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Introduction by the Organizers

The Arbeitsgemeinschaft Geometric Representation Theory, organised by Daniel
Juteau, Simon Riche, Wolfgang Soergel and Geordie Williamson, attracted excel-
lent researchers of various backgrounds from all over the world, including many
graduate students and postdocs. Due to the Corona virus restrictions it was or-
ganised as a hybrid event with 33 real and 23 virtual participants. Also one of the
organisers was present only virtually due to travel restrictions and another could
not come. As usual for an Arbeitsgemeinschaft, the organisers provided a detailed
program and distributed the talks to the participants. We had a total of 18 talks
of one hour each with ample time for discussion and additional discussion sessions
from eight to ten in the evenings. On Wednesday afternoon, we made an excursion
to St. Roman to get some Schwarzwälder Kirschtorte and on Thursday evening,
after the discussion and decision on the program of the Arbeitsgemeinschaft in
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a year to come moderated by Peter Scholze, we organised a musical event and
get-together.

The program started out with a discussion of the general framework of highest
weight categories and Kazhdan–Lusztig polynomials, and explained the signifi-
cance of the model case of the Bernstein–Gelfand–Gelfand category O, as studied
in particular using Bĕılinson–Bernstein localization theory. This was followed by a
discussion of algebraic representations of reductive algebraic groups and its main
features, in particular the linkage principle and translation functors. In a second
part we learned about categorifications of the Hecke algebra via categories of con-
structible sheaves on (affine) flag varieties, culminating with the introduction of
the diagrammatic Hecke category. After that, in a third part, Lusztig’s conjectural
character formula for simple representations in the principal block was discussed,
in particular from the point of view of the (later) Finkelberg–Mirković conjecture
proposing a geometric incarnation of the principal block. This part finished with
a presentation of the counterexamples to Lusztig’s character formula found a few
years ago by Williamson. In a fourth part, we presented the relation between the
study of characters of simple and indecomposable tilting representations, and an
approach to the latter question via an action of the Hecke category proposed by
Riche–Williamson. Finally, the last part was devoted to the new geometric un-
derstanding of algebraic representations of reductive algebraic groups in positive
characteristic offered by Smith–Treumann theory, applied in the context of the
geometric Satake equivalence.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Category O and Highest Weight Categories

Jeanine Van Order

This talk gave a rapid overview of the Bernstein-Gelfand-Gelfand (BGG) category
O, leading to the more general relevant notion of a highest weight category.

To fix ideas, let g be a semisimple Lie algebra over an algebraically closed field.
The category Mod U(g) of all U(g)-modules is too large to study algebraically.
Bernstein-Gelfand-Gelfand [1], in their 1976 paper On a category of g-modules,
introduced a convenient subcategory they called O – taken from the Russian word
ocnovnoi for “basic” – as a place to study Jordan-Hölder decompositions of Verma
modules, and to establish an infinite-dimensional analogue of the Brauer-Nesbitt
reciprocity theorem (BGG reciprocity). To be more precise, let us fix a Cartan
subalgebra h ⊂ g, together with system of positive roots Φ+ ⊂ Φ ⊂ h∗, so that we
have the corresponding Cartan decomposition

g ∼= n− ⊕ h⊕ n.

Here,

n :=
⊕

α>0

gα and n− :=
⊕

α<0

gα

for gα := {x ∈ g : [h, x] = α(h)x ∀h ∈ h}, so that b ∼= h⊕ n describes the standard
Borel subalgebra, and b− ∼= h⊕ n− its opposite. We then define O = O(g, h,Φ+)
to be the subcategory of all modules M ∈ Mod U(g) for which

(O1) M is a finitely generated U(g)-module,
(O2) M is a semisimple h-module, and hence a weight module M ∼=

⊕

λ∈h∗ Mλ

(where each Mλ := {x ∈M : hx = λ(h)x ∀h ∈ h}),
(O3) M is locally n-finite, i.e. for all x ∈M , the span U(n)x is finite dimensional,

from which one can deduce via the Poincaré-Birkhoff-Witt (PBW) decomposition
U(g) = U(n−)U(h)U(n) that

(O4) Each weight space Mλ is finite dimensional,
(O5) The set Π(M) := {λ ∈ h∗ :Mλ 6= 0} is contained in a finite union of sets

of the form λ − Γ for some λ ∈ h∗, where Γ = 〈Φ+〉 denotes the span of
the positive roots.

It is not hard to show the following basic properties (see [3, (1.1)] or [5, §3]):

(a) O is noetherian, i.e. each M ∈ O is a noetherian U(g)-module.
(b) O is closed under taking submodules, quotients, and finite direct sums.
(c) O is an abelian category.
(d) Given M ∈ O and L a finite dimensional U(g)-module, L ⊗M ∈ O (and

hence M 7→ L⊗M defines an exact functor O → O).
(e) Each M ∈ O is Z(g)-finite, i.e. for any x ∈ M , the span Z(g)x is finite

dimensional.
(f) Each M ∈ O is a finitely generated U(n−)-module.
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The prototype example of a module in O is that of a highest weight module.
Given M ∈ Mod U(g) and λ ∈ h∗, a nonzero vector v+ ∈ M is said to be a
maximal (or primitive) vector of weight λ if v+ ∈ Mλ and nv+ = 0. A module
M ∈ O is then said to be a highest weight module of weight λ if there exists a
maximal vector v+ ∈M of weight λ for which M = U(g)v+. We recalled some of
the nice properties satisfied by such modules ([3, (1.2)]), and in particular the fact
that each nonzeroM ∈ O admits a finite filtration 0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn =M
whose successive quotients Mi/Mi−1 are highest weight modules. The prototype
example of a highest weight module in this sense is that of the Verma module
M(λ) = ∆(λ) := U(g)⊗U(b) Cλ, where Cλ denotes the one-dimensional b-module
with trivial n-action determined by the weight λ ∈ h∗. Writing L(λ) to denote the
unique simple submodule of the Verma module M(λ), we also saw the important
theorem that each simple module M ∈ O is isomorphic to some such L(λ), and
moreover that dimHomO(L(λ), L(µ)) = δλµ. That is, the modules L(λ) with
λ ∈ h∗ varying describe the simple modules in O. Moreover, a given L(λ) is finite
dimensional if and only if the weight λ is dominant.

Although constrained by time, we also described the character and block de-
compositions of O. Here, we first mentioned the theorem of Harish-Chandra giving
the identification Z(g) ∼= S(h)W , and parametrizing all characters χ : Z(g) −→ C

in terms of the weights: χ = χλ for some (uniquely-determined) λ ∈ h∗. While the
action of the centre Z(g) on a given M ∈ O is complicated to describe in general,
we can consider for a given central character χ = χλ the submodule

Mχ := {v ∈M : (z − χ(z))n · v = 0 for some n = n(z) ∈ Z>0} .

It is not hard to deduce that M admits a decomposition into such submodules

M =
⊕

χ=χλ
λ∈h∗

Mχ.

Writing Oχ for each central character χ = χλ (determined by some λ ∈ h∗) to
denote the subcategory of O with objects Mχ (with M ∈ O varying), we then
have the corresponding decomposition

O ∼=
⊕

χ=χλ
λ∈h∗

Oχ =
⊕

λ∈h∗

Oχλ
.

Moreover, each highest weight module of weight λ is contained in the subcategory
Oχλ

, and each Oχ contains only finitely many simples/Vermas. On the other
hand, O is also artinian, and hence each M ∈ O admits a composition series
with simple quotients isomorphic to the various L(λ), and with the multiplicity
[M : L(λ)] in each series independent of the choice of series. We mentioned the
Grothendieck group K(O) in this connection too, together with its relation to the
formal character ch(M) of M ∈ O. Block decompositions appear naturally at this
point. Here, the underlying idea is find some better organization to study modules
which fail to be semisimple via Ext functors. To describe this more precisely, if
two nontrivial simple modules M1,M2 ∈ O can be extended nontrivially in the
sense that there exists a nonsplit short exact sequence 0 → Mi → M → Mj → 0
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for {i, j} = {1, 2}, we put M1 and M2 in the same block. More generally, given
simples M,N ∈ O contained in a finite sequence M = M1,M2, . . . ,Mn = N
with adjacent pairs contained in the same block, we put M and N in the same
block. In connection with the central character decomposition described above, a
standard proposition here shows that each subcategory Oχ = Oχλ

forms a block
in this sense if the weight λ is integral. Some other standard facts were mentioned
without proof, including the fact that O has enough projectives, and implicitly
that each projective admits a standard filtration (leading to the statement of
BGG reciprocity; see [3, (3.10), (3.11)]). Additionally, for the instructive special
case of g = sl2, we noted that the the principal class O0 = Oχ0

has precisely
five indecomposables: (i) the simple module L(0) of weight 0, (ii) the simple
Verma module L(−2) = M(−2) of weight −2, (iii) the projective Verma module
M(0) = P (0) of weight 0, (iv) the twisted dual M(0)∨ = Q(0), and (v) the
projective cover P (−2) = Q(−2) (of the injective envelope Q(−2) of weight −2).
More generally, each subcategory Oχλ

with λ ≥ 0 integral admits only these five
indecomposables: (i) the simple L(λ) of weight λ, (ii) the simple Verma module
L(−λ − 2) = M(−λ − 2) of weight −λ − 2, (iii) the projective Verma module
M(λ) = P (λ) of weight λ, (iv) the twisted dual M(λ)∨ = Q(λ), and (v) the
projective cover P (−λ− µ) = Q(−λ− µ) (of the injective envelope Q(−λ− µ) of
weight −λ− µ) (see [3, Proposition 3.12]).

At last, we gave a motivated introduction of the more general notion of a highest
weight category, following [4, Appendix A]. Briefly, let k be any field, and A any
finite-length, k-linear abelian category such that dimHomA(M,N) < ∞ for any
pair M,N ∈ A. Write S to denote the set of isomorphism classes of irreducible
objects in A. We assume that this set S comes equipped with a partial ordering ≤.
We also assume that for each element s ∈ S, we have a simple object representative
Ls ∈ s, together with objects ∆s,∇s ∈ S and morphisms

∆s −→ Ls, Ls −→ ∇s.

Given a subset T ⊂ S, let AT ⊂ A denote the Serre subcategory generated by
objects Lt with t ∈ T . We then put

A≤s := A{t∈S:t≤s}, A<s := A{t∈S:t<s}.

Recall that a subset T ⊂ S is an ordered ideal if t ∈ T and s ∈ S with s ≤ t, then
s ∈ T . Equipped with this data, we say that A is a highest weight category if

(A1) For all s ∈ S, the set {t ∈ S : t ≤ s} is finite.
(A2) For all s ∈ S, HomA(Ls, Ls) = k.
(A3) For all s ∈ S and ordered ideals T ⊂ S where s ∈ T is maximal, ∆s −→ Ls

is a projective cover in AT , and Ls −→ ∇ is an injective envelope in AT .
(A4) ker (∆s −→ Ls) , coker (Ls −→ ∇S) ∈ A<s.
(A5) Ext2(∆s,∇s) = 0 for all s, t ∈ S.

We then call (S,≤) the weight poset of A, the objects ∆s standard objects, and
the ∇s costandard objects. We say that an object M ∈ A admits a ∆-filtration
if there exists a finite filtration of M whose subquotients are standard. Similarly,
we say that M admits a ∇-filtration if there exists a finite filtration of M whose
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subquotients are costandard. An object M ∈ A is said to be tilting if it admits
both ∆- and ∇-filtrations. It can be shown that for all s, t ∈ S,

HomA(∆s,∇t) =

{

k if s = t

0 otherwise
and Ext1(∆s,∇s) = {0}.

Although not immediate, it can also be shown that the (integral) Berstein-Gelfand-
Gelfand category O is an example of a highest weight category, with weight poset
corresponding to the set of integral weights (see [2, Example 3.3 (c)]). In brief, this
comes down to verifying that Ext1O(M(λ),M(µ)) 6= 0 implies µ < λ. (Note that
Ext1O(M(λ),M(µ)) 6= 0 implies Ext1U(g)(M(λ),M(µ)) ∼= Ext1U(b)(λ,M(µ)) 6= 0. If

v /∈ M(µ) is a maximal vector of weight λ in a nonsplit extension of M(λ) by
M(µ), it follows that eαv = 0 for some positive root vector eα, from which it
follows that λ+ α is a weight in L(µ), and hence that µ < λ, as desired).
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Coxeter Groups and Kazhdan–Lusztig Polynomials

Alessio Cipriani

A Coxeter system is a pair (W,S) where W is a group that admits a presentation

W = 〈s ∈ S | (s1s2)
m(s1,s2) = e ∀s1, s2 ∈ S〉,

with
{

m(s, s) = 1 ∀s ∈ S

2 ≤ m(s1, s2) ≤ ∞ ∀s1 6= s2
.

The group W is called Coxeter group and elements s ∈ S are called simple re-
flections. Any element w ∈ W can be written as an expression w = s1 . . . sk with
si ∈ S and an expression is said to be reduced if k is minimal. This allows one to
define a length function ℓ : W → N which associates to each element w ∈ W the
length of a reduced expression and to introduce the Bruhat order ≤ on W .

Let L = Z[v±1] be the ring of Laurent polynomials with integer coefficients in
the variable v and (W,S) a Coxeter system. On the free L-module with basis
indexed by elements in W

H = H(W,S) =
⊕

x∈W

LTx
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there is a unique associative algebra structure given by the relations
{

TxTy = Txy if ℓ(x) + ℓ(y) = ℓ(xy)

T 2
s = v−2Te + (v−2 − 1)Ts ∀s ∈ S

,

called the Hecke algebra corresponding to (W,S).
For any w ∈ W we set Hw = vℓ(w)Tw, so that He = 1 and Hs = vTs for any

s ∈ S. With this substitution, the relations imposed on H become the quadratic
relations H2

s = 1+(v−1− v)Hs if s ∈ S as well as braid relations. Moreover, there
is exactly one ring homomorphism, called bar involution,

: H → H

H 7→ H

which sends v 7→ v = v−1 and Hx 7→ Hx = H−1
x−1 . One says that an element

H ∈ H is self-dual if it is fixed by the above involution, that is if H = H . By [3],
for any x ∈W there exists a unique self-dual element Hx ∈ H such that

Hx ∈ Hx +
∑

y<x

vZ[v]Hy .

This implies that {Hx}x∈W is a basis for H, the Kazhdan–Lusztig basis.
For any x, y ∈ W the Kazhdan–Lusztig polynomials hy,x ∈ L, originally intro-

duced in [3], are defined by the equality

Hx =
∑

y≤x

hy,xHy.

LetWf = 〈Sf 〉 ⊂W be a parabolic subgroup ofW with Sf ⊂ S. One can consider
the Hecke algebra corresponding to (Wf , Sf ), that is Hf = H(Wf , Sf ). If we fix
u ∈ {−v, v−1} we have that associating Hs 7→ u gives a surjection of L-algebras
Hf → L so that L = L(u) becomes anHf -bimodule. LetW f be the set of minimal
length representatives for the right cosets Wf \W . The two right H-modules

M = L(v−1)⊗Hf
H and N = L(−v)⊗Hf

H

are such that Mx = 1 ⊗Hx and Nx = 1⊗Hx with x ∈ W f are L-basis. One can
consider the induced involution onM (similarly on N ) and, by [1], one has that for
any x ∈W f there exists a unique self-dual elementMx ∈M (resp. Nx ∈ N ) such
that Mx ∈ Mx +

∑

y vZ[v]My (resp. Nx ∈ Nx +
∑

y vZ[v]Ny). This allows one
to introduce the parabolic Kazhdan–Lusztig polynomials my,x from the equality
Mx =

∑

y≤xmy,xMy (resp. ny,x from the equality Nx =
∑

y≤x ny,xNy).
Kazhdan–Lusztig polynomials and the Kazhdan–Lusztig basis satisfy several

positivity properties: the former are such that hy,x(v) ∈ Z≥0[v] while, if we write
HxHy =

∑

z µ
z
x,yHz , we have that µ

z
x,y ∈ Z≥0[v

±1]. These properties were proved
for Weyl groups in [4] by using intersection cohomology of Schubert varieties and
in [2] for arbitrary Coxeter systems using Soergel bimodules.

Kazhdan–Lusztig polynomials evaluated at one turn out to be closely related
to some multiplicities: inversion formulae for Kazhdan–Lusztig polynomials and
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BGG-reciprocity allow one to state the Kazhdan–Lusztig conjecture in the princi-
pal block of the category O as

(Py·µ : ∆x·µ) = [∆x·µ : Ly·µ] = hy0x,y0y(1),

where y0 is the longest element.
Finally, translation functors can be used in order to compare and control infor-

mation between blocks of the category O.
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Reductive Groups I: Irreducible Representations of Reductive Groups

Daniel Le

The goal of this lecture is to classify irreducible representations of reductive groups
and to introduce the question of finding character formulas. Some references for
this material include [1, Lecture II] and [2, II.1-II.5]. Throughout, we fix an
algebraically closed field k. We will use the term group for a connected linear
algebraic group over k. A subgroup of a group will refer to a closed k-subgroup
scheme. A group is called unipotent if it is isomorphic to a subgroup of the group of
unipotent upper triangular matrices of GLn for some n. An example is the additive
group Ga. A group is called reductive if it has no nontrivial normal unipotent
subgroups. Examples include (products of) GLn, SOn, and Sp2n. Products of
Gm = GL1 are called tori.

To a reductive group G, one can associate a root datum as follows (see [1, §4]).
To a maximal torus T (which is unique up to conjugation), one associates the
character and cocharacter groups X and X∨, respectively. The Lie algebra of
G decomposes into eigenspaces for T -characters, of which the nontrivial ones are
called roots and comprise R. To each root, one can associate a corresponding
coroot in X∨ using, for instance, the Jacobson–Morozov theorem. The set of
coroots is denoted R∨. The quadruple (R ⊂ X,R∨ ⊂ X∨) satisfy the properties
which define the notion of a root datum:

• X and X∨ are finitely generated free abelian groups;
• there is a natural perfect pairing 〈·, ·〉 : X ×X∨ → Z;
• there is a bijection ·∨ : R→ R∨ such that 〈α, α∨〉 = 2 for all α ∈ R;
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• for any α ∈ R, the involution

sα : X → X

λ 7→ λ− 〈λ, α∨〉α

stabilizes R; and
• for any α ∈ R, the induced action of sα on X∨ by duality stabilizes R∨.

A theorem of Chevalley states that the above process defines a bijection between
reductive groups up to isomorphism and root data up to isomorphism.

Let B+ be a Borel subgroup, i.e. a maximal solvable subgroup, of a reductive
group G. For example, the subgroup of upper triangular matrices is a Borel
subgroup of GLn. We let R+ be the set of roots appearing in the T -decomposition
of the Lie algebra of B+ and call these roots positive. Then we define the set X+

of dominant characters to be

{λ ∈ X | 〈λ, α∨〉 ≥ 0 ∀α ∈ R+}.

We let the set R− of negative roots be the set of inverses of the positive roots.
Then R = R+

∐

R−. Let B be the opposite Borel subgroup characterized by the
property that the roots appearing in the decomposition of the Lie algebra of B
are precisely the negative roots. In the above example, B is the subgroup of lower
triangular matrices. Let U+ and U be the maximal unipotent subgroups of B+

and B, respectively.
The significance of Borel subgroups comes from a theorem of Borel that the

action of a solvable group on a proper k-scheme has a fixed point. This follows
from the facts that every group action has a closed orbit (by passing to orbit
boundaries) and that proper quotients of solvable groups are 0-dimensional. The
following important consequences are obtained by considering group actions on
projectivizations of representations.

(1) Every nonzero B-representation has a one-dimensional subrepresentation
on which U acts trivially.

(2) Every G-representation admits a nonzero G-equivariant map to the global
sections of a G-equivariant line bundle on G/B.

Now G-equivariant line bundles are classified by T -characters as follows. For
λ ∈ X , let O(λ) be the G-equivariant invertible sheaf on G/B with sections

O(λ)(VB/B) = {f : VTU/U → k | f(gtU) = λ(t−1)f(gU)∀ g ∈ V , t ∈ T }

for any open set V ⊂ G. When G = SL2, the space Γ(O(λ)) of global sections is
naturally identified with the space of homogeneous polynomials in two variables
of a fixed degree (depending on λ). In general, one can use the fiber bundle
G/B → G/Pα where α is a simple root to show that Γ(O(λ)) 6= 0 if and only if
λ ∈ X+ by reducing to the SL2-case. When λ ∈ X+, we write ∇λ for Γ(O(λ)).

When char k 6= 0, ∇λ may not be irreducible. For example, if chark = p,
then 〈Xp, Y p〉 is an SL2-invariant subspace of the space of degree p polynomials in

X and Y . Nevertheless, the density of U+B/B in G/B implies that ∇U
+

λ is one-
dimensional so that∇λ necessarily has irreducible socle, which we denote Lλ. Then
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the previous discussion implies a theorem of Chevalley: λ 7→ Lλ defines a bijection
between X+ and the set of irreducible G-representations up to isomorphism.

It is natural to ask for a formula for the dimension or even the character of
the irreducibles Lλ. This is not easy and is a central question of this workshop.
On the other hand, there is the Weyl character formula for the characters of
the representations ∇λ. This formula is a consequence of projection formulas for
sheaf pushforwards and Kempf’s vanishing theorem which states that the higher
cohomology ofO(λ) vanishes when λ ∈ X+ (see [2, II.5]). In positive characteristic,
this vanishing theorem can also be proved using projection formulas and using
the special relationship between so-called Steinberg modules (certain ∇λ) and
Frobenius kernels (see [2, II.4]). In characteristic zero, Kempf vanishing follows
from Kodaira vanishing or can be reduced to the positive characteristic case.
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Reductive Groups II: Borel-Weil-Bott, Linkage, Translation

David Schwein

In this talk we discussed three fundamental results in the algebraic representation
theory of reductive groupsG, following sections II.5, II.6, and II.7 of Jantzen’s book
[1]. Assume the (algebraically closed) base field of G has positive characteristic p.

The first result, the Borel-Weil-Bott theorem, concerns the line bundles O(λ)
on the generalized flag variety G/B, which are constructed from a character λ of
a fixed maximal torus T . The theorem computes for any Weyl-group element w
the sheaf cohomology

Hi
(

G/B,O(w • λ)
)

provided that λ is in the −ρ-shifted fundamental alcove; here • denotes the dot
action. When λ is not dominant, the cohomology vanishes for all i. When λ
is dominant, the cohomology is supported in degree the length of w, where it is
isomorphic to H0

(

G/B,O(λ)
)

. In characteristic zero the theorem describes all
simple modules, but in positive characteristic it describes only a small portion of
them.

The second result, the linkage principle, gives a rough description of the blocks
in the category Rep(G) of finite-dimensional algebraic representations of G. The
principle in one of its forms states that there are no non-split extensions between
the simple modules L(λ) and L(µ), that is,

Ext1
(

L(λ), L(µ)
)

= 0,

whenever Waff •p λ 6= Waff •p µ, where •p denotes the p-dilated dot action of the
affine Weyl group Waff. The principle implies that the Serre subcategory Repλ(G)
generated by the simple modules

{

L(w •p λ) | w ∈ Waff

}

is a summand of Rep(G).
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At the end of the talk we proved the linkage principle for large primes by analyzing
the infinitesimal and algebraic central characters of simple modules.

The third result is more properly described as a collection of properties of
certain functors

T µλ : Repλ(G)→ Repµ(G),

called the translation functors and defined by the formula

T µλ (V ) = prµ
(

L(ν)⊗ V
)

.

Here pr : Rep(G)→ Repλ(G) is projection and ν is the unique dominant element
in the Weyl orbit of µ − λ. The functor T µλ is an equivalence of categories when-
ever µ and λ lie in the same facet under the p-dilated dot action. In general,
information propagates from larger to smaller facets in the closure ordering: such
information includes higher induced modules (that is, the cohomologies discussed
above), simple modules, and character formulas.
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Perverse Sheaves on Flag Varieties

Jens Niklas Eberhardt

1. Perverse sheaves

Perverse sheaves are a generalization of local systems. They arise naturally as
derived solutions of certain linear PDEs with regular singularities by the Riemann–
Hilbert correspondence, see [11, 15]. Moreover, they provide a home for Goresky–
MacPherson’s intersection cohomology for singular spaces, see [10]. The standard
definition works via a perverse t-structure on the constructible derived category
of sheaves, see [2], a source we will closely follow.

1.1. Assumptions. Let k be a field and X a complex algebraic variety, equipped
with the analytic topology, together with a finite Whitney stratification X =
⊎

λ∈ΛXλ into smooth connected strata Xλ of dimension dλ = dimC(Xλ) such
that ιλ : Xλ → X is locally closed and affine.

1.2. Local Systems. The category of local systems Loc(Xλ, k) is the full subcat-
egory of locally constant sheaves on Xλ with finitely generated stalks. In order to
obtain a category closed with respect to Verdier duality is convenient to consider
Loc(Xλ, k)[dλ] = Db

lc(X, k)
t=−dλ the heart of the standard t-structure—shifted by

dλ—of Db
lc(X, k), the subcategory of the bounded derived category of sheaves on

Xλ whose cohomology sheaves are local systems.
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1.3. Perverse Sheaves. To obtain an Abelian category of sheaves on X that is
stable under Verdier duality, one glues the shifted standard t-structures on the
strata to a so-called perverse t-structure on the Λ-constructible bounded derived
category of sheaves DbΛ(X, k) which consists of sheaves that restrict to Dblc(Xλ, k)
for each λ ∈ Λ. The category of Λ-constructible perverse sheaves on X is the heart
of the perverse t-structure PervΛ(X, k) = DbΛ(X, k)

t=0 and a complex of sheaves F
is in PervΛ(X, k) if and only if Hi(ι∗λ(F)) = H

j(ι!λ(F)) = 0 for all λ ∈ Λ and i >
−dλ > j.

1.4. Intersection Cohomology. An important example of perverse sheaves are
the intersection cohomology complexes IC(Xλ,L) that arise as minimal extensions
of local systems L ∈ Loc(Xλ, k). The cohomology of IC(Xλ, k) is the intersection
cohomology of Xλ and there is a bijection

{(λ,L) | L ∈ Irr(Loc(Xλ))}
∼
→ Irr(PervΛ(X)), (λ,L) 7→ IC(Xλ,L).

1.5. Highest Weight Category. If each stratum Xλ is simply-connected and
H2(Xλ, k) = 0, the category PervΛ(X, k) has the structure of a highest weight cat-
egory with standard and costandard objects given by ∆λ = ιλ,!(k[dλ]) and ∇λ =
ιλ,∗(k[dλ]), respectively. This implies nice homological properties such as the ex-
istence of projective, injective and tilting objects in PervΛ(X, k), see [1].

1.6. An Example. Let X = C = {0} ⊎ C×. A perverse sheaf F ∈ PervΛ(C, k) is
completely determined by the (relative) cohomology groups can : H−1({1};F)←→
H0(C, {1};F) : var together with a canonical and variational morphism satisfying
var ◦ can = h − 1 for the monodromy action of the clockwise loop h ∈ π1(C×, 1).
By adding a point at infinity, there is a similar description for the category of
perverse sheaves on X = P1

C
stratified by a point and a line where the monodromy

h becomes trivial. Hence, there is an equivalence between perverse sheaves and
representations of a quiver PervΛ(P

1
C
, k)

∼
→ {(can : ψ ←→ ϕ : var) ∈ k -mod |

var ◦ can = 0}. The principal block of the BGG category O of highest weight
representations of the Lie algebra sl2(C) has the same description, by mapping a
representation to its two highest weight spaces with the action of the raising and
lowering operator—a first hint for a deep connection between perverse sheaves and
representation theory.

1.7. Further topics. The decomposition theorem shows the semi-simplicity of
pushforwards of intersection cohomology complexes along proper algebraic maps
if char(k) = 0, see [2, 16, 6, 7], and there is a formalism of nearby/vanishing cycles
and gluing of perverse sheaves, widely generalizing Example 1.6, see [1].

2. Flag varieties

Perverse sheaves on flag varieties are closely related to the BGG category O of
complex reductive Lie algebras and are a crucial ingredient in the proof of the
Kazhdan–Lusztig conjectures for characters of simple highest weight modules.



Arbeitsgemeinschaft: Geometric Representation Theory 943

2.1. Bruhat stratification. Denote by G ⊃ B ⊃ T a complex reductive group
together with a Borel subgroup and maximal torus. Then, denoting by W =
NG(T )/T the Weyl group, the flag variety X = G/B has a natural stratification
(B) into its B-orbits X =

⊎

w∈W Xw, where Xw = BwB/B ∼= Cℓ(w), and one can
hence consider the category of perverse sheaves Perv(B)(X, k).

2.2. Kazhdan–Lusztig conjectures. Grothendieck’s function sheaf correspon-
dence suggests that sheaves F ∈ Db(B)(X, k) are closely related to the Hecke algebra
H associated to W via

h(F) =
∑

w∈W

∑

i∈Z

dimkH
ℓ(v)−i(ι∗wF)v

ihw ∈ H =
⊕

w∈W

Z[v, v−1]hw

where we use Soergel’s conventions for the Hecke algebra, see [18]. Pursuing the
philosophy further, interesting sheaves onX yield interesting elements in the Hecke
algebra.

Theorem 1 (Kazhdan–Lusztig [14, 13]). Let char(k) = 0. For w ∈ W we have
that h(IC(Xw, k)) = hw where hw ∈ H denotes the Kazhdan–Lusztig basis element.

This theorem, combined with the Riemann–Hilbert correspondence [11, 15] and
the localisation theorem [3, 12] provides an algorithm to compute the characters
of simple highest weight modules of complex reductive Lie algebras, proving a
conjecture of Kazhdan–Lusztig.

2.3. Further results. There is a deep symmetry, known as Koszul duality be-
tween so-called mixed perverse sheaves (see [19, 8, 9]) of Langlands dual flag vari-
eties, which yields a different proof of the Kazdhan–Lusztig conjectures, see [17, 4].
Many of these results extend to the setting of flag varieties of Kac–Moody groups,
such as affine Grassmannians, see for example [5].
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The Hecke Algebra and Hecke Category

Patrick Bieker

We explain how to categorify the Hecke algebra geometrically following [1, §2].

1. The Hecke algebra of a reductive group

Let G be a split reductive group over a finite field Fq and let T ⊂ B ⊂ G be a
split maximal torus and a Borel subgroup, respectively. The Hecke algebra of G
is defined as

H(G,B) = FunB(Fq)×B(Fq)(G(Fq), k)

the set of B(Fq)-biinvariant functions on G(Fq) with values in k, which we for now
assume to be an algebraically closed field in characteristic 0. The algebra structure
on H(G,B) is given by convolution, in other words, for f, f ′ ∈ H(G,B) we define

(f ∗ f ′)(g) =
1

|B(Fq)|

∑

h∈G(Fq)

f(gh−1)f ′(h).

The algebra H(G,B) is associative and unital (the normalisation in the convo-
lution is made in such a way that the constant function on B(Fq) is the neutral
element).

By the Bruhat decompositionG(Fq) =
∐

w∈W B(Fq)·wB(Fq), the B(Fq)-double
cosets are enumerated by the Weyl group W . In particular, the Hecke algebra H
has a basis {tw}w∈W given by indicator functions of the double cosets B(Fq) ·
wB(Fq) of G(Fq).
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To G (and the choice of T and B) we can associate its Coxeter system (W,S).
In a previous talk, the Hecke algebra H(W,S) associated to a Coxeter system was
defined as the free L = Z[v±1]-module

⊕

x∈W

LTx

with algebra structure defined by TxTy = Txy for x, y ∈W with ℓ(xy) = ℓ(x)+ℓ(y)
and T 2

s = v−2Te + (v−2 − 1)Ts for s ∈ S. In order to compare the two notions of

Hecke algebras we regard k as an algebra over Z[v±1] via v 7→ q−
1
2 .

Lemma 1. The map

H(W,S)⊗L k → H(G,B)

Tx 7→ tx

induces a well-defined isomorphism of k-algebras.

Grothendieck’s function-sheaf correspondence tells us how to categorify the con-
struction of the Hecke algebra: Instead of considering (equivariant) functions on
G we should consider (equivariant) sheaves on G.

2. (Geometric) Categorification of the Hecke algebra

Let now k denote an arbitrary field. A sheaf on a variety X over C will without
further mention always mean a sheaf of k-vector spaces with respect to the classical
topology on X(C). As we will be mainly interested in groups over the complex
numbers, we shift our perspective: We fix a Kac-Moody root datum and we denote
by G ⊃ B ⊃ T now the associated Kac-Moody group (over C) with corresponding
BorelB and maximal torus T . The main examples of Kac-Moody groups of interest
for us are reductive groups and (central extensions of) loop groups. In general, G
is an ind-variety over C. We denote by G/B the corresponding flag variety, which
in general is an ind-projective ind-variety. The Bruhat decomposition induces
the decomposition G/B =

∐

w∈W Xw of the flag variety into its Schubert cells
Xw = BwB/B.

We denote by Db
B(G/B, k) the bounded derived category of k-vector spaces

on the flag variety following [2] and [3]. In particular, we require elements of
Db
B(G/B, k) to be supported on only finitely many Schubert cells. As the action

of B on G is free, the category Db
B(G/B, k) serves as an analogue of B × B

equivariant functions on G.
As a next step, we define a convolution on Db

B(G/B, k) categorifying the con-
volution of functions. The idea (which can also be made precise in our setting) is
the following. We consider equivariant sheaves on G/B as sheaves on the (stacky)
double quotient X = B\G/B. We get the convolution diagram

X ×X
(p1,p2)
←−−−− B\G×B G/B

m
−→ X,

where the right map is given by the multiplication map on G. Then convolution
on Db

B(G/B, k) is defined as

F ⋆ G = m∗(p
∗
1F ⊗ p

∗
2G).
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It remains to construct analogues of the generators of the Hecke algebra inside
Db
B(G/B, k). Namely, for a simple reflection s ∈ S we have the parabolic subgroup

Ps = BsB = BsB∪B ⊂ G. We denote by kPs/B the corresponding constant sheaf
on the flag variety (this is clearly B-equivariant).

Definition 2. The Hecke category (in its geometric incarnation) is defined as

Hkgeom = 〈kPs/B : s ∈ S〉∗,⊕,[1],Kar

the full subcategory of Db
B(G/B, k) generated by kPs/B under convolution, direct

sums, shifts and direct summands.

Note that both the equivariant derived category Db
B(G/B) as well as the Hecke

category Hkgeom are Krull-Schmidt categories. The indecomposable objects in

Hkgeom are given by the indecomposable parity sheaves.
In order to compare the Hecke category with the Hecke algebra, we denote by

[Hkgeom]⊕ the split Grothendieck group of Hkgeom. [H
k
geom]⊕ is a Z[v±]-algebra via

convolution [F ] · [G] = [F ∗G] and v · [F ] = [F [1]]. We denote the Kazhdan-Lusztig
basis of H(G,B) by Hw for w ∈ W and the standard basis by Hw for w ∈ W .
Then Hkgeom categorifies the Hecke algebra in the following sense.

Theorem 3. The map

H(G,B)→ [Hkgeom]⊕

Hs 7→ [kPs/B[1]]

for s ∈ S defines an isomorphism of Z[v±]-algebras. The inverse isomorphism is
given by the character map

ch: [Hkgeom]⊕ → H(G,B)

F 7→
∑

w∈W

∑

i∈Z

dim(Hi(FxB/B))v
−ℓ(w)−iHw,

where FxB/B denotes the stalk of F at the point wB/B of G/B.
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Soergel Bimodules

Arthur Garnier

The category of Soergel bimodules is an algebraic generalization of the geometric
Hecke category. More precisely, if G is a connected reductive algebraic group over
C, with a Borel subgroup B < G containing a maximal torus T , with associated
Weyl group W and if we let R := Sym(X∗(T )⊗ Q) (with deg(X∗(T )) = 2), then
we have the hypercohomology functor

Db
B(G/B,Q)

H
∗

B−→ H∗
B(G/B,Q)−gmod = (R⊗RW R)−gmod

proj.
−→ R−gbim,

where R−gbim is the category of graded R-bimodules. By a theorem of Soergel,
the restriction of this functor to the geometric Hecke category (the category of
semisimple perverse sheaves on G/B) is fully faithful. Its image in R−gbim is the
category of Soergel bimodules.

This still makes sense for any Coxeter system (W,S), with a sufficiently nice
faithful reflection representation h of W . In this setting, we introduce the cate-
gory of Bott-Samelson bimodules and a Soergel bimodule is then defined to be a
direct summand of a finite direct sum of shifts of Bott-Samelson bimodules. Such
bimodules form an additive monoidal category denoted by SBim.

We review the basic properties of SBim, in particular the ∆-filtrations and the
character. By Soergel’s categorification theorem, the character is an isomorphism
of Z[v, v−1]-algebras

ch : [SBim]⊕
∼
−→ H(W,S)

[B] 7−→ ch(B)

where H(W,S) is the Hecke algebra of (W,S). Then, we state the classification of
indecomposable bimodules, which are parametrized by W and we denote by Bw
the indecomposable bimodule associated to w ∈W .

Soergel’s conjecture states that we have ch(Bw) ∈ H(W,S) is the element of
the Kazhdan-Lusztig basis of H(W,S) corresponding to w ∈ W . In the last
part, we discuss the relation between this conjecture (now a theorem of Elias and
Williamson) and Lusztig’s multiplicity conjecture. First, we notice that Soergel’s
conjecture also implies the Kazhdan-Lusztig positivity conjecture (stating that
the Kazhdan-Lusztig polynomials all have non-negative coefficients). Secondly,
we introduce the Soergel modules and Soergel’s functor V. We review the main
features of this functor and in particular, we state a theorem of Soergel stating
that V establishes an equivalence between the category of projective objects in
the principal block O0 of the category O and the category of ungraded Soergel
modules. We finish by deducing Lusztig’s conjecture from Soergel’s conjecture for
the geometric representation of the Weyl group W .
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Parity Sheaves

Eva Viehmann

Parity sheaves are a class of constructible complexes on certain stratified varieties
that are defined by some parity vanishing condition on their cohomology. They
are introduced in work of Juteau, Mautner and Williamson and have rich appli-
cations in geometric representation theory. In cases where the sheaf coefficients
are of characteristic 0, they coincide with IC sheaves and are otherwise a useful
replacement.

Let X be a variety X over C together with a stratification X =
∐

λ∈ΛXλ. We
consider coefficients in a complete local principal ideal domain k.

Assume that f : Y → X is a stratified map with Y smooth. Then we would like
to understand the indecomposable summands of f∗kY where kY is the constant
sheaf on Y . In characteristic 0 this can be achieved using the decomposition
theorem which asserts that f∗kY is a certain sum of IC sheaves associated with
suitable local systems on the strata.

In general this need no longer be the case. More precisely, under the assumption
that f is semi-small, [1] prove that the decomposition theorem only holds for f∗kY
if certain intersection forms associated to the strata are all non-degenerate.

The easiest example of this phenomenon is the nilpotent cone in sl2, which can
also be described as the variety

X = {(x, y, z) | x2 = −yz} ⊆ C3.

Let f : X̃ → X be the blow-up of the unique singular point 0. Computing the
above-mentioned intersection forms we obtain that for char k 6= 2, we have a
decomposition

f∗(kX̃)[2] ∼= kX [2]⊕ k{0}.

In characteristic 2, however, f∗(kX̃)[2] turns out to be indecomposable, and is a
first example of a parity sheaf.

Parity sheaves are defined abstractly as being certain indecomposable elements
in the bounded Λ-constructible derived category of k-sheaves on X satisfying a
parity condition on their cohomology and a condition to be shifted to a specific
degree. Juteau, Mautner and Williamson show that parity sheaves are uniquely
determined by their support, which agrees with the closure of a single stratum Xλ,
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and their restriction to Xλ, which is a local system of free finite rank k-modules
on Xλ.

A main result on parity sheaves is that they satisfy a direct analog of the
decomposition theorem in the sense that f∗(kY ) can be decomposed as a direct
sum of shifts of parity sheaves, with multiplicities that are again computable using
intersection forms on the various strata.
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The Diagrammatic Hecke Category

Leonardo Maltoni

Recall that, given a Coxeter system (W,S) with a realization h over a ring k, the
Hecke category is a certain graded k-linear monoidal category whose Grothendieck
ring is the Hecke algebra of (W,S). It has several incarnations (for instance Soergel
bimodules, or parity sheaves) and it can be given a presentation by generators and
relations using the language of diagrams for strict monoidal categories.

More generally, strict 2-categories can be described diagrammatically: a 2-
morphism will be represented by a planar diagram, where generic points corre-
spond to objects and generic horizontal lines correspond to 1-morphisms. The
axioms of strict 2-categories can then be restated by declaring that two diagrams
represent the same 2-morphism if they are equivalent up to rectilinear isotopy. If,
furthermore, all 1-morphims have bi-adjoints and all 2-morphisms are cyclic, then
one can extend the equivalence to usual isotopy. (Strict) monoidal categories can
be viewed as (strict) 2-categories with one object, by seeing the objects of the
monoidal category as 1-morphisms and the morphisms as 2-morphims. One can
then hope to obtain such a diagrammatic description for the Hecke category.

In [3], Elias and Williamson, based on previous work of Elias [1] and Elias-
Khovanov [2], introduced a category whose objects are sequences of colored points
(one color for each simple reflection in S) and morphisms are linear combinations
of equivalence classes of certain planar colored graphs with boundary, contained
in the strip R× [0, 1]. The boundary points in R×{0} and R×{1} correspond to
the source and the target respectively. More precisely, these graphs are obtained
by composition from a specific list of generators and are identified up to isotopy
and by several other relations.

Elias and Williamson also proved that, under the hypotheses of Soergel’s cate-
gorification theorem, this category is equivalent to the category of Soergel bimod-
ules, but the diagrammatic versions of the categorification statement and of the
classification of the indecomposable objects hold under milder assumption on the
realization h, that can in particular be easily satisfied also in the case of an affine
Weyl group in positive characteristic. Furthermore, Riche and Williamson proved
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in [5] that, in the crystallographic case, the diagrammatic category is equivalent
to the category of parity sheaves over the (affine) flag variety.

The indecomposable objects define a very interesting basis of the Hecke algebra,
called the p-canonical basis. Its computation is more complicated than the classical
Kazhdan-Lusztig basis. For example one can obtain it by computing the graded
rank of some intersection forms either in the geometric or in the diagrammatic
setting. Many examples can be found in [4].

References

[1] B. Elias, The two-color Soergel calculus. Compositio Mathematica, 152(2), 327-398, 2016.
[2] B. Elias, and M. Khovanov, Diagrammatics for Soergel categories. International Journal of

Mathematics and Mathematical Sciences, 2010.
[3] B. Elias, and G. Williamson, Soergel Calculus. Representation Theory, 20:295-374, 2016.

[4] L. T. Jensen, and G. Williamson, The p-canonical basis for Hecke algebras. Categorification
and higher representation theory, 683, 333-361, 2017.

[5] S. Riche, and G. Williamson, Tilting modules and the p-canonical basis. Astérisque, 397,
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Lusztig’s Conjecture

Matthew Westaway

Let G be a connected reductive algebraic group over an algebraically closed field
K of characteristic p ≥ 0. One of the most fundamental problems in the represen-
tation theory of algebraic groups is to determine the characters of the irreducible
G-modules. Recall that the character of a (finite-dimensional) G-module M is
defined by

ch(M) :=
∑

λ∈X(T )

(dimMλ)e
λ ∈ Z[X(T )],

where X(T ) is the character group of a maximal torus T of G and Mλ denotes the
λ-weight space ofM . Characters encode lots of information about their respective
modules, and so their calculation is highly desirable.

When the characteristic of K is zero, the irreducible modules are precisely the
Weyl modules (denoted ∆(λ), and indexed by the dominant weights λ ∈ X(T )+)
and their characters are given by Weyl’s character formula. For p > 0, however,
Weyl modules are generally not irreducible; instead, each irreducible module can
be found as the head of a (unique) Weyl module (we denote such heads L(λ)).
Nonetheless, it turns out that ch(∆(λ)) is given by Weyl’s character formula in
all characteristics, and so the characters of the irreducible modules L(λ) may be
calculated by determining the integers mλ,µ in the expression

[L(λ)] =
∑

µ∈X(T )+

mλ,µ[∆(µ)]

in the Grothendieck group of Rep(G) (such an expression is possible, as the Weyl
modules give a basis of said Grothendieck group). Via the application of trans-
lation functors (see, for example, [9]), this computation may be reduced to the
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setting of the principal block: letting Waff denote the affine Weyl group of (G, T )
and ·p denote the p-dilated dot-action of Waff on X(T ), this means that it is
sufficient to determine (for appropriate w ∈ Waff) the integers mx,w such that

[L(w ·p 0)] =
∑

x∈Waff

x·p0∈X(T )+

mx,w[∆(x ·p 0)]

in the Grothendieck group. It is in this setting where Lusztig, in [16], made
his eponymous conjecture (which Jantzen had already shown to hold in types
A1, A2, A3, B2 and G2, see [8, 9]):

Conjecture (Lusztig’s Conjecture [16]). Let h be the Coxeter number of (G, T ),
and assume p ≥ h. Suppose further that w ∈Waff is such that w ·p 0 ∈ X(T )+ and

〈w ·p 0 + ρ, α∨〉 ≤ p(p− h+ 2)

for all positive roots α. Then

[L(w ·p 0)] =
∑

x≤w
x·p0∈X(T )+

(−1)l(w)+l(x)hw0x,w0w(1)[∆(x ·p 0)],

where ha,b ∈ Z[v, v−1] denotes the affine Kazhdan-Lusztig polynomial for a, b ∈
Waff, and w0 is the longest element in the Weyl group of (G, T ).

The (slightly awkward) requirement that 〈w ·p 0 + ρ, α∨〉 ≤ p(p− h+ 2) for all
positive roots α is known as Jantzen’s condition, and it has long been known that
Lusztig’s conjecture can fail without that assumption. Nonetheless, Kato proved
in [10] that Lusztig’s conjecture is compatible with the Steinberg tensor product
theorem, which reduces understanding the irreducible modules to understanding
those with highest weight in

X1 := {λ ∈ X(T ) | 0 ≤ 〈λ, α∨〉 < p for all simple α}.

It was therefore deemed reasonable to replace Jantzen’s condition with the re-
quirement that w ·p 0 ∈ X1, which, through the Steinberg tensor product theorem,
would mean that Lusztig’s conjecture determines the characters of all irreducible
G-modules.

One remarkable observation about this conjecture is that the coefficients on the
right hand side are independent of the prime p! That remarkable fact comes with
a cost, however: the conjecture is not true in the generality stated above. In 2013,
Williamson [24, 25] showed that Lusztig’s conjecture fails for a large collection of
the primes for which it was conjectured to hold.

If p is sufficiently large, however, Lusztig’s conjecture is indeed true. This
was proved in the early 1990s, through a scheme laid out by Lusztig [17, 18]
(with appropriate modifications for the non-simply-laced cases made by Lusztig in
[19, 20]). The scheme first relates Lusztig’s conjecture to an analogous statement
for quantum groups [2], then relates quantum groups to certain affine Lie algebras
[11, 12, 13], and finally proves the appropriate results on affine Lie algebras [14,
15], using similar techniques as were used in the proof of the Kazhdan-Lusztig
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conjectures for finite-dimensional complex semisimple Lie algebras. The limitation
of p≫ 0 comes out of the first step: Andersen, Jantzen and Soergel’s proof in [2]
has to pass through a localization Z[d−1] of the integers for some (unknown) d, and
thus only proves the desired connection for p > d. No explicit bound on p is given in
[2], although work of Fiebig [7] has been able to provide one (which is, necessarily,
very large). Since the 1990s, various other proofs of Lusztig’s conjecture for large
primes have been found, for example in [1, 4, 6].

Despite the failure of Lusztig’s conjecture for smaller primes, the correct re-
placement for Lusztig’s conjecture has been found (and now proved in a handful
of different ways, see [3, 5, 22, 23]). Notably, the proof in [22] proves that the
replacement holds for all primes (even primes smaller than h). The content of this
replacement, however, is a lot more opaque than the content of Lusztig’s conjec-
ture, and a major question going forward is whether it is possible to understand
it in a more tangible way.
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(1994), 321 pp.
[3] R. Bezrukavnikov, S. Riche, Hecke action on the principal block. Preprint, arXiv:2009.10587.
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Combinatorial Origins of Geometric Satake

Shane Kelly

This talk was about how Lusztig’s character formula leads to the prediction,

(1) htµw0,tλw0
(1) = dim∆λ(µ),

for the values of certain affine Kazhdan-Lusztig polynomials at 1. We follow the
notation from [5, §3.5].

Here, λ, µ ∈ X are characters of the algebraic group associated to a fixed
root datum (X,Φ, X∨,Φ∨), we write ∆λ(µ) for the weight space of µ in the Weyl
module ∆λ associated to λ, the Kazhdan-Lusztig polynomials (of a choice of simple
roots and elements x, y in the extended affine Weyl groupW =W⋉X) are written
hx,y, the longest element of the Weyl group is w0 and tµ, tλ are the translations
W in the affine Weyl group associated to µ, λ ∈ X . Note that the action of W on
X is via the p-dilated dot action (x, tλ) •p µ = x((µ+ pλ) + ρ)− ρ where p ∈ N is
a fixed chosen prime, and ρ = 1

2

∑

α∈Φ+
α is the half sum of our choice of positive

roots.
Lusztig’s derivation of (1) from his character formula is rather short (this deriva-

tion is a combination of the the one in [3, pp.29-30] and the one in [5, §3.5]):
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∑

µ∈X+

dim∆λ(µ)
1

|StabW (µ)|

∑

x∈W

sgn(x)ch∆pµ−ρ+xρ

=
∑

µ∈X+

dim∆λ(µ)
1

|StabW (µ)|

∑

x∈W

epxµ
(

Weyl’s character
formula

)

=chLpλ

(

Steinberg’s tensor
product theorem

)

=chLtλw0•p(−2ρ) (pλ = tλw0 •p (−2ρ))

=
∑

y′≤tλw0,
y′•p(−2ρ)∈X+

sgn(y′tλw0) hy′,tλw0
(1) ch∆y′•p(−2ρ)

(

Lusztig character
formula

)

The summand µ, x = id in the first expression and y′ = tµw0 in the last expression
are respectively of the forms

dim∆λ(µ)
1

|StabW (µ)|
ch∆pµ and sgn(tµw0tλw0) htµw0,tλ,w0

(1) ch∆pµ,

from which one can deduce (1) (for appropriate λ, µ, p).
The prediction was proved by Lusztig [4], and Kato [1], and also reproved by

Knop [2].
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Geometric Satake and Finkelberg–Mirković

Leonardo Patimo

The Geometric Satake equivalence and the Finkelberg–Mirković conjecture are
two central statements in geometric representation theory, both connecting the
representation theory of a reductive group with the geometry of the affine Grass-
mannian of its Langlands dual. The Geometric Satake equivalence was proved by
Mirković and Vilonen in 2007 [1], while the Finkelberg–Mirković conjecture is still
open, although significant progress towards its proof has been made in the last
years (cf. [2, 3]). Assuming the Finkelberg–Mirković conjecture, we can obtain a
direct proof of Lusztig’s character formula for large primes (cf. [4]).
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The affine Grassmannian. We recall a few facts about the geometry of the
affine Grassmannian. We refer to [5] for more details.

The affine Grassmannian of a reductive group G can be thought of as an infinite
dimensional analogue of the usual Grassmannian. Let O = C[[t]] be the ring of
formal power series and let K = C((t)) be its quotient field, the field of formal
Laurent series. Then the (space of C-points of the) affine Grassmannian GrG is
the quotient G(K)/G(O). It is an ind-projective ind-scheme of ind-finite type, i.e.
it can be realized as the direct limit of projective varieties.

If G = GLn, the affine Grassmannian parametrizes O-lattices in Kn. In this
case, we can have a direct look at its structure of an ind-projective ind-scheme. In
fact, we have

GrGLn
=

⋃

M≥0

GrMGLn
, where GrMGLn

:= {Λ ⊂ Kn lattice | tMOn ⊂ Λ ⊂ t−MOn}.

Moreover, GrMGLn

∼= {V ⊂ t−MOn/tMOn | V vector space over C with tV ⊂ V }

is a closed subset of the Grassmannian of C-vector spaces in C2nM . In particular,
each GrMGLn

is projective.
Let T ⊂ B be a maximal torus and a Borel subgroup of G. Let X denote the

cocharacter lattice of T and let X+ ⊂ X be the subset of dominant cocharacters.
Every µ ∈ X defines a morphism C∗ → T , hence a point in T (C[t, t−1]) ⊂ T (K) ⊂
G(K) and we denote by tµ its image in GrG. The decomposition of GrG into
G(O)-orbits, called the Cartan decomposition, has the following form:

GrG =
⊔

µ∈X+

G(O) · tµG(O)/G(O).

The G(O)-orbit of tµ, denoted GrµG, is called a Schubert cell and its closure GrµG is
called a Schubert variety. Each Schubert variety is a projective variety of dimension

2〈ρ, µ〉, where ρ is the half-sum of the positive roots. We have GrµG =
⊔

λ≤µGrλG,
where λ ≤ µ if µ − λ can be written as sum of positive coroots. Each Schubert
variety can be obtained as an affine bundle over a finite-dimensional partial flag
variety of G.

The connected components of GrG are parameterized by the fundamental group
of G, i.e. by the quotient X/Q, with Q denoting the coroot lattice. Moreover,
the dimensions of every Schubert variety in a given connected component have
the same parity. This implies that there are no extensions between parity sheaves
which are constructible with respect to the Cartan decomposition.

Let Iw ⊂ G(K) denote the Iwahori subgroup of G(K), i.e. the preimage of
B under the morphism G(O) → G(C) defined by t 7→ 0. Each Schubert cell
decomposes into Iw orbits as follows.

GrµG =
⊔

λ∈Wµ

Iw · tλG(O)/G(O).
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The Iwahori-orbit of tµ is isomorphic to an affine space Cℓ(λ) of dimension

ℓ(λ) :=
∑

α∈Φ+

〈λ,α〉>0

〈λ, α〉 −
∑

α∈Φ+

〈λ,α〉<0

(〈λ, α〉 + 1).

The Geometric Satake equivalence. The Geometric Satake equivalence states
that the category of representations of a reductive group can be realized geometri-
cally as perverse sheaves on the affine Grassmannian of the Langlands dual group.
From the point of view of representation theory this is very interesting, because
it implies that the geometry GrG governs the representation theory of G∨ in any
characteristic, thus allowing to study representations in positive characteristic uni-
formly in p.

Let k be an arbitrary field. We consider the category PG(O)(GrG, k) of G(O)-
equivariant perverse sheaves on the affine Grassmannian with coefficients in k.
Under the convolution product, PG(O)(GrG, k) forms a monoidal category. In
fact, since the multiplication m : G(K) ×G(O) GrG → GrG is a stratified semi-
small morphism, convolution of perverse sheaves is again perverse.

Theorem 1 (Geometric Satake equivalence, [1]). There exists an equivalence of
monoidal categories

S : (PG(O)(GrG, k), ∗)
∼
−→ (Rep(G∨

k ),⊗k))

where G∨
k is the Langlands dual split reductive group of G constructed over k.

In the proof, one does not construct the functor S directly, but rather makes use
of Tannakian reconstruction: one abstractly shows that the category PG(O)(GrG, k)
must be equivalent to the category of representations of a group H , which is later
showed to be isomorphic to G∨

k . A thorough account of the proof can also be found
in [6]. We remark that if k is a field of good characteristic, then parity sheaves
on GrG are always perverse [7]. In this case, the category of parity sheaves corre-
sponds via geometric Satake to tilting modules for G∨

k .

The Finkelberg–Mirković conjecture. Assume now that k is a field of char-
acteristic p. There are several properties of the category Rep(G∨

k ) which have no
known counterpart on the geometric side. The Finkelberg–Mirković conjecture
would explain how to construct the Frobenius twist functor geometrically.

Let W be the Weyl group of G and let W ext :=W ⋉X be the extended affine
Weyl group. Let L(λ) denote the irreducible representation of G∨

k with highest

weight λ ∈ X . Let Repext0 (G∨
k ) be the Serre subcategory generated by all L(λ),

for λ ∈W ·p 0 ∩X+, where ·p denotes the p-dilated dot action of W ext. For every
λ ∈ X , the Frobenius twist Fr(L(λ)) of L(λ) is isomorphic to L(pλ) and belongs
to Repext0 (G∨

k ).
Let P(Iw)(GrG, k) denote the category of perverse sheaves constructible with

respect to the stratification of Iw-orbits

Conjecture (Finkelberg–Mirković). There exists an equivalence of categories Q :
P(Iw)(GrG, k)→ Repext0 (G∨

k ) making the following diagram commutative.
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PG(O)(GrG, k) P(Iw)(GrG, k)

Rep(G∨
k ) Repext0 (G∨

k )

ForG(O)

S Q

Fr

Assuming the Finkelberg–Mirković conjecture, Achar and Riche have recently
given a geometrical proof of Steinberg tensor product theorem [8].
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Torsion Explosion

Tom Gannon

Let k be some algebraically closed field, and let G denote some reductive group
over k for which the characteristic of k is either zero or larger than the Coxeter
number. If k has postive characteristic, a main insight in [1] is that some of the
weights in Lusztig’s conjecture can be reduced to studying a certain Serre quotient
category of the category of representations of G known as modular category O0.
Using this, in [3] and [4], Williamson showed that any bound for which Lusztig’s
conjecture holds for GLn must be exponential in n. In this talk, we discuss these
results and their broader context in this Arbeitsgemeinschaft.

1. Modular Category O0

The idea and first results of [1] state that the modular category O0 has many
similar properties to the usual block O0 of the BGG category O defined when k
is characteristic zero. The main result of this section is the theorem of Soergel,
whose proof can be found in [1].
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Theorem 1. We have the following:

(1) The functor V defines an equivalence between the additive category of pro-
jective objects of the category O0 and the category of ungraded Soergel
modules.

(2) The hypercohomology functor restricted to the full subcategory of parity
sheaves on the complex flag manifold of G∨ with coefficients in k defines
an equivalence between this category and (graded) Soergel modules.

(3) Under these equivalences, the character of an indecomposable projective ob-
ject of O0 in the Grothendieck group of O0, which we identify with Z[W ]
via the basis of standard objects, is equivalently given by a ‘graded stalk’
of the associated indecomposable parity sheaf when the cohomological pa-
rameter is set to 1.

The proof of theorem 1 is essentially uniform across all characteristics except
those positive characteristics smaller than the Coxeter number. It also reduces
the computation of the composition multiplicities of a given simple object Lx·0
in a Verma ∆y·0 as follows. By BGG reciprocity, we may equivalently compute
the Verma flag multiplicity (Px·0 : ∆y·0). We may use the equivalence given by V

to identify this indecomposable projective object with an indecomposable Soergel
module labelled by x. This indecomposable Soergel module admits a graded lift,
and therefore since hypercohomology H also gives an equivalence of categories, we
may choose an object which maps via hypercohomology to this Soergel module–
this will turn out to be an indecomposable parity sheaf. We then use the ‘stalks of
parity sheaves’ map to compute the character of v in terms of the stalks of these
parity sheaves. In this way, one can rephrase Theorem 1 as follows:

Theorem 2. For k the characteristic of p larger than the Coxeter number, the
k-parity sheaves agree with the k-intersection cohomology sheaves if and only if
Lusztig’s conjecture holds.

2. Torsion Explosion

Using Theorem 2, Williamson proved the following theorem, which in particular
shows that the expected bound on the characteristic of the field for which Lusztig’s
conjecture holds for some GLn is substantially higher than expected:

Theorem 3. (‘Torsion Explosion’, [3], [4]) For all n, there exists some pn for
which the decomposition theorem fails for a field of characteristic pn, so that in
particular there exists some indecomposable parity sheaf Pw which is not equivalent
to the associated intersection cohomology sheaf, and, moreover, the assignment
n 7→ pn is exponential in n.

In the second part of this talk, we discuss the geometric proof of this result
given in [4], and sketch the idea behind the proof as follows. The decomposition
theorem holds in characteristic p if and only if all the ranks of certain intersec-
tion forms of a fixed Bott-Samuelson and some fiber have the same rank over Q as
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they do over a field of characteristic p. Therefore, one might hope for a situation
by which the associated intersection form of some Bott-Samuelson resolution and
some fiber is given by a 1× 1 matrix with a nonzero coefficient. If one could find
such a resolution, then any prime dividing an entry would be a prime for which
Lusztig’s conjecture fails. A geometric situation for which this arises is discussed
in [4], and is known as the miracle situation. Williamson shows that there exists
certain expressions for which the miracle situation holds and moreover gives the
algorithm to compute the associated 1× 1 matrix. In [3], he shows that a slightly
more general class of these expressions can be used to show that, for n ≫ 0, any
prime dividing the nth Fibonacci number must divide the intersection form, and
thus is a prime for GLn. Since the nth Fibonacci number must have n distinct
prime divisors [2], there is some prime larger than nlog(n) for which Lusztig’s
conjecture fails for GLn. Using more sophisticated expressions, one can show the
exponential growth in the torsion explosion theorem.
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On Tilting Characters

Bregje Pauwels

Definitions and notation. Let G be a connected reductive algebraic group over
an algebraically closed field of characteristic p > 0. For simplicity, we will as-
sume that DG is simply connected. We write Rep(G) for the category of finite-
dimensional (algebraic) G-modules. Choosing a Borel subgroup B ⊂ G and a
maximal torus T ⊂ B, we denote by X the lattice of characters of T , and by
R ⊂ X the root system of (G, T ). We write R+ = R \ R(B) for the subset of
positive roots, and the associated system of simple roots will be denotedRs ⊂ R+.
Our choice of R+ determines a subset X+ of dominant weights in X and an order
� on X. We write

X+
res = {λ ∈ X | ∀α ∈ Rs, 0 ≤ 〈λ, α∨〉 < p}

for the subset of dominant restricted weights. We fix a weight ς ∈ X such that
〈ς, α∨〉 = 1 for any α ∈ Rs.
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For any dominant weight λ ∈ X+, we write ∇λ for the induced module and ∆λ

for the Weyl module associated to λ. Thus ∆λ admits a unique simple quotient Lλ,
which is also the unique simple submodule of ∇λ. The assignment λ 7→ Lλ induces
a bijection between X+ and the set of all simple G-modules up to isomorphism.

Recall that, in characteristic p, we have the Frobenius morphism Fr : G→ G. If
G = GLn for example, Fr raises matrix entries to their p-th power. The Frobenius
twist is then defined to be the functor Fr∗ : Rep(G)→ Rep(G).

Motivation. The characters of induced modules and Weyl modules are well-
understood by Weyl’s character formula. Hence, to know the character of a simple
module L, it suffices to express its class in the Grothendieck group in the basis
{∆λ, λ ∈ X+} or the basis {∇λ, λ ∈ X+}. This is a very hard problem; the
dimensions and characters of the simple representations are unknown in general.

Changing the basis of the root system, or tilting the axes can be useful in this
regard. This leads us to the notion of tilting modules. Below, we will classify all
tilting modules, compute their characters in the case that G = SL2, and explain
why knowledge of tilting characters would imply knowledge of characters of simple
modules.

Tilting objects in highest weight categories. There is a canonical structure
of highest weight category on Rep(G), with weight poset (X+,�), standard objects
{∆λ, λ ∈ X+} and costandard objects {∇λ, λ ∈ X+}. In particular, we have that

Exti(∆λ,∇µ) =

{

k if i = 0 and λ = µ
0 otherwise.

In that sense, the induced and Weyl modules form a dual basis for the derived
category Db(Rep(G)).

Recall that a tilting object in a highest weight category is an object which admits
both a filtration by standard objects and a filtration by costandard objects. A
tilting object in Rep(G) is also called a tilting G-module. For λ ∈ X+, we write
(M : ∇λ) for the number of times that ∇λ occurs in a(ny) filtration by costandard
objects of the tilting moduleM . The multiplicities (M : ∆λ) are defined similarly
by considering standard filtrations. In the Grothendieck group, we then have

[M ] =
∑

λ∈X+

(M : ∇λ) · [∇λ] and [M ] =
∑

λ∈X+

(M : ∆λ) · [∆λ].

Note that the coefficients in the expansion of tilting modules in the bases of induced
modules and Weyl modules are nonnegative. This allows us to use combinatorial
tools to study the multiplicities (and hence the characters) of tilting modules.

Classification of tilting modules. Every tilting module can be written as a
direct sum of indecomposable tilting modules, so it suffices to describe the inde-
composable ones. The classification of tilting objects in a highest weight category
(see [5, App. A]), applied to the category Rep(G), leads to the following
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Theorem 1 (Ringel, Donkin). For any λ ∈ X+, there exists an indecomposable
tilting G-module Tλ such that (Tλ : ∇λ) = 1 and (Tλ : ∇µ) = 0 unless µ �
λ. The assignment λ 7→ Tλ induces a bijection between X+ and the set of all
indecomposable tilting G-modules up to isomorphism.

Tensor products of tilting modules. The following theorem is due to Mathieu.

Theorem 2. For any tilting G-modules M, N , the tensor productM⊗N is tilting.

The tilting tensor formula ([2, §II.E.9]), due to Donkin, is the tilting analogue
of Steinberg’s tensor formula:

Theorem 3. Assume p ≥ 2h− 2. For any λ ∈ (p− 1)ς + X+
res and any µ ∈ X+,

Tλ+pµ ≃ Tλ ⊗ Fr∗(Tµ).

Recall that Steinberg’s formula’s magic allows us to reduce the determination
of characters of simple modules to weights in a finite number of closures of alcoves.
Unfortunately, the analogue does not work for tilting modules: the tilting tensor
formula reduces the determination of characters of indecomposable tilting modules
to weights in infinitely many closures of alcoves, unless G is of type A1.

Example. For G = SL2 we can describe all indecomposable tilting modules. We
let X = Z, X+ = Z≥0, X+

res = {0, 1, . . . , p− 1} and ς = 1. By the tilting tensor
formula, the problem reduces to finding Ti for 0 ≤ i ≤ 2p− 2. If 0 ≤ i ≤ p− 1, we
have ∇i = ∆i = Li = k[X,Y ]i, the space of homogeneous polynomials of degree
i. It follows that Ti = k[X,Y ]i. For p ≤ i ≤ 2p− 2, using translation functors we
find a short exact sequence

∇2p−2−i →֒ Ti ։ ∇i.

Hence we can explicitly compute all multiplicities (Ti : ∇j), or equivalently all
characters of tilting modules Ti, for i ∈ Z≥0. This is the only semi-simple group
for which all tilting characters are known. We refer to [1] and [3] for more details.

After the talk, Joel Gibson added a tool to his wonderful website [4, LieVis] to
visualize the multiplicities (Ti : ∇j). The following picture, made in LieVis, shows
the multiplicities of ∇j in Ti for p = 5 (a triangle indicates the multiplicity is 1).
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From tilting characters to simple characters. Let p ≥ 2h− 2. The following
theorem shows that, if we knew the characters of the indecomposable tilting G-
modules, or equivalently all multiplicities (Tµ : ∇λ), then we could in theory
compute the characters of simple G-modules. For more details, we refer to [6] and
the references therein. Consider the subset of X+ defined by

X+
bb = {λ ∈ X+ | 〈λ, α∨〉 ≤ (p− 1)〈ς, α∨〉 for every dominant short root α}.

Note that X+
res ⊂ X+

bb and that X+
bb is an ideal for �.

Theorem 4. There is an (explicit) bijection (−)N : X+ ∼
−→ (p − 1)ς + X+ such

that

[∆λ : Lµ] = (TµN : ∇λ)

for any λ, µ ∈ X+
bb.

Tilting modules for quantum groups. The following theorem, due to Soergel,
expresses the characters of tilting modules for quantum groups at roots of one in
terms of the anti-spherical Kazhdan-Lusztig polynomials nA,B.

Theorem 5. (TA : ∇B) = nB,A(1)

We refer to [7] for details and motivation, and to [8] for a proof.
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The Categorical Conjecture

Jonathan Gruber

In their landmark monograph [RW18], Simon Riche and Geordie Williamson pro-
posed two conjectures relating the category of tilting modules in the principal block
Rep0(G) of a reductive algebraic group G to the diagrammatic Hecke category D
corresponding to the affine Weyl group W of G.

In the first one, here called the categorical conjecture, they propose that the
principal block of G should be a module category over D, in such a way that the
monoidal generators of D act via so-called wall-crossing functors.

In the second one, called the numerical conjecture, they conjecture that the
multiplicities in Weyl filtrations of indecomposable tilting modules should be given
by the values at one of certain anti-spherical p-Kazhdan-Lusztig polynomials.

(Both conjectures are now known to be true.)
In this talk, we first introduce some background material in order to then state

the precise versions of the two conjectures.
We also explain a natural Z[W ]-module structure on the Grothendieck group

of Rep0(G), which serves as a motivation for the categorical conjecture.
Finally, we discuss some consequences of the categorical conjecture and explain

why the latter implies the numerical conjecture.
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An Iwahori–Whittaker presentation of the Satake Category

Valentin Gouttard

Groups. Let F be an algebraically closed field of positive characteristic p > 0.
We consider a connected reductive algebraic group G over F; fix a maximal torus
T and a Borel subgroup T ⊆ B+. Let U+ denote the unipotent radical of B+.
The character lattice X∗(T ) will be denoted X, and the cocharacter lattice X∗(T )
will be denoted X∨. Let ∆ be the set of roots, ∆∨ the set of coroots. Our choice
of Borel subgroup B+ induces a subset of positive roots: let ∆+ be the roots that
appear in Lie(U+). We then get a subset ∆s of simple roots. For any root α, we

choose and fix an isomorphism uα : Ga,F
∼
−→ Uα.

Recall that we have a pairing 〈−,−〉 : X∨ ×X → Z. We define dominant and
strictly dominant cocharacters as follows:

X∨
+ := {λ ∈ X∨ | 〈λ, α〉 ≥ 0 ∀α ∈ ∆s}

X∨
++ := {λ ∈ X∨ | 〈λ, α〉 > 0, ∀α ∈ ∆s}.

We assume that there exists a cocharacter ς such that 〈ς, α〉 = 1 for any simple
root α (this is true for example if G is a semisimple group of adjoint type; in which
case we can take ς = ρ := 1

2

∑

α∈∆+ α). Note that ς may not be unique. Under
this assumption, we have X∨

++ = ς +X∨
+.

Affine Grassmaniann. We set K = F((z)) and O = F[[z]] and consider the
ind-group scheme GK and its group subscheme GO . We have a natural morphism
ev0 : GO → G induced by F[[z]] → F, z 7→ 0; let I+ be the inverse image of B+

under ev0, and I
+
u the inverse image of U+.

Define the affine Grassmannian Gr := GK /GO ; one can show that Gr is rep-
resented by an ind-projective ind-scheme of ind-finite type (see for example [Z,
Theorem 1.2.2]). To any cocharacter λ ∈ X∨, we can associate a point in Gr de-
noted Lλ. The affine Grassmaniann is the union of GO -orbits: set Grλ := GO ·Lλ,
we then have Gr =

⊔

λ∈X
∨
+
Grλ. One can show that the orbits Grλ are irreducible

quasi-projective schemes of finite type, of dimension 〈λ, 2ρ〉. We let jλ : Grλ →֒ Gr
be the embedding.

GO-equivariant sheaves and the Geometric Satake Equivalence. Let ℓ be
a prime number 6= p. In these notes, k will denote one of the following ring: a
finite extension of Qℓ, the ring of integers in such an extension, or a finite field
of characteristic ℓ. We consider the GO -equivariant derived category of (étale)
k-sheaves on Gr and the perverse subcategory PGO

(Gr, k); this identifies with the
heart of the t-structure on Db

GO
(Gr, k). Set

I!(λ, k) :=
p
H

0((jλ)! kGrλ [〈λ, 2ρ〉]), I∗(λ, k) :=
p
H

0((jλ)∗ kGrλ [〈λ, 2ρ〉]).

The objects I!(λ, k) and I∗(λ, k) are then perverse. For simplicity here, we assume
that k is a field. We then have the following results.
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Proposition 1. The category PGO
(Gr, k) is a highest weight category, with asso-

ciated weight poset (X∨
+,�), standard objects {I!(λ, k) | λ ∈ X∨

+} and costandard
objects {I∗(λ, k) | λ ∈ X∨

+}. Moreover, endowed with the convolution product

(−) ⋆GO (−) this is a monoidal category.

Theorem 2 (Geometric Satake Equivalence, [MV]). We have an equivalence of
monoidal categories

(PGO
(Gr, k), (−) ⋆GO (−))

∼
−→ (Rep(G∨

k ), (−)⊗k (−)).

Here, the right hand side denotes the category of rational representations of the
k-group scheme which is Langlands dual of G, endowed with the monoidal product
given by the usual tensor product.

Iwahori–Whittaker category. We assume that there exists a primitive p-th
root of unity in k, and we fix one. This choice allows us to define a character
ψ : Fp → k∗ which in turn defines an étale k-local system of rank 1 on Ga,F, which
we denote L k

ψ .
Consider the following composition

χI+u : I+u
ev0−−→ U+

։ U+/[U+, U+]
∼

←−−−∏
uα

∏

α∈∆s

Ga,F
+
−→ Ga,F.

We define the derived category Db
IW(Gr, k) of (I+u , χ

∗
I+u

(L k

ψ))-equivariant objects

as in [AR]: this is the full subcategory of Db(Gr, k) whose objects are those com-
plexes F such that a∗

I+u
(F ) = χ∗

I+u
(L k

ψ)⊠
L
k

F (here, aI+u : I+u ×Gr → Gr denotes

the induced action morphism). This is a triangulated category, we can consider
a natural perverse t-structure whose heart will be denoted PIW(Gr, k). (A little
care should be taken here considering that we are working on an ind-scheme acted
on by a pro-group, but we ignore such technicalities here.)

We set Xλ := I+ ·Lλ = I+u ·Lλ; we have Gr =
⊔

λ∈X∨ Xλ. It turns out that not

all I+-orbits can support an (I+u , χ
∗
I+u

(L k

ψ))-equivariant local system (and thus an

(I+u , χ
∗
I+u

(L k

ψ))-equivariant object):

Lemma 3. [BGMRR, Lemma 3.3] There exists an (I+u , χ
∗
I+u

(L k

ψ))-equivariant lo-

cal system on the orbit Xλ if and only if λ ∈ X∨
++.

For any λ ∈ X∨
++, we can then define two perverse objects by letting ∆IW

λ (k) :=

(jXλ
)!(L

k

ψ(λ))[dim(Xλ)] and ∇
IW
λ (k) := (jXλ

)∗(L
k

ψ(λ))[dim(Xλ)]. Here, jXλ
de-

notes the embedding Xλ →֒ Gr and L k

ψ(λ) denotes the (unique) (I+u , χ
∗
I+u

(L k

ψ))-

equivariant local system on Xλ. An important feature of this new category is
the following: the natural realization functor DbPIW(Gr, k) → Db

IW(Gr, k) is an
equivalence of categories (the proof goes as in [BGS, §3.2 and §3.3]). Moreover, if
k is a field, we have nice structural properties:

Lemma 4. [BGMRR, Corollary 3.6] If k is a field, the category PIW(Gr, k) admits

a highest weight structure with weight poset (X∨
++,�), standard objects {∆IW

λ (k) |

λ ∈ X∨
++} and costandard objects {∇IW

λ (k) | λ ∈ X∨
++}.
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Main Result. An object F in Db
IW(Gr, k) is GO -equivariant on the right, so we

can convolve F on the right with an object G in Db
GO

(Gr, k). As the Iwahori–
Whittaker condition is an “equivariance on the left” condition, one can check that
the convolution product F ⋆GO G is in Db

IW(Gr, k). Thus the Iwahori–Whittaker
category is a right module over the category Db

GO
(Gr, k). Consider the object

∆IW
ς (k).

Let us define a functor Φ : Db
GO

(Gr, k)→ Db
IW(Gr, k) by setting

Φ(F ) := ∆IW
ς (k) ⋆GO F .

It is proved in [BGMRR, Lemma 3.8] that this functor is t-exact for the perverse
t-structure; we denote Φ0 : PGO

(Gr, k) → PIW(Gr, k) its restriction (note that
here, the claim is true without the assumption that k is a field). The main result
of [BGMRR] is then:

Theorem 5. [BGMRR, Theorem 3.9] The functor Φ0 is an equivalence categories,

mapping I!(λ, k) to ∆IW
ς+λ(k) and I∗(λ, k) to ∇IW

ς+λ(k).

In particular, if k is a field, Φ0 is an equivalence of highest weight categories. We
can get back to our previous somehow-artificial-remark on the weight posets: going
from the Satake to the Iwahori–Whittaker perverse category (via Φ0), we shift the
weight poset by ς . Composing the previous equivalence with the geometric Satake
equivalence and passing to derived categories, we get a “derived version” of the
latter equivalence

DbRep(G∨
k )

∼
−→ DbPIW(Gr, k) ∼= Db

IW(Gr, k).

Parity and tilting objects. If k is a field, we can define even, odd and parity ob-
jects in the Iwahori–Whittaker category. We say that an object F ∈ Db

IW(Gr, k) is
even (resp. odd) if its restriction and corestriction to any strata Xλ with λ ∈ X∨

++

is concentrated in even (resp. odd) degrees. We say that F is parity if it is
isomorphic to a direct sum of even and odd objects.

We can also define even, odd and parity objects in Db
(GO)(Gr, k). It is known

([JMW, Theorem 4.6]) that we have parity sheaves in this category: for any λ ∈

X∨
+ there exists an indecomposable parity object Eλ supported on Grλ and whose

restriction to Grλ is kGrλ [〈λ, 2ρ〉].

Theorem 6. [BGMRR, Theorem 4.10] For any λ ∈ X∨
+ and any n ∈ Z, the

perverse sheaf pH n(Eλ) is tilting in the highest weight category PGO
(Gr, k).
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Smith-Treumann Theory

Jesper Grodal

The goal of my talk at the Arbeitsgemeinschaft was to give an account of Smith
theory for sheaves, as initiated by D. Treumann, with literature [Tre19], [RW19]
and [Wil19]. In the following couple of pages, I’ll summarize some highlights
from this theory. I’ve tried to kept it as “generic” and non-technical as possible,
to highlight structural features, rather than particular technical issues of a given
model, perhaps at the slight expense of precision. The version I present here also
differ somewhat from the sources. I’ll remark on this as we go along, and at the
end.

Classical Smith theory, named after P. A. Smith, whose works date from the
1930’s, is a collection of results stating relations between mod ℓ invariants of a
space X and those of the fixed-points Xµℓ , where µℓ is a finite group of prime
order ℓ acting on X . (There are related characteristic zero results where µℓ is
replaced by the circle T = S1, or, for the daring, its ℓ-torsion points µℓ∞ .)

Smith’s ideas have been very influential in the intervening 80+ years. It was
recast in the 1960s and 1970s in the work of A. Borel, D. Quillen, and others, e.g.,
through the localization theorem. This again fed into fundamental conjectures in
homotopy theory by G. Segal and D. Sullivan relating µℓ–fixed-points and homo-
topy µℓ–fixed-points, proved in the mid 80s by G. Carlsson and H. Miller, after 15
years of intense interest.

Let X be, say, a finite T -CW complex, for T the circle S1, and k a field of
characteristic ℓ. Write H∗

T (−; k) for Borel equivariant cohomology with coefficients
in k. Recall that a version of the classical localization theorem says that the
restriction map

H∗
T (X ; k)→ H∗

T (X
µℓ ; k),

which is a map of H∗
T (pt; k)–algebras via the map p to a point, becomes an iso-

morphism after inverting the degree 2 class u ∈ k[u] ∼= H∗
T (pt; k), i.e.,

H∗
T (X ; k)[u−1]

∼=
−→ H∗

T (X
µℓ ; k)[u−1] ∼= H∗(Xµℓ ; k)⊗k k[u, u

−1].

Many statements of Smith theory follow from this formula. For example one sees
that if X is mod ℓ acyclic, i.e., H∗(X ; k) one-dimensional over k, then the same

holds for Xµℓ , as H∗
T (X ; k)

∼=
←− H∗

T (pt; k)
∼= k[u]. Similarly one sees that the µℓ–

fixed-points of a mod ℓ homology sphere is again a mod ℓ homology sphere or the
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empty set (“the (−1)-sphere”), by considering the pair (CX,X), for CX the cone
on X .

The Treumann version of the localization theorem, as further refined by Riche-
Williamson, is a similar result for the whole T –equivariant bounded derived cat-
egory of sheaves Db

T (X ; k), or alternatively T –equivariant constructible sheaves.
HereX can either be as before, or a real subanalytic variety (the setup of Treumann
[Tre19]) or a finite type T -scheme over a field F of characteristic p 6= ℓ, with
T = Gm, and equipped with the étale topology (the setup of [RW19]).

For this, consider the restriction map

Db
T (X ; k)

i∗

−→ Db
T (X

µℓ ; k)

between triangulated (or ∞–) categories. Note that this is a morphism under
Db
T (pt; k) via p∗, where p is the map to a point. We can similarly consider a

morphism (u : k → k[2]) ∈ Db
T (pt; k) representing the class u from before. In-

verting u in this setting translates into “killing the cone cofib(u)”, i.e., forming
the Verdier quotient with respect to the thick tensor ideal generated by cofib(u) in
Db
T (X ; k) and Db

T (X
µℓ ; k) respectively, via p∗. Let us denote forming this quotient

by (−)[u−1], and abbreviate “thick tensor ideal” to just ideal. In this formulation
the theorem becomes:

Theorem 1 (“The localization theorem for sheaves”). Restriction induces an
equivalence of triangulated (or ∞–) categories

i∗ : Db
T (X ; k)[u−1]

≃
−→ Db

T (X
µℓ ; k)[u−1].

Likewise i! also descends to the quotient, where it agrees with i∗.

Note that the quotient category is 2-periodic, with periodicity induced by mul-
tiplication by u (an element in homological grading −2). In particular the quotient
is not the bounded derived category of any ordinary ring. (It is one over the Tate
fixed-point spectrum ktT , though.) The quotient categories, should be thought of
as a “Tate construction” applied to the original categories (and this can indeed be
made precise!). E.g.,

Ext∗Db
T (pt;k)[u−1](k, k) = k[u, u−1]

It can also be described as a “singularity category” or “stable module category”,
of dualizable objects modulo compact objects, a sort of “category at infinity”.

One of the wonderful things about the isomorphism in Theorem 1 is that it is as
natural in X as can be, in the sense that it commutes with all the usual functors
we consider:

Theorem 2 (“Localization commutes with all operations”). Let f : X → Y be
a T–equivariant morphism in one of the categories from earlier. Then f∗, f

∗,
f!, f

! and Verdier duality D preserve the property of being in the ideal generated
by cofib(u), so also induce functors after inverting u, and the usual adjunctions
continue to hold in the quotient.
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Furthermore for F either f∗, f
∗, f! or f

!, the following diagram commute

Db
T (X ; k)[u−1] Db

T (Y ; k)[u−1]

Db
T (X

µℓ ; k)[u−1] Db
T (Y

µℓ ; k)[u−1]

i∗

F

i∗

F

(with F going in the appropriate direction), and likewise for F = D with Y = X.

Before sketching the proof of these two theorems, let us make a note about the
ideal generated by cofib(u). Upon restriction to kµℓ, the chain complex cofib(u)
can be modelled by

· · · → 0→ kµℓ
1−g
−−→ kµℓ → 0→ · · · ,

non-zero in degree 1 and 0, and g a generator of µℓ. In particular, the stalk of
p∗(cofib(u)) at x ∈ Xµℓ will be a perfect complex of kµℓ–modules. As this is
perserved under tensor products and summands, the same is true for any sheaf
in the ideal generated cofib(u). Theorems 1 and 2 thus imply similar statements
where we quotient out by the, a priori larger, subcategory given by all sheaves F
where the stalk at x ∈ Xµℓ is a perfect complex of kµℓ–modules. This was what
was considered in [Tre19] and [RW19]. Db

T (X
µℓ ; k) modulo this, a priori larger,

subcategory is called Perf(Xµℓ ; T ) in [Tre19] and Sm(Xµℓ , k) in [RW19]. Under
suitable niceness assumptions on X the two ideals coincide, but the best-possible
result in this direction is not entirely clear to us.

We will now sketch the proofs of the two theorems.

Sketch of proof of Theorem 1. We first prove the claim when Xµℓ = ∅, i.e., if the
T –action is “free at ℓ”. Here the statement becomes that any sheaf F ∈ Db

T (X ; k)
lies in the ideal generated by cofib(u). For this, one first observes that in this
case Db

T (X ; k) ∼= Db(X/T ; k), as the action is “free at ℓ” (here one appeals to
a property equivariant derived category in the relevant setting). In particular
Ext∗Db

T
(X;k)(F ,F) is concentrated in only finitely many dimensions (a property of

X/T ). Hence, for some n, un maps to zero under the natural map

Ext∗Db
T
(pt;k)(k, k)

p∗

−→ Ext∗Db
T
(X;k)(F ,F)

Said in other words, the map F
un

−−→ F [2n] is zero, and hence cofib(un) ⊗ F ∼=
F [1]⊕F [2n]. But cofib(un) lies in the ideal (as it can be constructed by iterated
cofibers starting with cofib(u)), and hence so does F , as wanted.

For the general case, we consider the recollement

Db
T (X

µℓ ; k) Db
T (X ; k) Db

T (X \X
µℓ ; k)

i∗

i!

i∗

j∗

j∗

j!

Here we need to see that the image under j∗ of the right-hand term lies in the
ideal generated by cofib(u). We have already seen that Db

T (X \X
µℓ; k) equals the
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ideal, so this statement is covered by the first part of Theorem 2, which says that
all the functors preserve the property of being in this ideal—we will sketch the
proof of Theorem 2 below.

The last statement is similarly a consequence of the first part of Theorem 2. We
need to see that the cofiber of i!F → i∗F lies in the ideal. Recall that by six functor
formalism ’localization triangle’ we have the cofibration sequence i!i

!F → F →
j∗j

∗F , which upon applying i∗ gives a cofibration sequence i!F → i∗F → i∗j∗j
∗F ,

as i∗i! = i∗i∗ = 1. But i∗j∗j
∗F lies in the ideal generated generated by cofib(u),

for the same reason as before: j∗F lies in Db
T (X \X

µℓ ; k), and is particular in the
ideal, and being in the ideal is preserved by i∗j∗ by the first half of Theorem 2.
Hence i! and i∗ agree on the quotient. (Compare also [Tre19, Sec. 4.2] and [RW19,
Prop. 2.6].) �

Sketch of proof of Theorem 2. First note that D preserves the ideal generated by
cofib(u). Namely, for p : X → pt, we have that

D(cofib(u)⊗F)=map(cofib(u)⊗F , p!(k))∼=map(cofib(u),DF)∼=cofib(u)⊗DF [−1]

It is obvious that f∗ preserves the ideal generated by cofib(u), as pullback is
functorial, and hence the same is true for f ! using that = Df ! = f∗D. That f!
preserves the ideal follows from the projection formula f!(F ⊗ f∗(G)) ∼= f!(F)⊗G,
with G = cofib(u), under the assumptions when this formula holds, e.g., finite
covering dimension of Y , and again this implies the same for f∗, by Verdier duality.
This concludes the proof of the first part of Theorem 2 (used in the proof of
Theorem 1).

Let us now check that the diagram commutes in all cases. For F = D, we
need to see that the cofiber of Di∗F ∼= i!DF → i∗DF is in the ideal generated by
cofib(u), which follows by the last part of Theorem 1.

That the diagram commutes for F = f∗ is obvious as (−)∗ distributes over

composition. The diagram also commutes for F = f! as i∗f!
∼=
−→ f!i

∗ by base
change. The statements for F = f ! and F = f∗ now follows by Verdier duality, as
Verdier duality transforms f∗ into f ! and f! into f∗. �

We end with a few remarks. As noted I’ve stated things a bit different from the
original papers in this note, to get formulations closer to the original localization
theorem in equivariant cohomology. In particular I’ve stated the main result as
an equivalence of categories. Furthermore, as explained above, I’m also quotient-
ing by a different (potentially smaller) subcategory than the one used in [Tre19]
and [RW19] (though in practice probably often equivalent)—in my talk at the
Arbeitsgemeinschaft I only gave a vague comment that something like that should
be true, mumbling something about finiteness. This led to some confusion and
follow-up conversations with Gurbir Dhillon and Geordie Williamson. A version
indeed turns out to the true, and the above proof sketch follows that rute, thanks
to those conversations.
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Smith–Treumann Theory and the Linkage Principle

Dragoş Frăţilă

In this talk one of the main results of [2] was explained: the geometric realisation
of the linkage principle through the Smith–Treumann localisation to fixed points.

Let Ǧ be a reductive group over an algebraically closed field k of characteristic ℓ
and fix a maximal torus and a Borel subgroup Ť ≤ B̌ ≤ Ǧ. Let X̌ be the characters
of Ť and X̌+ the dominant characters corresponding to the opposite Borel B̌+.
The extended affine Weyl group is denoted by Waff := W ⋉ X̌. The linkage
principle (due to Andersen) states that we have a decomposition of categories

Repk(Ǧ) =
⊕

γ∈X̌/Waff ,•ℓ

Repγk(Ǧ)(1)

where Repγk(Ǧ) = 〈L(λ) | λ ∈ γ〉 and L(λ) is the irreducible representation of
highest weight λ (or zero if λ is not dominant). The •ℓ-action is the ℓ-dilated dot
action: wtλ •ℓ µ := w(µ + ℓλ+ ρ)− ρ.

Let G be the Langlands dual group of Ǧ defined over an algebraically closed
field F of characteristic p 6= ℓ. We put K := F((z)) and O := F[[z]] and we de-
fine the affine Grassmannian GrG as the quotient GK/GO. It is an ind-scheme
which is ind-projective and of ind-finite type. Let I+ ≤ GO be the Iwahori sub-
group corresponding to the unipotent radical of B+ under the evaluation map
evz=0 : GO → G. The I+ orbits on GrG are parametrised by the characters X̌ and
for λ ∈ X̌ we denote such an orbit by GrG,λ.

In previous talks, the following equivalences of categories were explained:

Repk(Ǧ) ≃ PervGO
(GrG) ≃ PervIW,Gm

(GrG)(2)

where the first equivalence is the geometric Satake equivalence (due to [3]) and the
second is the Iwahori–Whittaker realisation (due to [1]). Under these equivalences,

the irreducible representation L(λ) is sent to the IC sheaf ICIW (λ+ρ) of the orbit
closure GrG,λ+ρ

1. Moreover, the tilting module T (λ) is sent to the parity sheaf
EIW (λ+ ρ) (parity sheaves on the affine grassmannian are perverse thanks to the
the Iwahori–Whittaker equivariance condition).

Now the linkage principle can be stated equivalently as

if Waff,ℓλ 6=Waff,ℓµ then HomPervIW,Gm (GrG,k)(E
IW (λ), EIW (µ)) = 0(3)

1The Iwahori–Whittaker equivariance is very restrictive and only orbits corresponding to
strongly dominant characters, i.e., belonging to ρ+ X̌+, can afford an IW local system!
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where Waff,ℓ is the ℓ-dilated affine Weyl group W ⋉ ℓX̌. Notice that the shift by
ρ in EIW and the dot action have cancelled out!

Such a vanishing of Ext groups between two sheaves is most satisfactorily ex-
plained geometrically when the sheaves have disjoint support. However, this is not
the case here as the affine Grassmannian GrG has very few connected components
(and they are independent of ℓ!). A fix comes from considering fixed points under
an extra symmetry: the loop rotation.

The loop rotation arises naturally in the theory of affine Kac–Moody groups
as the action of a cocharacter of the maximal torus. In our context, it can be
explained as follows: since Gm acts on Spec(K) by tf(z) = f(tz) it induces a
natural action on GK and hence on GrG. The locus of fixed points under the loop
rotation Gm on GrG is a disjoint union over dominant characters λ ∈ X̌+ of partial
flag varieties. Since this is again independent of ℓ we need to look further.

Let µn ≤ Gm be the subgroup of n-th roots of unity. Bezrukavnikov made the
following observation which was proved in [2]:

Proposition 1. We have a decomposition into connected components

Grµn

G =
⊔

γ∈X̌/Waff,n

GrG,γ(4)

where each GrG,γ is (the connected component of unity of) a partial affine flag
variety of the form G◦

Kn
/Pγ where Kn = F((zn)) and Pγ is a certain parahoric

subgroup associated to γ.

The second ingredient is the Smith–Treumann localisation to fixed points of µℓ
on GrG. In the previous talk it was explained that if we have an action of Gm on
a variety Y then we can define the (constructible) Smith–Treumann category as

SmGm
(Y µℓ , k) := DbGm

(Y µℓ , k)/

〈

complexes whose restriction to µℓ
are perfect k[µℓ]-complexes

〉

.

It is a triangulated category which is 2-periodic, i.e., id ≃ [2].
Denote by i : Y µℓ → Y the inclusion of fixed points and by

Q : DbGm
(Y µℓ , k)→ SmGm

(Y µℓ , k)

the quotient functor. The main features of the Smith–Treuman theory [4] are
captured by

Theorem 2 ([4]). The natural map of functors i! → i∗ gives an isomorphism
Qi! = Qi∗. If we denote the resulting functor by

i!∗ : DbGm
(Y, k)→ SmGm

(Y µℓ , k)

then it commutes with all functors of the form f∗, f!, f
∗, f ! for Gm-equivariant

maps f .

Since the Smith category is 2-periodic we can not make sense of perverse sheaves.
However, as it was observed by Leslie–Lonnergan [5] one can make sense of parity
sheaves. To this purpose the following important technical result (explained in the
previous talk) is proved in [2]
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Proposition 3. In the Smith category of a point we have

Ext∗SmGm (pt)(k, k) = k[x, x−1], where deg(x) = 2.

It is rather straightforward to make sense of the Smith–Treumann category
in the Iwahori–Whittaker setting and therefore to talk about parity sheaves in

SmIW,Gm
(Grµℓ

G , k). We will denote by Sm♯
IW,Gm

(Grµℓ

G , k) the subcategory of even

objects for the dimension pariversity2. We can now state the main result of [2]
that was the subject of this talk:

Theorem 4. The Smith–Treumann localisation functor

i!∗ : DbIW,Gm
(GrG, k)→ SmIW,Gm

(Grµℓ

G , k)

induces an equivalence of categories between parity sheaves

i!∗ : ParityIW,Gm
(GrG, k) ≃ Sm♯

IW,Gm
(Grµℓ

G , k).(5)

The decomposition into connected components (4) coupled with the above
equivalence gives the decomposition of categories

ParityIW,Gm
(GrG, k) ≃

⊕

γ∈X̌/Waff,ℓ

Sm♯
IW,Gm

(GrG,γ , k)

which, according to the geometric reformulation (3), is precisely the linkage prin-
ciple.
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6 (2019), pp. 707-735.

[2] Riche, S. and Williamson, G. Smith-Treumann theory and the linkage principle. (2020),
arXiv preprint arXiv:2003.08522.
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