_{x \to -1^-} f(x) = 1$
 - $\lim_{x \to -1^+} f(x) = 1$
 - $\lim_{x \to -1} f(x) = 1$
 - f(-1) = -1

- $\lim_{x\to 0^-} f(x) = \infty$
- $\lim_{x \to 0^+} f(x) = -2$
- $\lim_{x\to 0} f(x) = \text{DNE}$
- f(0) = -2

• $\lim_{x \to 2^+} f(x) = 0$

• $\lim_{x \to 2^-} f(x) = 0$

- $\lim_{x \to 2} f(x) = 0$
- f(2) = 0

- $\lim_{x \to 0^-} f(x) = 1$
- $\lim_{x \to 0^+} f(x) = 0$
- $\lim_{x\to 0} f(x) = \text{DNE}$
- f(0) = 0

- $\lim_{x \to \pi^-} f(x) = 0$
- $\lim_{x \to \pi^+} f(x) = -1$
- $\lim_{x \to \pi} f(x) = \text{DNE}$
- $f(\pi) = \text{UNDEFINED}$

<u>Ex.5</u> Graph $f(x) = \frac{1}{x-1}$ to find the following:

<u>Ex.6</u> Graph $f(x) = \frac{1}{(x-1)^2}$ to find the following:

Notice the difference between examples 5 and 6. The squared in the denominator for example 6 makes it so that all values of the function will be positive. Recall learning about the multiplicity of functions in algebra or precalculus.

<u>Ex.7</u> Graph $f(x) = |x|, x \neq 0$ to find the following:

- $\lim_{x\to 0^-} f(x) = 0$
- $\lim_{x \to 0^+} f(x) = 0$
- $\lim_{x\to 0} f(x) = 0$
- f(0) = UNDEFINED

- $\lim_{x\to 0^-} f(x) = \infty$
- $\lim_{x\to 0^+} f(x) = \infty$
- $\lim_{x\to 0} f(x) = \infty$
- f(0) = 0