
MA261 Exam 1 Review

Chapter 12: Vectors and the Geometry of Space

§12.1 Three-Dimensional Coordinate Systems

Points in three-dimensional space are represented by (a, b, c) where x = a, y = b, z = c. Three-

dimensional space can be divided into eight octants based on each of the dimensions x, y, and

z being positive or negative. The first octant is where all three variables are positive.

The distance between points P (x1, y1, z1) and P (x2, y2, z2) is

|P1P2| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

The equation of a sphere with center C(h, k, l) and radius r is

(x− h)2 + (y − k)2 + (z − l)2 = r2

We can see from the equation of the sphere that every point (x, y, z) is a distance of r from

the center of the sphere.

The coordinate planes are the xy-plane (when z = 0), the yz-plane (when x = 0), and the

xz-plane (when y = 0).

§12.2 Vectors

A vector is a quantity with magnitude and direction. We usually encounter two-dimensional

and three-dimensional vectors, but vectors can have any number of dimensions.

The displacement vector from point A(x1, y1, z1) to point B(x2, y2, z2) is

−→
AB = 〈x2 − x1, y2 − y1, z2 − z1〉

Notice that
−→
AB = −

−→
BA, so the vectors lie in the same place in space but point in opposite

directions.

The length or magnitude of a vector v = 〈a, b, c〉 is

|v| =
√
a2 + b2 + c2

If a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 and k is a scalar,

a + b = 〈a1 + b1, a2 + b2, a3 + b3〉

ka = 〈ka1, ka2, ka3〉
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Properties of Vectors

If a, b, and c are vectors, and c and d are scalars, then

1. a + b = b + a

2. a + (b + c) = (a + b) + c

3. a + 0 = a

4. a + (−a) = 0

5. c(a + b) = ca + cb

6. (c+ d)a = ca + da

7. (cd)a = c(da)

8. 1a = a

We often write vectors in terms of the standard basis vectors î, ĵ, and k̂ where î = 〈1, 0, 0〉,
ĵ = 〈0, 1, 0〉, and k̂ = 〈0, 0, 1〉. Note that all of these are unit vectors meaning that the

magnitude of each is 1. We can write any vector v = 〈a, b, c〉 as v = âi + b̂j + ck̂. We can find

the unit vector u in the direction of vector v with

u =
v

|v|

§12.3 The Dot Product

The dot product between vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 is

a · b = a1b1 + a2b2 + a3b3

Notice that the dot product is a scalar.

Properties of the Dot Product

If a, b, and c are vectors, and c is a scalar, then

1. a · a = |a|2

2. a · b = b · a

3. a · (b + c) = a · b + a · c

4. (ca) · b = c(a · b) = a · (cb)

5. 0 · a = 0

If θ is the angle between a and b,

a · b = |a||b| cos(θ)
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Notice that when θ = π
2

+ πn where n is any integer, cos(θ) = 0, so the dot product is 0. This

means that two vectors are orthogonal (or perpendicular) if and only if their dot product is 0.

§12.4 The Cross Product

If a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, the cross product gives a vector that is perpendicular to

both a and b and is found by

a× b = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉

We can get this formula using determinants as well. Notice the minus sign in front of the mid-

dle term.

a× b =

∣∣∣∣∣∣∣
î ĵ k̂

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣
= î

∣∣∣∣∣a2 a3

b2 b3

∣∣∣∣∣− ĵ

∣∣∣∣∣a1 a3

b1 b3

∣∣∣∣∣+ k̂

∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣
= (a2b3 − a3b2)̂i− (a1b3 − a3b1)̂j + (a1b2 − a2b1)k̂

= 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉

If θ is the angle between a and b,

a× b = |a||b| sin(θ)

Notice that when θ = πn where n is any integer, sin(θ) = 0, so the cross product is 0. This

means that two vectors are parallel if and only if their cross product is 0.

Properties of the Cross Product

If a, b, and c are vectors, and k is a scalar, then

1. a× b = −b× a

2. (ka)× b = k(a× b) = a× (kb)

3. a× (b + c) = a× b + a× c

4. (a + b)× c = a× c + b× c

5. a · (b× c) = (a× b) · c

6. a× (b× c) = (a · c)b− (a · b)c

The area of the parallelogram determined by a and b is |a × b|, the magnitude of the cross

product between the vectors.

The volume of the parallelepiped determined by a, b and c is |a · (b × c)|. Note that here, the

bars denote absolute value rather than magnitude since the dot product gives a scalar.
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§12.5 Equations of Lines and Planes

We can represent a line through point P0(x0, y0, z0) with direction vector v = 〈a, b, c〉 by start-

ing at the origin, traveling along the position vector r0 = 〈x0, y0, z0〉 of P0, and adding any

scalar multiple t of the direction vector. This gives the vector equation of the line

r = r0 + tv

The corresponding parametric equations are

x = x0 + at y = y0 + bt z = z0 + ct

Any two distinct lines can intersect at exactly one point, be parallel to each other, or be skew

which is what we call non-intersecting and non-parallel lines.

We can express a line segment between two points P0(x0, y0, z0) and P1(x1, y1, z1) by finding

an equation for the line connecting the two points and restricting t.

r(t) = (1− t)r0 + tr1 0 ≤ t ≤ 1

Since planes contain infinitely many vectors in different directions, we identify a plane by a

point P0(x0, y0, z0) in the plane and a vector n = 〈a, b, c〉 that is orthogonal to the plane.

A vector orthogonal to the plane is called a normal vector. As with lines, any nonzero scalar

multiple of the normal vector can also be used to write the equation. For any point P (x, y, z)

in the plane, the vector
−−→
P0P lies in the plane, so we know n is orthogonal to

−−→
P0P which gives

the vector equation for a plane

n ·−−→P0P = 0

Substituting the values, we get the linear equation

a(x− x0) + b(y − y0) + c(z − z0) = 0

Given any two planes, we can use the normal vectors to describe the interactions and inter-

sections between the planes. As with two lines in two-dimensional space, two planes in three-

dimensional space will either intersect (in a line rather than a point) or be parallel.

§12.6 Cylinders and Quadric Surfaces

Cross-sections or traces of a surface are curves formed by the intersection of the surface with

planes parallel to the coordinate planes. Graphing these curves helps us sketch the graph of a

figure in three-dimensional space.

A cylinder is a surface that consists of all lines that are parallel to a given line and pass through

a given curve. Typically, the equation of a cylinder relates two variables and the third variable
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can be anything.

The equation of a quadric surface has all three variables and two or more variables are squared.

The surfaces and quadric equations that you should know are in the table below. See the book

or your handout for examples of each type.

Surface Cross-Sections

Circular Cylinder Circles in one direction;

Lines in two directions

Parabolic Cylinder Parabolas in one direction;

Lines in two directions

Ellipsoid Ellipses in all directions

Elliptic Paraboloid Ellipses in one direction;

Parabolas in two directions;

Hyperbolic Paraboloid Hyperbolas in one direction;

Parabolas in two directions

Cone Ellipses in one direction (radius 0 at some point);

Hyperbolas in two directions

Hyperboloid of One Sheet Ellipses in one direction (radius never equals 0);

Hyperbolas in two directions

Hyperboloid of Two Sheets Ellipses in one direction (radius is ”negative” somewhere, so no ellipses);

Hyperbolas in two directions
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Chapter 13: Vector-Valued Functions

§13.1 Vector-Valued Functions and Space Curves

A vector function is a function that takes real numbers (its domain) to vectors (its range).

We can write

r(t) = 〈f(t), g(t), h(t)〉 = f(t)̂i + g(t)̂j + h(t)k̂

where f(t), g(t), and h(t) are the component functions of r.

There are three main instances where domain issues occur (meaning the function is undefined).

They are

1. Division by 0

2. A negative number under an even root

3. A negative or 0 inside a logarithmic function

The domain is all possible values of t that avoid these potential issues.

If one particle has position function r0(t) = 〈f0(t), g0(t), h0(t)〉 and another particle has posi-

tion function r1(t) = 〈f1(t), g1(t), h1(t)〉, we can find out if their paths intersect by solving the

system 
f0(t) = f1(s)

g0(t) = g1(s)

h0(t) = h1(s)

If there exists values for t and s that satisfy those three equations, the paths intersect at some

point. If t and s equal the same value there, the particles collide. We can also figure out that

the particles collide by assuming s = t and solving this system
f0(t) = f1(t)

g0(t) = g1(t)

h0(t) = h1(t)

If there exists a t that satisfies this system, then the particles collide because they are at the

same point at the same time.

We can relate a vector function to a function of x, y, and z by setting x = f(t), y = g(t), and

z = h(t).

§13.2 Derivatives and Integrals of Vector Functions

If r(t) = 〈f(t), g(t), h(t)〉, then the derivative is

r′(t) = 〈f ′(t), g′(t), h′(t)〉
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The indefinite integral is∫
r(t)dt =

〈∫
f(t)dt,

∫
g(t)dt,

∫
h(t)dt

〉
+ C

where C = 〈c1, c2, c3〉 is a vector of constants which can be found using initial data.

The definite integral is ∫ b

a

r(t)dt =
〈∫ b

a

f(t)dt,

∫ b

a

g(t)dt,

∫ b

a

h(t)dt
〉

or if R(t) =
∫

r(t)dt, the the fundamental theorem of calculus gives
∫ b
a

r(t)dt = R(b)− R(a).

Differentiation Rules

Suppose u(t) and v(t) are differentiable vector functions, c is a scalar, and f is a real-valued

function. Then

1. d
dt

[u(t) + v(t)] = u′(t) + v′(t)

2. d
dt

[cu(t)] = cu′(t)

3. d
dt

[f(t)u(t)] = f ′(t)u(t) + f(t)u′(t)

4. d
dt

[u(t) · v(t)] = u′(t) · v(t) + u(t) · v′(t)

5. d
dt

[u(t)× v(t)] = u′(t)× v(t) + u(t)× v′(t)

6. d
dt

[u(f(t))] = f ′(t)u′(f(t))

Similar to the two-dimensional case, r′(t) is the tangent vector at the point P (f(t), g(t), h(t))

on the curve r(t). The tangent vector gives the rate of change in each direction with respect to

t.

§13.3 Arc Length and Curvature

The length of a curve r(t) = 〈f(t), g(t), h(t)〉 with a ≤ t ≤ b is

L =

∫ b

a

|r′(t)|dt =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2dt

or

L =

∫ b

a

√[dx
dt

]2
+
[dy
dt

]2
+
[dz
dt

]2
dt

We define the arc length function as the length of the curve r(τ) from a value τ = a to τ = t

by the integral

s(t) =

∫ t

a

|r′(τ)|dτ

which gives us ds
dt

= |r′(t)|.
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We can reparameterize a curve r(t) with respect to arc length by finding s(t) then solving for t

in terms of s. After that, we find r(t(s)) = r(s).

The unit tangent vector is given by

T(t) =
r′(t)

|r′(t)|

The unit normal vector is orthogonal to the unit tangent vector and is given by

N(t) =
T′(t)

|T′(t)|

The curvature is a measure of how quickly the curve changes direction at a point and is given

by

κ(s) =
∣∣∣dT

ds

∣∣∣ κ(t) =
|T′(t)|
|r′(t)|

We mostly use the equation on the right.

§13.4 Motion in Space: Velocity and Acceleration

Consider a position function r(t).

We can find the exact velocity and acceleration using derivatives.

v(t) = r′(t) a(t) = v′(t) = r′′(t)

The speed is

|v(t)| = |r′(t)| = ds

dt
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Chapter 14: Partial Derivatives

§14.1 Functions of Several Variables

A function of several variables takes a point (for example (x, y), (x, y, z), (x, y, t), etc.) and

maps it to a number. The domain of the function are all valid points. We will mostly talk about

the domain of a function of two variables where we can map the domain in the xy-plane. The

same domain issues as in §13.1 could arise. Make sure when you graph a domain, you use a

solid line if values on the line are in the domain and you use a dashed line if values on the line

are NOT in the domain. Then shade the region where all the points in the domain lie.

For a function of two variables, we usually consider z = f(x, y). In this case, functions of the

form f(x, y) = ax + by + c are called linear where a, b, and c are scalars. In three-dimensional

space, the graph of a linear function is a plane.

To help draw the graph of a function, we use level curves (or contour lines) which are the

curves f(x, y) = k with k a constant. To make a contour map, we plot several (three or

more) level curves on one graph.

§14.2 Limits and Continuity

If f is a function of two variables, we write the limit of f(x, y) as (x, y) approaches (a, b) as

lim
(x,y)→(a,b)

f(x, y) = L

When (a, b) and points near (a, b) are in the domain of f(x, y), then we can evaluate the limit

by finding f(a, b).

If (a, b) is not in the domain, and we get f(a, b) = 0
0
, then first, we can try to rewrite f(x, y)

by factoring or rationalizing f(x, y) and evaluate again. If that still gives us 0
0
, then we try to

approach (a, b) along different curves. The most useful ones will be y = mx, y = mx2, and

x = my2. In this case, we can substitute into the function and get a limit in terms of one vari-

able only.

If this limit equals a function of m such as m
1−4m2 , then the limit does not exist because m is

arbitrary, so depending on which line we use, we get a different limit.

If the limit doesn’t depend on m for one of the functions, then we can choose a different one of

the above functions and it will probably equal a different limit.

In this course, these are the only types of limits we will encounter. However, if a limit does not

fit the above, we could resort to graphing or numerical methods to find the limit.

A function is continuous at a point (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b)

.
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We can find where a function is not continuous by finding the points not in the domain of f . In

this course, usually when a point is in the domain, the function is continuous at that point, and

furthermore, it will usually be differentiable at the point (meaning we can take the derivative at

that point).

§14.3 Partial Derivatives

When we have a function of two or more variables, we have to be careful when we take the

derivative because we can take the derivative with respect to any variable. Once we decide with

respect to which variable we’re going to take the derivative, we treat the other variables as con-

stants. For instance if z = x2y, ∂z
∂x

= 2xy and ∂z
∂y

= x2.

Some of the different notation we can use for partial derivatives of z = f(x, y) are

fx(x, y) = fx =
∂f

∂x
=

∂

∂x
f(x, y) =

∂z

∂x
= zx

fy(x, y) = fy =
∂f

∂y
=

∂

∂y
f(x, y) =

∂z

∂y
= zy

We can also find second (or third or fourth) partial derivatives by taking the derivative with

respect to the same variable twice or with respect to two different variables. Almost always, in

this course, we will have that fxy = fyx.

§14.4 Tangent Planes and Linear Approximations

Similar to how we found the tangent lines in §13.2, an equation of the tangent plane to the

surface F (x, y, z) = 0 at the point P (x0, y0, z0) is

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0

If we can write z = f(x, y) we can write the tangent plane as z = z0 + fx(x0, y0)(x − x0) +

fy(x0, y0)(y − y0). We can use this equation to approximate values on surface at a different

point. This gives the linear approximation (because the equation of a plane is linear) of f at

(a, b)

f(x, y) ≈ L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

If we know the function, we can find the increment which is the exact change in z when (x, y)

changes

∆z = f(a+ ∆x, b+ ∆y)− f(a, b)

The total differential dz is the change in z when we use our tangent plane approximation

dz = fx(x, y)dx+ fy(x, y)dy =
∂z

∂x
dx+

∂z

∂y
dy
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If we take dx = ∆x = x− a and dy = ∆y = y − b. we get

dz = fx(a, b)(x− a) + fy(a, b)(y − b)

§14.5 The Chain Rule

Suppose z = f(x, y) where x = g(t) and y = h(t), then we could write z as a function of t.

However, this function can get very complicated, so we often leave it in terms of x and y. Then

to take the derivative with respect to t, we have

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

If instead, we have x = g(s, t) and y = h(s, t), then we could write z as a function of s and

t, but again, that can get really complicated. Now, if we want to take the derivative of z with

respect to s or t, we have

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

We can also use partial derivatives to find dy
dx

in an equation with only x and y for variables. To

do this, we move all terms to one side of the equation so that we have F (x, y) = 0. Then we

have
dy

dx
= −

∂F
∂x
∂F
∂y

= −Fx
Fy

§14.6 Directional Derivatives and the Gradient Vector

The directional derivative of f at (x0, y0) in the direction of a unit vector u = 〈a, b〉 is

Duf(x0, y0) = fx(x0, y0)a+ fy(x0, y0)b.

Note that u is a unit vector, so if you’re looking for the directional derivative in the direction of

an arbitrary vector v, you need to find u = v
|v| before finding the directional derivative. The di-

rectional derivative is the rate of change of the function in a direction, so we want to use a unit

vector because the magnitude of the change shouldn’t be affected by length of the direction

vector.

The gradient of a function f is

∇f(x, y) = 〈fx(x, y), fy(x, y)〉

or

∇f(x, y, z) = 〈fx(x, y, z), fy(x, y, z), fz(x, y, z)〉
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depending on how many variables the function depends on. Now, we can write the directional

derivative as

Duf(x, y) = ∇f(x, y) · u.

Remember that we can write the dot product as ∇f · u = |∇f ||u| cos(θ), so the maximum

value of the directional derivative at a point x is |∇f(x)| when u is in the same direction as

∇f(x) meaning θ = 0.
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