When we’re in CASE 2, meaning \(f(c) = \frac{\text{nonzero number}}{0} \), making a table is fine for the quiz, but time might be an issue. To determine analytically if the limit of \(f(x) \) as \(x \) approaches \(c \) exists, the main thing is to look at the denominator of the fraction you’re dealing with.

If the denominator has \((x - c)^n\) or \((c - x)^n\) and \(n \) is ODD, then the (overall) limit does not exist.

If you need to find the one-sided limits analytically, we have the following...

For the left limit, \((x - c)^n\) will be negative and \((c - x)^n\) will be positive.

For the right limit, \((x - c)^n\) will be positive and \((c - x)^n\) will be negative.

Then look at the signs in the numerator and the denominator to determine if the one-sided limit is positive or negative infinity.

If \(n \) is EVEN, then the limit exists, and you need to determine if the limit is infinity or negative infinity. First, figure out what the sign of the numerator is when \(x = c \). Because we're raising \((x - c)\) or \((c - x)\) to an EVEN power, it will always be positive. So, the sign (positive or negative) on infinity will match the sign of the numerator.