
MA261 Final Exam Review

Chapter 17: Vector Calculus

§17.1 Vector Fields

A vector field takes a point ((x, y) or (x, y, z)) as input and has output that is a vector (〈x, y〉
or 〈x, y, z〉). We have already seen gradient fields which are an example of a vector field. To

sketch gradient fields, we pick points in the plane or in space, evaluate the vector field at the

points, and use the point as the tail to draw the vector in the plane or in space.

If ∇ϕ = ~F , we say ~F is a gradient field, and ϕ is its potential function.

§17.2 Line Integrals

Recall from chapter 14 that the length of a curve ~r(t) = 〈f(t), g(t), h(t)〉 with a ≤ t ≤ b is

L =

∫ b

a

|~r ′(t)| dt =
∫ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt

or

L =

∫ b

a

√[dx
dt

]2
+
[dy
dt

]2
+
[dz
dt

]2
dt

We defined the arc length function as the length of the curve ~r(τ) from a value τ = a to τ = t

by the integral

s(t) =

∫ t

a

|~r ′(τ)| dτ

which gives us ds
dt

= |~r ′(t)|, so ds = |~r ′(t)| dt

If we want to integrate a function along a curve C, we first parameterize the curve. There are

many different ways to parameterize a curve. Parameterization means that we relate all coordi-

nates (x and y or x, y, and z) to a single parameter (usually t).

To parameterize a circle with radius r, we have x = r cos(t), y = r sin(t), 0 ≤ t ≤ 2π. If the

curve is not the entire circle, we can change the limits on t.

To parameterize a curve y = f(x) from (a, f(a)) to (b, f(b)), we can set x = t and y = f(t)

with a ≤ t ≤ b.

We can parameterize a line segment between the points P0 and P1 with position vectors ~r0 and

~r1 as ~r(t) = (1− t) ~r0 + t ~r1, 0 ≤ t ≤ 1.

Once we have the curve parameterized as

x = x(t), y = y(t), a ≤ t ≤ b
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then we can evaluate the integral∫
C

f(x, y) ds =

∫ b

a

f(x(t), y(t))
√
(x′(t))2 + (y′(t))2 dt

Note that ds refers to integration with respect to arc length as above and we have

ds = |~r ′(t)| dt =
√
(x′(t))2 + (y′(t))2 dt

Line integrals can also be given as integration with respect to x or y. If x and y are functions

of t, then dx = x′(t) dt and dy = y′(t) dt, and∫
C

f(x, y) dx =

∫ b

a

f(x(t), y(t)) x′(t) dt

∫
C

f(x, y) dy =

∫ b

a

f(x(t), y(t)) y′(t) dt

When we deal with line integrals in space, we have an extra z variable, but the same basic

equations will hold. For instance, we have ds = |~r ′(t)| dt =
√

(x′(t))2 + (y′(t))2 + (z′(t))2 dt.

Notice that if we trace the curve C in the opposite direction, t goes from b to a instead of a

to b. We call this curve −C. For the integral, we have∫
−C

~F · d~r =
∫ a

b

~F (~r(t)) · ~r ′(t) dt = −
∫ b

a

~F (~r(t)) · ~r ′(t) dt = −
∫
C

~F · d~r

In short, we have ∫
C

~F · d~r = −
∫
−C

~F · d~r

We can also compute line integrals of vector fields along a curve by∫
C

~F · d~r =
∫ b

a

~F (~r(t)) · ~r ′(t) dt

Note that we take the dot product to compute this line integral so that we integrate a scalar

function instead of a vector function.

Work done by a force field ~F to move an object along a curve C in the positive direction is

w =

∫
C

~F · ~T ds

If C is a closed curve, then
∫
C
~F · d~r is called the circulation.
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The flux of vector field ~F along a curve is computed∫
C

~F · ~n ds

Normally, in this course, we talk about flux through a closed curve but C does NOT have to be

closed.

§17.3 Conservative Vector Fields

If a vector field ~F = 〈f, g〉 is conservative, then

∂f

∂y
=
∂g

∂x

If a vector field ~F = 〈f, g, h〉 is conservative, then

∂f

∂y
=
∂g

∂x
,

∂f

∂z
=
∂h

∂x
, and

∂g

∂z
=
∂h

∂y

If a vector field is conservative, then we can find a potential function ϕ such that ~F = ∇ϕ. Re-

member that when integrating with respect to one variable, the constant of integration added

to the function is not a constant scalar or vector. The constant will be a constant function of

the other variables.

If ~F is a conservative field with ~F = ∇ϕ and C is a curve (or contour) given by ~r(t), a ≤ t ≤
b, then the Fundamental Theorem for Line Integrals says∫

C

~F · d~r = ϕ(~r(b))− ϕ(~r(a))

If we know the curve begins at point A and ends at point B, we have∫
C

~F · d~r = ϕ(B)− ϕ(A)

We can deduce two things from this. The first thing is that for a conservative vector field, the

value of
∫
C
~F · d~r does not depend on the parameterization (or path) of the curve C. It only

depends on the endpoints of the curve. (We say the curve is “path independent.”) The second

thing we see is that if C is a closed path, then A = B, so ϕ(B) = ϕ(A) which means
∫
C
~F ·

d~r = ϕ(B)− ϕ(A) = 0.
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§17.4 Green’s Theorem

For a closed curve C, the curve has positive orientation if it the interior of the curve (the

section being bounded) is to the left when traversing the curve. Normally, this occurs for coun-

terclockwise traversal. To indicate that an integral is taken over a closed curve, we use
∮

in-

stead of
∫

.

The circulation form of Green’s Theorem states that if C is a positively oriented and

closed curve that bounds a region R, then∮
C

~F · d~r =
∫
C

f dx+ g dy =

∫∫
R

(
∂g

∂x
− ∂f

∂y

)
dA

Note that if ~F = 〈f, g〉 is a conservative vector field, ∂f
∂y

= ∂g
∂x

, so we see the integral is 0. We

can also see this using the Fundamental Theorem for Line Integrals.

The flux form of Green’s Theorem states that if C is a positively oriented and closed

curve that bounds a region R, then∮
C

~F · d~r =
∫
C

f dy − g dx =

∫∫
R

(
∂f

∂x
+
∂g

∂y

)
dA

We can also use a line integral to find the area of a region R enclosed by a curve C three ways:

A =
1

2

∮
C

x dy − y dx

=

∮
C

x dy

= −
∮
C

y dx

§17.5 Curl and Divergence

Consider a vector field ~F = 〈f, g, h〉 in three-dimensional space.

First, we have del, the vector differential operator, given by

∇ =
〈 ∂
∂x
,
∂

∂y
,
∂

∂z

〉
Note that if we apply the del operator to a scalar field f(x, y, z), we get the gradient

grad f = ∇f
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Now, we can define the curl of a vector field in terms of the del operator

curl ~F = ∇× ~F

For the three-dimensional vector fields ~F that we’ll encounter, if curl ~F = 0, then ~F is a con-

servative vector field.

Finally, we have the divergence of a vector field ~F given by

div ~F = ∇ · ~F

Using these definitions, we can see that div
(

curl ~F
)
= 0.

Note that we apply the del operator to a scalar field and get a vector field; we take the curl

of a vector field and get a vector field; and we take the divergence of a vector field and get a

scalar field.

§17.6 Surface Integrals

We described a curve in space by a vector function in terms of of a single variable t, i.e. ~r(t) =

〈x(t), y(t), z(t)〉. We can describe a surface by a vector function of two parameters u and v,

i.e. ~r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉. Note that the domain of this function is in the uv-

plane, but we draw the surface in space with x, y, and z coordinates.

The most useful way to recognize a surface in the form of a vector equation is using x = a cos θ

and y = b sin θ or rather, x
a
= cos θ and y

b
= sin θ. Then we know 1 = cos2 θ + sin2 θ =

x2

a2
+ y2

b2
. Remember that we can rotate the axes to use the equalities in the xy-, xz-, or yz-

planes. Recalling cylindrical and spherical coordinates will also be helpful.

We can also think of grid curves/lines where one of the variables in fixed while the other can

change. It’s similar to considering the cross-sections of three-dimensional solids to determine

their shapes.

Using the vector representation ~r(u, v) of a surface, we can find the tangent plane to the sur-

face at a point P0 = (x0, y0, z0) with position vector ~r(u0, v0) = 〈x0, y0, z0〉 using the cross

product. If ~ru = ∂~r
∂u

and ~rv =
∂~r
∂v

, then the normal vector to the tangent plane at any point is

~n (u, v) = ~ru × ~rv

Then ~n (u0, v0) = 〈a, b, c〉 is a vector normal to the plane at the point P0. Now, we have the

usual equation for a tangent plane

a(x− x0) + b(y − y0) + c(z − z0) = 0
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Just as we integrated over areas, volumes, and lines, we can integrate over surfaces using dS =

|~ru × ~rv| dA. We get that the surface integral of a scalar function f over a surface S given by

the parametric equation ~r(u, v) is∫∫
S

f(x, y, z) dS =

∫∫
R

f(~r(u, v)) |~ru × ~rv| dA

Note that in this instance, dA = du dv or dA = dv du, but we can also switch to polar co-

ordinates if it will make the integration easier. Often, we will need to separate the surface into

different parts to parameterize them easily. When we do this, we just add the separate integrals

together.

We can find the area of a surface by computing∫∫
S

dS =

∫∫
R

|~ru × ~rv| dA

If we can explicitly define a surface z = g(x, y) by the parameterization ~r(x, y) = 〈x, y, g(x, y)〉,
then we get |~rx × ~ry| =

√
1 + (gx)2 + (gy)2 . This means that

A(S) =

∫∫
R

√
1 + (gx)2 + (gy)2 dA

We call S an oriented surface when we choose a normal vector ~n to describe the orientation

of the surface. We have two normal vectors to choose from ~n1 = ~ru × ~rv or ~n2 = − ~n1. We can

also use the unit normal vector n̂ = ~ru×~rv
|~ru×~rv | .

For any surface, we describe the upward orientation as a normal vector with a positive z-component

and downnward orientation as a normal vector with a negative z-component. For a closed sur-

face, the positive orientation is the one that has normal vectors pointing outward, and nega-

tive orientation points inward.

Now that surfaces can be described in some sense with magnitude and direction, we can take

surface integrals over vector fields (similar to taking line integrals over vector fields in section

2). The flux of ~F across S or more specifically, the surface integral of the vector field ~F over

an oriented surface S with unit normal vector n̂ is∫∫
S

~F · d~S =

∫∫
S

~F · n̂ dS
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Note that we are replacing d~S with n̂ dS. One way to think about this is that instead of con-

sidering the orientation of S, we only consider the parts of ~F that are normal to the oriented

surface. Now we are just considering a surface integral. We know that dS = |~ru × ~rv| dA and

n̂ = ~ru×~rv
|~ru×~rv | , so ∫∫

S

~F · d~S =

∫∫
D

~F · (~ru × ~rv) dA

§17.7 Stokes’ Theorem

Stokes’ Theorem is a higher-dimensional version of Green’s Theorem. Green’s theorem is the

special case where a surface lies completely in a plane, and we have a closed curve in the plane

bounding a region in the plane. Now, we are going to have a boundary curve in space. Think

of a boundary curve of a surface like the rim on a glass. The glass itself would be the surface,

but the surface stops at the rim, so the rim bounds it. When we evaluate along a space curve,

we are evaluating a line integral.

Stokes’ Theorem states that if S is an oriented surface bounded by a closed and positively

oriented curve C and if ~F is a vector field, then∫
C

~F · d~r =
∫∫

S

curl ~F · d~S

Since the curl of ~F is a vector field, we can evaluate the right side of the equation as an ori-

ented surface integral as in section 6. Specifically, we can parameterize the surface S with

~r(u, v), then
∫∫

S
curl ~F · d~S =

∫∫
D

curl ~F · (~ru × ~rv) dA

Since the left side of the equation is a line integral of a vector field, we can use the techniques

from section 2 or the Fundamental Theorem of Line Integrals. Specifically, we can parameterize

the boundary curve C with ~r(t), a ≤ t ≤ b, then
∫
C
~F · d~r =

∫ b

a
~F (~r(t)) · ~r ′(t) dt.

Suppose ~F is conservative. For the left side of the equation, we are integrating around a closed

curve, so the Fundamental Theorem of Line Integrals shows that the line integral is 0. For the

right side of the equation, ~F is conservative, curl ~F = 0, which shows that the surface integral

is 0.

§17.8 The Divergence Theorem

The Divergence Theorem states that if D is a solid region and S is the positively (i.e. out-

ward) oriented boundary surface of E and if ~F is a vector field, then∫∫
S

~F · d~S =

∫∫∫
E

div ~F dV

This theorem is especially useful when ~F has very complicated components or when E is a solid

whose volume is easily computed.
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If we have a hollow region D with inside boundary S1 and outside boundary S2, then the Diver-

gence Theorem gives

∫∫∫
E

div ~F dV =

∫∫
S

~F · d~S

=

∫∫
S2

~F · d~S −
∫∫

S1

~F · d~S
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