ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GL3(Q,) IN THE

NON-ORDINARY CASE

DANIEL LE, STEFANO MORRA, AND CHOL PARK

ABSTRACT. Let F/Q be a CM field where p splits completely and 7 : Gal(Q/F) —
GL3(Fp) a continuous modular Galois representation. Assume that 7 is non-ordinary and
nonsplit reducible (niveau 2) at a place w above p. We show that the isomorphism class
of F‘Gal(fw/Fw) is determined by the GL3(Fy )-action on the space of mod p algebraic
automorphic forms by using the refined Hecke action of [HLMI7|. We also give a nearly
optimal weight elimination result for niveau two Galois representations compatible with
the explicit conjectures of [Her09] and [GHS]. Moreover, we prove the modularity of
certain Serre weights, in particular, when the Fontaine-Laffaille invariant takes special
value oo, our methods establish the modularity of a certain shadow weight.
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1. INTRODUCTION

Let p be a prime. In this paper, we address a problem about local-global compatibility
in the mod p Langlands program for GL3(Q,). In [Ser87], J.-P. Serre conjectured that if
7 : Gal(Q/Q) — GL2(F,) is a modular Galois representation, then the minimal weight of a
modular form giving rise to 7 is determined (in an explicit way) from the local datum 7|,
where I, denotes the inertia group at p. From the explicit description, one easily sees that
the conjectured minimal weight actually determines the isomorphism class of 7|7, (outside
the trés ramifiée case). Serre interpreted this as evidence for compatible mod p local and
global Langlands correspondences (cf. loc. cit., Section 3.4). These correspondences were
established along with their p-adic analogues in several works of many authors—Breuil,
Berger, Colmez, Dospinescu, Emerton, Kisin, and Paskunas to name a few (see [Bre(3,
Col10} [Eme]). In particular, 7| al(@, /Q,) CAn be recovered from the minimal weight and the
Hecke action on it.

One would hope for analogous correspondences in greater generality. For a CM extension
F/F* in which p splits completely, fix a place w|p in F. For a modular Galois representation
7: Gal(Q/F) — GL3(F,), one could consider the GL3(F,,)-representation II(7) coming from
the space of mod p automorphic forms on a definite unitary group. It is not known whether
II(7) depends only on F|Ga1(?w/Fw)' It is expected that if f|Ga1(Fw/Fw) is tamely ramified,
then it is determined by the set of modular Serre weights (the GL3(Zj,)-socle of II(7)) and the
Hecke action on its constituents. However, this is not true if F|Ga1(fw JFw) is wildly ramified,
and the question of determining 7|7, /5, from II(7) lies deeper than the weight part of
Serre’s conjecture. Using a refined Hecke action, we show that the GL3(F,)-action on II(7)
determines F|Ga1(7w JFu) in the non-ordinary cases following the work in the ordinary cases
of [HLMI7] for GL3(Q,) and [BD14] for GLs over unramified extensions of Q,,.

In order to present the main results in more detail we need to fix some notation. We let
E/Q, be a finite extension, O its ring of integers and F its residue field. These are the
rings of coefficients of our representations and are always assumed to be sufficiently large.
Let p : Gg, — GL3(F) be a continuous reducible indecomposable Galois representation. It
is believed that the semisimplification of p is determined by the modular Serre weights of
p and the Hecke actions on them. (For instance, see [GG12] for the ordinary case.) When
we fix the undramified part and the tamely ramified part of p that is Fontaine-Laffaile,
the extension class, and hence the isomorphism class of p, is determined by an invariant
FL(p) € P1(F) generalizing the one in [HLMI7] (cf. Definition .

One can also define a parameter on the automorphic side. Let I; denote the standard
pro-p Iwahori subgroup. If m, is a smooth F-valued representation of GL3(Q,), which verifies
certain multiplicity one properties with respect to its GL3(Z,)-socle, then there is a natural
action of certain group algebra operators S, S’ on (aq, a1, ag)-isotypic parts of 7r£1 (isotypic
with respect to the residual action of the finite torus) and one can associate a non-zero
parameter to the pair (S,S’) (see Section [5| for the precise definition of the operators and
their properties).

The main result of this paper is to prove that the two local parameters defined above

coincide when the local representations are obtained from the cohomology of unitary arith-

metic manifolds (cf. Theorem [6.13). Let F//Q be a CM field with F'™ its maximal totally
real subfield and let 7 : Gp < Gal(Q/F) — GL3(F,) be a continuous Galois representation.
Assume that p is totally split in F' and fix a place wol|vg of F, F* respectively, above p. We

assume that 7 is modular: for the purpose of this introduction this means that there exists
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a totally definite unitary group G defined over F'* (outer form of GL3 and split at places
above p), a tame level U? < G (A;of ) away from p and a maximal ideal m; associated to 7
in the Hecke algebra acting on Ssm(Up ,IF) (the space of algebraic automorphic forms with
infinite level at p and coefficients in ) such that S~ (U?,F)[m;] # 0.

We write W (7) for the set of Serre weights of 7, i.e., the irreducible smooth G(Op+ ,)-
representations V' over I such that

H0m9(0F+Yp) (VV7 Ssm(Up’ F) [mf]> ?é 0.

We fix a Fontaine-Laffaille set of weights V" away from vy (i.e. V' is an irreducible
smooth representation of [, ., G(Op+) and there exists an irreducible smooth G(OFJO )-
representation V,,, such that V@V, € W (7); see Definition[6.5|for details on the definition
of V%), In particular, we define the space S° (U*, V*)[m;] of algebraic automorphic forms
of infinite level at vy and coefficients in V'V, it is a G(F;E )-representation.

Theorem 1.1. In the previous hypothesis and settings, let U = U,, x U < G(AZ") x
S(Op+p) be a sufficiently small compact open (see , where U C G(A7;™). We make
the following assumptions:

(i) f|GFw is indecomposable of residual niveau 2 as in with genericity condi-

tion ;

(i) FL(7la,, ) ¢ {0,5};

(iii is Fontaine-Laffaille at all places dividing p;

(iv 18 unramified at places away from p;

(v) T has an image containing GLs(k) for some k C F with #k > 9;

(vi) FC) does not contain F(Cp).

Let S, S’ be the group algebra operators defined in @ (associated to the triple of integers
(—ao, —a1,—az). Then

)

)T
) T
) 7

a1 — ap

10
(1.0.1) S'o 0 1 | =(-1)=". -FL(Tlon,,) S
0 0

az — a1

N O o

on S (U, Vo) [mz]l(-av—%0.=2)[[,] - where the notation (e)'(=91:=60:=92) denotes the
(—a1, —ag, —ag)-isotypic part, for the residual action of the finite torus, of the pro-p Iwahori
fized vectors of S (U, V¥)[m;], and Us is a Hecke operator at vy (see .

In the theorem above, the assumptions (iii)-(vi) are needed in order to obtain a freeness
result for a Hecke algebra acting on ™ (U, V) [m;] (cf. Theorem. Assumptions (v)
and (vi) are needed to choose auxiliary primes in the Taylor-Wiles method. Assumptions
(iii) and (iv) could likely be removed with a closer study of local Galois deformation rings
at and away from p, respectively.

As mentioned before, in order to obtain Theorem one needs a certain multiplicity
one condition on the G(O F )-socle. This is obtained by a thorough type elimination in
niveau 2, which highlights that the set of Serre weights for 7 depends on the associated
Fontaine-Laffaille parameter.

When F|Gpw0 is semisimple, there is a conjectural description of the set WZ,O (7) of irre-
ducible smooth representations V,,, of G(Op+ ,) such that V' @ V,,, € W(7) (cf. [Her09]).
When 7|¢ F., 18 N0t semisimple, we define here an explicit set W, (7), which depends on the
Fontaine-Laffaille parameter associated to 77|GFWO (cf. Definition [6.3). We remark that in
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the set W, (7) we can distinguish an explicit subset W/*(7) of obvious weights (related
to “obvious” crystalline lifts of 7|g Fug ). Our main result on Serre weights for 7 is contained
in the following theorem:

Theorem 1.2. Assume that T verifies assumption (i) of Theorem . Then
W (7) C W, (7).
Moreover, the obvious weights F(as — 1,a1,a0 + 1) and F(as — 1,a0 + 1,a1 — p + 1) are
always modular, while, if the Fontaine-Laffaille parameter at wqy verifies FL(f|GFw0) = o0,
the shadow weight F'(as,ap,a1 — (p — 1)) is modular.
Finally, assume that F is unramified at all finite places and that there is a RACSDC

automorphic representation IT of GL3(A ) of level prime to p such that

(i) 77y (I);

(i) For each place wlp of F, rpi(I)|cy, is potentially diagonalizable;

(iii) 7(Gr(c,)) is adequate.
Then we have the following inclusion:

WP (1) © W, (7).

wo
Remark 1.3. If |G, is split, and 7 verifies items (i)-(iii) of Theorem we can always
prove that W5 (F) N Wy, C W, (F) where W5 (F) N Wy, is the set of obvious lower
weights of 7 at wq (cf. §6.3))

We now wish to describe the relationship between this paper and [HLMI17]. On the Galois
side we need to introduce new technical tools, the first of which is the classification of simple
Breuil modules of rank 2 (Proposition . This is required both for weight elimination
results, and to show the connection between the Fontaine-Laffaille parameter and a Frobe-
nius eigenvalue of a certain potentially crystalline lift of p def F|GFwO (cf. Proposition
and Theorem . Moreover, the proof of the existence of crystalline and potentially diag-
onalizable lifts for p, appearing in [HLMI7] (Corollary 4.4.4 and Theorem 5.3.7 in loc. cit.)
are global in nature and specific to the niveau 1 case and we develop purely local techniques
from Galois cohomology to obtain the analogous result in the non-ordinary case. (The exis-
tence of potential diagonalizable lifts shows in particular that representations satisfying the
hypotheses of Theorem do exist, cf. Theorem .

On the automorphic side we still consider spaces of automorphic forms whose coefficients
at places above p are principal series, since the same group algebra operators as in [HLM17]
recover the Fontaine-Laffaille parameter of p, via classical intertwining operators. That we
can prove our freeness result (Theorem using our weight elimination result seems to
be a coincidence specific to GL3. We plan to address generalizations to higher dimension
and niveau in future work (for the niveau one case, see [PQ)).

We conclude this introduction with an overview of the sections of this paper. In the
remainder of this introduction, we introduce the notation that will be used throughout
the paper. In Section [2| we analyze the local mod p Galois representation p, in terms of
Fontaine-Laffaille theory. We also classify rank 2 simple Breuil modules with tame descent
data and show the existence of crystalline lifts with certain Hodge—Tate weights of the rep-
resentation py. In Section [3] we perform elimination of Galois types, by determining the
structure of possible Breuil modules with descent data corresponding to the representation
Po- In Section [l] we completely determine the filtration of strongly divisible modules lifting
the Breuil modules, with a carefully chosen descent datum, corresponding to the represent-
ation py. The filtration on strongly divisible modules gives information of the eigenvalues of
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the Frobenius map of the corresponding weakly admissible filtered (¢, N)-modules, and we
find an explicit relation between certain Frobenius eigenvalues and the Fontaine—Laffaille
parameter. In Section [5) we quickly review certain group algebra operators and their prop-
erties, developed in [HLM17]. Our main results are stated and proved in Section @ We
establish a weight elimination result in Section [6.3] and prove mod p local-global compata-
bility and modularity of certain weights in Section[6.4} A freeness result for a Hecke algebra
acting on S (U, V¥)[m;] is proved in Section

1.1. Notation. Let Q be an algebraic closure of Q. All number fields F'/Q will be considered

def

as subfields in Q and we write G = Gal(Q/F) to denote the absolute Galois group of F.
For any rational prime ¢/ € Q, we fix an algebraic closure Q, of Q; and an embedding
Q — Qy (and so an inclusion Gg, < Gg). In a similar fashion, we fix an algebraic closure
F, for the residue field Fy of Q,. As above, all algebraic extensions of Q, (resp. Fy) will be

considered as subfields in the fixed algebraic closure Q, (resp. Fy).
def

Let f > 1and k =TF,;. Welet Ky = W(k)[%] be the unramified extension of degree f
of Q,. We consider the Eisenstein polynomial E(u) L ye +p € Zplu] where e = p/ — 1. We
fix a root w = /—p € @p and set K & Ko(w). In particular, K/Kj is a tamely, totally
ramified extension of Ky of degree e and a uniformizer w.

Let E be a finite extension of Q,. We write Of for its ring of integers, F for its residue field
and wg € O to denote an uniformizer. From now on, we fix an embedding 7¢ : K — E,
hence an embedding o¢ : k — F.

The choice of w € K provides us with a map:

Gt Gal(K/Q,) — W(F,)*

9(@)

g —

whose reduction mod w will be denoted as w.. Note that the choice of the embedding oy :
k — F provides us with a fundamental character of niveau f, namely wy def 00°We | Gal (K Ko)-
Write ¢ for the absolute Frobenius on k. By extension of scalars, the ring k ®p, I is
equipped with a Frobenius endomorphism ¢ ® 1 and with a Gal(K/Q),)-action via we ®
1. In particular, we recall the standard idempotent elements e, € k @, F defined for
o € Hom(k,F), which verify ¢(e;) = €sop-1 and (A ® l)e, = (1 ® 0(N))e,. We write
e, € W(k) ®z, Op for the standard idempotent elements; they reduce to e, modulo p.
Given a p-adic Galois representation p : Gg, — GL,(E), we write p* to denote the linear
dual representation. Given a potentially semistable representation p : Gg, — GL,(E), we
write WD(p) to denote the associated Weil-Deligne representation as defined in [CDT99],

Appendix B.1. We refer to WD(p)[1,, as to the inertial type associated to p. Note

that, in particular, WD(p) is defined via the (covariant) filtered (¢, N)-module Dg” (p) &

lim (Bst ®g, p)9* (and D;’Q” denotes the contravariant filtered (¢, N)-module).
H/Qp

Let f > 1 be a fixed integer. By [m]; for an integer m € Z we mean the unique integer
in the interval [0,p/ — 1) congruent to m mod (pf — 1).

2. THE LOCAL GALOIS SIDE

In this section, we analyze the local mod p Galois representations we impose in terms
of Fontaine-Laffaille theory. After recalling some integral p-adic Hodge theory, we classify
rank 2 simple Breuil modules with tame descent data of niveau 1 and 2, which will be used
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in Sections [3land [4f We also show the existence of crystalline lifts with certain HodgeTate
weights of the local mod p representations, which will be useful later.

2.1. The Fontaine-Laffaille parameter. Let p, : Gg, — GL3(FF) be a continuous Galois
representation. We assume that p, is of niveau 2, i.e., an extension of a 2-dimensional
irreducible representation by a character. More precisely, we may let

wag-{-l " %
(2.1.1) Dol,, = | 0 wimttpleoty) 0
' 0 0 wgo+1+p(a1+1)

for some integers ag, a1, as € N. It is obvious that it can be rewritten as follows:

w(a27a071)+1 * *
R B T R
0 0 wg((al—ao—1)+1)

We let p, be the one-dimensional subrepresentation such that p,| Ig, = w2 and py, the
two-dimensional irreducible quotient such that pyqlr,, = w;”lﬂ)(alﬂ) ® w§“1+1)“’(“0+1).
2.1.1. Preliminaries on Fontaine-Laffaille theory. We briefly recall the theory of
Fontaine-Laffaille modules with F-coefficients and its relation with mod-p Galois represent-
ations. The main reference will be [HLMI7], Section 2.1.
A Fontaine-Laffaille module (M, Fil® M, ¢,) over k ®g, F is the datum of
(i) a finite k¥ ®p, F-module M, free over k;
(ii) a separated, exhaustive and decreasing filtration {Fil/ M }jez on M by k ®p, F
submodules (the Hodge filtration), which are k-direct summands;
(iii) A p-semilinear Frobenius isomorphism ¢ : gr* M — M
Note that, by property (iii), a Fontaine-Laffaille module is indeed free over k ®F, IF.
Defining the morphisms in the obvious way, we obtain the abelian category F-FLj of
Fontaine-Laffaille modules over k ®p, F. If the field k is clear from the context, we simply
write F-FL to lighten the notation.
Given a Fontaine-Laffaille module M, the set of its Hodge-Tate weights in the direction
of ¢ € Gal(k/F)) is defined as

Fil' M
HT, i eN, dimp | 22—} #£0Y.
{ "\ e, Fil T M 7

In the remainder of this paper we will be focused on Fontaine-Laffaille modules in parallel
Hodge-Tate weights, i.e. we will assume that for all 7 € N, the submodules Fil* M are free
over k @, IF. This is harmless since all of the representations we consider in this paper are
either Gg,-representations or restrictions of Gq,-representations to Gk, .

Definition 2.1. Let M be a Fontaine-Laffaille module in parallel Hodge-Tate weights. A
k ®p, F basis f = (f1,..., fn) on M is compatible with the filtration if for all i € N there
exists j; € N such that Fil' M = Z?:ji k @p, F - f;. In particular, the principal symbols
(gr(f1),...,gr(fn)) provide a k ®, IF basis for gr® M.

Note that if the graded pieces of the Hodge filtration have rank at most one then any

two compatible bases on M are related by a lower triangular matrix in GL,(k ®f, F).
Given a Fontaine-Laffaille module and a compatible basis f, it is convenient to describe the
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Frobenius action via a matrix Mat;(¢e) € GL3(k ®r, ), defined in the obvious way using
the principal symbols (gr(f1),...,gr(f.)) as a basis on gr*M.

It is customary to write F-FL 022 t4 denote the full subcategory of F-FL formed by
those modules M verifying Fil° M = M and Fil’ "' M =0 (it is again an abelian category).
We have the following description of mod p Galois representations of Gk, via Fontaine-
Laffaille modules:

Theorem 2.2. There is an exact fully faithful contravariant functor

Tr e ko o F-FL0P72 5 Repp(Gr,)

cris, Ko *
which is moreover compatible with the restriction over unramified extensions: if K(/Ky is
unramified, with residue field k' /k, then

zris,Ké (kl Ok M) = :ris,KO (M)|GK6 .

Proof. The statement with F,-coefficients is in [FL82], Théoreme 6.1; its analogue with
F-coefficient is a formal argument which is left to the reader (cf. also [GLI14], Theorem
2.2.1). O

*

We will simply write T7 . if the base field K is clear from the context.
It is well known, (for instance [GGI12], Lemma 3.1.5), that under mild conditions on the
inertial weights, p, is Fontaine-Laffaille:

Proposition 2.3. Let p, : Gg, — GL3(F) be as in . If the triple (az,a1,ao) € Z3
verifies p — 2 > (ag —ag — 1) > a1 — ag > 2 then py is Fontaine-Laffaille.

In order to obtain results on local-global compatibility and to perform weight elimination
(cf. Section 7 we shall assume a stronger genericity condition on the integers a;.

Definition 2.4. We say that a niveau 2 Galois representation p, : Gg, — GL3(F) as in
(2.1.1)) is generic if the triple (ag, a1, ag) satisfy the condition

(2.1.2) p—3>(ag —ap—1)> (a1 —ag) > 3.

2.1.2. The Fontaine-Laffaille parameter. Let p, be as in (2.1.1) and assume that the
integers a; € N verify the generic condition . By Proposi there is a Fontaine-
Laffaille module M such that T}, (M) = p, ® w~ %~ and which is moreover endowed with
a filtration by Fontaine-Laffaille submodules My C M; C My = M induced via T .. from

cris
the cosocle filtration on 5, (cf. Theorem [2.2)).

Lemma 2.5. Assume and let M € F-FL be such that T, (M) = py @ w™ %L,

cris

Then there exists a basis f = (fo, f1, f2) on M which is compatible with the Hodge filtration
Fil®* M and with the filtration by Fontaine-Laffaille submodules on M, and such that

0 u' =
(2.1.3) Mats(de) = [ o' 2y
0 0 '

for some p; e F*, x,y,z € F.

Proof. We first note that M has Hodge-Tate weights {0,a1 — ag,a2 — ap}. Let N bg the
rank two irreducible Fontaine-Laffaille submodule of M corresponding to Tf (N) = —f%.

Then we have Fil' N = NN Fil' M for all i € N. As N is irreducible, we can find a
basis (fo, f1) on N, such that Fil' N = ... = Fil""“ N = (f;) and Mat(y, ;,)(¢s) =
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—1

(H91 M; > Let fo be a generator of Fil® ~% T A/ As Fil® =% ! N = (0 and the Frobe-
0

nius on N is induced from the Frobenius on M, it is obvious that Maty, 1, r,)(¢e) € GL3(IF)

has the desired shape (2.1.3)). O

Remark 2.6. Keep the notation in the proof of Lemma [2.5] As N is a rank two irreducible
Fontaine-Laffaille module, it is easy to show that it is always possible to choose (fy, f1) so
that z = 0.

The Fontaine-Laffaille invariant FL(p,) associated to p is defined in terms of Mat s (¢s).

Lemma 2.7. Keep the hypotheses and the notation of Lemma[2.5 Assume moreover that
Do 15 non-split, i.e., x,y in are not both zero. Then the elements

(MOM17M27 [—x : det (“1;1 ﬁ)D

deduced from Mati(gb.) do not depend on the choice of a basis which is compatible with both
the Hodge and the submodule filtration on M.

Proof. The proof is an elementary computation in GL3(F). Indeed, let f be a basis on M as
in the statement of Lemma Then the matrix B € GL3(IF) associated to a change of basis
(compatible with the Hodge filtration) on M is lower triangular and the requirement that
the new basis is compatible with the submodule filtration on M provides us the following
equation:

0 At
B-Mats(¢s) -gr(B)" = (X' 2 ¢
0 0 !

where the diagonal matrix gr(B) is defined by gr(B);; = (B):,i, and the left hand side is an
element of GL3(TF).

a 0 0
By letting B= {6 5 0], an easy computation provides us with
e 0~
0 At a2 0 e ary~!
Ny = ettt BT s iy
0 0 X! 0 0 ot
We have

_ -1, pilp"ta azy ! N pit o=
[ axy” " :det (MI}B*16+Z m*16+y«ﬁ15)} = [ x : det ( 1 y)}
and the conclusion is now clear. O

Definition 2.8. Keep the hypothesis and notation of Lemma [2.7 In particular, let M be
the Fontaine-Laffaille module associated p, ® w1 whose Frobenius Mat 1(¢e) is given

as in (2.1.3), assuming 7, is non-split.
The Fontaine-Laffaille parameter associated to p, is defined as

FL(7,) = [—x - det (“gl g)} € PL(F).

Remark 2.9. Let p, be as in (2.8]). The isomorphism class of g, is completely determined by
the pair (pop1, #2) and the Fontaine-Laffaille parameter FL(p,) as well as their Hodge-Tate
weights.
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2.2. p-adic Hodge theory: Preliminaries. We place ourselves in the framework of
strongly divisible lattices, Breuil module, étale ¢-modules with coefficients and descent
data, having [EGHI3] Section 3.1 and [HLMI7] Section 2 as a main reference.

2.2.1. Preliminaries in characteristic zero. The ring Sy () (cf. [Bre97], Section 4.1,
[Car08], Section 2.1) is defined as the p-adic completion of the divided power envelope of
the polynomial ring W (k)[u] with respect to the ideal generated by F(u) (compatibly with
the standard divided powers on pW (k)[u]).

It is canonically isomorphic to the following sub-algebra of Ko[[u]]:

Swk) = {Z w; (;,L) ) w; € W(k)[ul, Zlgg()u;l = 0}
=0

where W (k)[u] is endowed with the topology of the pointwise convergence.

The ring Sy () is endowed with a continuous, semilinear Frobenius endomorphism ¢ :
Sw (k) — Sw k) (semilinear with respect to the absolute Frobenius on W (k)), uniquely char-
acterized by u — u? and a W (k)-linear derivation N, uniquely determined by N(u) = —u
(hence Ny = ppN). This ring is naturally endowed With a filtration {Fil’ Sy (k) }ien, where

, J > i, and with a residual Galois ac-

tion by W(k) algebra endomorphisms, defined by g( ' ) = Wx(g)u for any g € Gal(K/Q,). In
particular, the action of any g € Gal(K/Q,) is compatible with the Frobenius the filtration

and the monodromy on S. Note that, by extension of scalars, the ring S@ = SW ) @z, Qp
is endowed with the evident additional structures inherited from Sy 1)

We will be mainly concerned with objects having E-coefficients. Concretely, we write
g &f Sw ) ®z, OF, SE =S ®z, Qp, so that the additional structures on Sy (x) induce,
by O and E- hneanty respectlvely, a Frobenius, a derivation, a filtration and a compatible
residual Galois action on S, Sg.

Recall that a strongly divisible lattice in Welghts (0,7) is the datum of a free S-module of
finite type M an S-submodule Fil” M - M together with additive morphisms ¢,., N such
that:

(i) FilI" S - M C Fil’ M and Jv[/ Fil" M is wpg-torsion free;
(ii) the morphism ¢, : Fil" M — M is semilinear with respect to the Frobenius on §
and its image contains a family of S-generators for ﬁ;
(iii) the morphism N : M — M is W (k) ®z, Op-linear and verifies
(a) N(sz)= N(s)z+sN(z)forallz € M, s € S;
(b) E(u)N(Fil” M) C Fil" M;
(¢) @r(E(u) - N) = cN o, where ¢ < “’(Ep(u)) € sx.

Let K’ € {Ko, Qp}. A descent data from K to K’ on M are the data of an action of
Gal(K/K') by additive automorphisms on M, which are semilinear (with respect to the
descent data on S) and compatible with the additional structures on M (i.e. with the
Frobenius, monodromy, and the filtration). We write O g-Mod}; to denote the category of
strongly divisible lattices in weights (0, r), with descent data from K to K'.

We have a contravariant functor

: Op-Modjyy — Repg 17" (G )
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where Repg;t’[fr’o](GK/) is the category of G/-stable Opg-lattices inside E-valued, finite
dimensional p-adic Galois representation of G, becoming semi-stable over K and with
Hodge-Tate weights in {—r,0} (cf. [EGHI3]|, Section 3.1). This functor establishes an anti-
equivalence of categories if r < p — 1 (cf. [EGHI3|, Proposition 3.1.4, building on work of
Liu [Liu08]).

2.2.2. p-adic Hodge theory: preliminaries in characteristic p. The residual Breuil
ring § &' (k ®r, IF)[u]/(u?) is equipped with an action of Gal(K/Q,) by k ®p, F-semilinear
automorphisms. Explicitly if g € Gal(K/Q,) and a € k ®F, F, we have

glau) = (g 0)(w=(9) ® Lu
where g - a denotes the natural Gal(K/Q,) action on k ®p, F.

We recall that S is equipped with an k ®r, F-linear derivation N defined by N(u) = —u
and with a semilinear Frobenius ¢ defined by u — u? (semilinear with respect to the absolute
Frobenius on k ®p, F).

Fix r € {0,...,p— 2} and let S
quadruple (M, Fil" M, ¢,., N) where

(i) M is a finitely generated S-module which is free over Si;
(ii) Fil" M is a S-submodule of M, verifying u®"M C Fil" M;
(iii) the morphism ¢, : Fil" M — M is p-semilinear and the associated fibered product
S Qk®p, F Fil" M — M is surjective;
(iv) the operator N : M — M is k ®p, F-linear and satisfies the following properties:
(a) N(P(u)z) = P(u)N(x) + N(P(u))z for all z € M, P(u) € S;
(b) u¢N(Fil" M) C Fil" M;
(¢) @r(u®N(x)) = N(pr(2)) for all z € Fil" M.
A morphism of Breuil modules is defined as an S-linear morphism which is compatible, in
the evident sense, with the additional structures (monodromy, Frobenius, filtration).

def k[u]/u®?. A Breuil module over F is the datum of a

As above, we let K’ € {Q,, Ko}. A descent data relative to K’ on a Breuil module M is
the datum of an action of Gal(K/K") on M by F-linear automorphisms which are semilinear
with respect to the residual Galois action on S and which are compatible, in the evident
sense, with the additional structures on M. We write F-BrMod;4 to denote the category of
Breuil modules over F with descent data to K.

We recall that we have an exact, faithful, contravariant functor

T :F-BrModgy — Repp(Gk-)
M = TL(M) = Hom(M, A)
where A is a certain period ring (cf. [EGHI3], Section 3.2 building on [Bre99a], Section 2.2;
see also [HLMI17], appendix A).

The functor T respects the rank on both sides, i.e. dimp T3 (M) = rankg M (cf. [Carll],
Théoréme 4.2.4 and the Remarque following it, see also [EGH13] Lemma 3.2.2)

We have a natural compatibility between strongly divisible lattices and Breuil modules:

Proposition 2.10. Let M be an object in Og-Modj,. Then M ®g S/(wg,Fil? S) is an
object in F-BrMod}4 in a natural way and one has a natural isomorphism:

TSN (M) @0, F = TL(M ®5 5/ (wp, Fil’S)).
Proof. This is contained in [EGHI13], Section 3.2 (Lemma 3.2.2 and Definition 3.2.8). O
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In the rest of this paper we will be mainly interested in the covariant version of the previ-
ous functors toward Galois representations. For this reason we define T § " Op-Modyy —
Repg;t’[fr’ol (Gk) and TZ, : F-BrMod}; — Repp(Gk/) via

! N © * KA v T T © * T
TGN (T 0) ee, TLO0 S (T00) 0w

(where we write @V to denote the usual linear dual for an F-linear space e).

We remark that this definition is compatible with the notion of duality on Breuil and
strongly divisible modules as defined in [Car05] and [Carll], namely T:t’Q” (M*) = TS” (M)
and Tg (M) = Tg (M*).

We recall the crucial notion of type associated to a Breuil module.

Definition 2.11. Let n € N and let (ag,...,an,—1) € Z"™ be an n-tuple. A rank n
Breuil module M € F-BrModl}, is of (framed) type w @ --- @ we' ™" if M has an S-basis
(egy ..., en—1) such that ge; = (w%(g) ® 1)e; for all i and all g € Gal(K/Ky). We call such
a basis a framed basis of M.

We also say that (fo, ..., fn_1) is a framed system of generators of Fil" M if (fo,..., fn—1)
is a system of S-generators for Fil" M and gf; = (wgla" (9) ® 1)f; for all ¢ and all g €

A key tool in local to global compatibility is that the inertial type on a Breuil module M
is closely related to the Weil-Deligne representation associated to a potentially crystalline
lift of TZ, (M).

Proposition 2.12. Let M be an object in Og-Modly, and let M Y Mwg S/(wg, Fil? S) be
the Breuil module associated to M via the base change S — S.
Assume that TgP’T(M) has inertial type @?:_Olw;i. Then the Breuil module M is of type

@?;Olw;;; and Fil" M admits a framed system of generators.

Proof. This can be spelled out from, e.g. [EGH13], Section 3.3 (proof of Theorem 3.3.13).
See also [HLM17], Lemma 2.4.8. O

2.2.3. Comparison between Breuil and Fontaine-Laffaille modules. We now recall
the following categories of étale g-modules, first introduced by Fontaine ([Fon90]).

Let k((p)) be the field of norms associated to (Ko, p). In particular, p is identified with
a sequence (pp), € (@p)N verifying p? = p,—1 for all n and pg = —p. We define the
category (¢, F @g, k((p)))-Mod of étale (¢, F @r, k((p)))-modules as the category of free
F®r, k((p))-modules of finite rank © endowed with a semilinear map ¢ : ® — ® (semilinear
with respect to the Frobenius on k((p))) and inducing an isomorphism ¢*® — D (with
obvious morphisms between objects). a

By work of Fontaine [Fon90], we have an anti-equivalence

((va ®IFP k((ﬂ))) -Mod ;> Rep]F(G(Ko)oo)
® +—— Hom (@,k((}z))sep) ,

where (KO)OO d:Cf UnGNKO(pn>'
Let us consider w % ¢/—p € K. We can fix a sequence (), € (@p)N which is
compatible with the norm maps K(w,+1) = K(wy,) such that wt = p, for all n € N (cf.

[Breld], Appendix A). By letting Koo de UnenK (@,), we have a canonical isomorphism
Gal(Kw/(Kp)oo) = Gal(K/Kp) and we will identify w,, as a character on Gal(K /(Kp)oo)-
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The field of norms k((w)) associated to (K, w) is then endowed with a residual action of
Gal(K oo /(Kp)oo), which is completely determined by §(w) = w(g)w.

We can therefore define the category (¢, F ®r, k((@)))-9M0odqq of étale (¢, F ®r, k((z)))-
modules with descent data: an object ® is defined in the analogous, evident way as for
the category (o, F ®F, k((p)))-9M00, but we moreover require that ® is endowed with a
semilinear action of Gal(Ko/(Kp)oo) (semilinear with respect to the residual action on
F®r,k((=)), where IF is endowed with the trivial Gal(K o /(Ko)oo)-action) and the Frobenius
v is Gal(K o /(K)o )-equivariant.

From [HLMI17], Appendix A.3 (which builds on the classical result of Fontaine) we have
an anti-equivalence

(¢.F @5, k(@) -Modaa  — Reps(Gxy)..)
9 ~— Hom (D, k(@)*").

The main result concerning the relations between the various categories and functors
introduced so far is summarized by the following proposition ([HLMI7], Proposition 2.2.1).

Proposition 2.13. There exist faithful functors
Mi((z)) - F-BrModjq — (. F @z, k((@))) -Modaa

and
F:F-FLOP2 5 (0, F @p, k((p))) -MMod

fitting in the following commutative diagram:

(2.2.1) F-BrMod),, ) (¢.F @r, k((w))) -Modaq
- Hom(—,k((@))**”
Repg(Gre,) ——=— Repp(G ). ) — @ k(=)
Fews Hom (—,k((p))™
F-F£0»~2 (¢.F @, k((p))) -Dod

F

*

where the descent data is relative to Ky and the functor Res o T7 .. is fully faithful.

The functors My((w)), J are defined in [HLMI7], Appendix A, building on the classical
work of Breuil [Bre99b| and Caruso-Liu [CL09).

Corollary 2.14. Let r < p — 2 and let M, M be objects in F-BrMod}; and F-gc0r=2
respectively. Assume that T (M) is Fontaine-Laffaille. If

Miy((z)) (M) = F(M) @p(p)) k(@)
then one has an isomorphism of Gk, -representations

T:t (M) = T:ris(M)'
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2.2.4. Linear algebra with descent data. We recall here some formalism on linear alge-
bra with descent data which was introduced in [HLMI7]. In what follows we fix a residual
n—1, a;

Galois type 7 : Iy, — GL,(F), with a framing 7 = @] 5w}

Definition 2.15. Let M € F-BrModj, be of type @/ Jw%. Let ¢ et (e0,---,en_1) be a
framed basis for M and f ef (fo,---» fn—1) a framed system of generators for Fil” M.
The matriz of the ﬁlt;ation, with respect to e, f, is the element Mat,, ;(Fil" M) € M, (S)
verifying
f =e-Mat, ;(Fil" M).

Similarly, we define the matriz of the Frobenius with respect to e, f as the element

Mat,, r(¢r) € GLy(S) characterized by

@r(f) = e Mate, ¢ (o).

As we require e, f to be compatible with the framing, the coefficients in the matrix of
the filtration verify important additional properties:

(Mate,s (FiI"30) € (S) 10, o,

3
2% Wy

Concretely, one has (Matg f(Fil" 3\/[)) e ulP'ai—ailg, - where for any @ € Z we define
- irj

[z] € {0,...,e =1} by [z] = a; — a; mod e and s ; € (5) , =k @, Flu]/(u?).

We can therefore introduce the subspace M2 (S) of “matrices with framed type 77

Definition 2.16. Let 7 be a framed tame Galois type.
The space M(S) is defined as

MB(3) d:ef{v € My(S), Vi € (8) oo forall 0<i,j <n— 1}.

Similarly, we set
GLE(S) € GL,.(S) n MY (5)

which is a subgroup in GL,,(S).

As T is a residual Galois type, there exists an element w= € &, such that gf, ;) =
(wed ® 1) fr(j) for all g € Gal(K/Ky) and 0 < j < n— 1. Moreover as ¢,(f;) is a w’
eigenvector for the residual Galois action we deduce that

Mat, ¢ (Fil" M) - wr € ME(S),  Mat, s(¢,) € GL, (S)

where we used the same notation wr for the permutation matrix associated to ws.
Given A,B € MP(S) and z € (S) Lo We write , with a slight abuse of notation,

A= B modx
meaning that there exists an element C' € MY (S) such that A = B + 2C.

Lemma 2.17. Let M be a Breuil module of framed type @”_Olw‘” and let e, f be a framed

basis for M and a framed system of generators for Fil" M r;spectively.
Let V¥ Mat, ;(Fil" M) € M, (S) and A 2 Mat r(¢r) € GLE(S) be the matrices for
the filtration and the Frobenius action respectively.
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Then there exists a basis e for My, () (M*), framed with respect to the type @?golw;pflai ,
such that the Frobenius action is described by

Mate(6) = 7 (37)" € Mo (F @, k)

where V, A are lifts of V, A in M, (F ®r, k[[@]]) via the reduction morphism F @, k[[w]] —
Sy and (Matg((é))ij € (F ®r, k[[@]])wp—lai_a..

J

Proof. This is Lemma 2.2.6 in [HLMI7] O

Lemma 2.18. Let M € F-F£%P~% pe g rank n Fontaine-Laffaille module in parallel Hodge-
Tate weights 0 < mg < -+ < my_1 < p—2 (counted with multiplicity).

Let e = (€py...,en-1) be a k ®r, F basis for M;, compatible with the Hodge filtration
Fil*M and let F € M, (k ®r, F) be the associated matriz of the Frobenius ¢q : gr® M — M

There exists a basis ¢ for 9 f F(M) such that the Frobenius ¢ on M is described by
Mat,(¢) = Diag(p™°...p™"*)F.
Proof. This is Lemma 2.2.7 in [HLMI17]. O

Finally, we need a technical result which lets us keep track of base changes on Breuil
modules with descent data.

Lemma 2.19. Let M € F-BrMod'y, be of type ®"—;w® and let e, f be respectively a framed

=0 Y
basis for M and a framed system of generators for Fil” M.
def

Write V= Mat,,; (Fil" M), A = Mat, ;(p) to denote the matriz of the filtration and of
the Frobenius respectively. B
Assume that there exists an element V' € ME(S) such that

(22.2) A-V' =V - ws-Bmodu+),

for some B € GLY(S).
Then the element

&

/
[

efg' A

defines a framed basis on M. Moreover:
(i) V' - wz' = Mat, ¢ (Fil" M) is a matriz of the filtration with respect to €' and a
system f' of gener&tors for Fil" M;
(ii) @(B) is the matriz of the Frobenius with respect to €', f'.

Proof. Tt easily follows from Lemma 2.2.8 in [HLMI1T]. |

2.3. Classification of simple Breuil modules of rank 2. In what follows, we give a
slight improvement of a technical result in [HLMI7] (loc. cit., Lemma 2.3.2) concerning
the submodule structure of a given Breuil module M € F-BrModg, which will be crucial to
provide the classification of rank two irreducible objects in F-BrModg,. This classification
may be of independent interest.

By [Car1l], Théoréme 4.2.4 and the Remarque following it, the category F-BrMod}, is
additive and admits kernels and cokernels. In particular a complex

0—)3\/[0&3\/[133\/[2—)0
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in F-BrMod}, is ezact if the morphisms f; induce exact sequences on the underlying S-
modules M; and Fil"M; (5 € {0,1,2}). This endows F-BrMod]; with the structure of an
exact category.

We recall the definition of Breuil submodule:

Definition 2.20. Let M be an object in F-BrMod}j;. An S-submodule N C M is said to
be a Breuil submodule if N fulfills the following conditions:

(i) Nis an Si-direct summand in M;
(ii) N is stable under the descent data action and the monodromy operator on M;
(iii) the Frobenius ¢, on Fil” M restricts to a ¢-semilinear morphism N N Fil” M — N.

The importance of Definition [2.20]is explained in the following two propositions.

Lemma 2.21 ([HLMI17], Lemma 2.3.2). Let

0—>M1i>M—>M2—>O

be an eract sequence in F-BrMod},. Then the S-module f (M) is a Breuil submodule of
M.

Conversely if M is an object in F-BrMod}y and N C M is a Breuil submodule of M, the
pair (N, Fil' N & Fil" M N N) with the induced structures is an object of F-BrMody, in a
natural way and the complex

0->N—->M-—=>M/N=0

is an exact sequence in F-BrMody,.
In particular, if N is a Breuil submodule in M, then N is an S-direct summand of M.

Recall that we have a faithful, covariant functor Tf; : F-BrModgy — Repp(Gq,) (cf.
Section [2.2.2))

Proposition 2.22 ([HLMI7], Proposition 2.3.5). Let K’ € {Ko,Qp}. With the above notion
of exact sequence, the category F-BrMod), is an ezxact category in the sense of [Kel90] and
TZ, is an exact functor. Moreover, if M an object in F-BrMody, the functor TL, induces an
order preserving bijection

© : {Breuil submodules in M} — {Gg subrepresentations of TL (M)}

sending N C M to the image of Tt (N) — TL (M) and canonically identifying ©(M)/O(N)
with Tg (M) /TE (N).

We now establish the main result of this section, namely the complete classification of

rank 2 Breuil modules with descent data of niveau 2 relative to QQ,. We start with a
preliminary lemma:

Lemma 2.23. Let e =p* —1, Ko = Qu2, K = Ko(/=p), and S = (Fp2 @p, F)[u]/u?. Let
M € F-BrMody, be a rank two Breuil module, with descent data relative to Ky. Assume
that T (M)|r,, = witt @ wg(rﬂ) and the integers r,s € N satisfy n(p+ 1)+ (s +1) <
r+1<(n+1)(p+1)—(s+1) for somen € Z.

Then we have a decomposition of Breuil modules M = My &M; where TS (Mk)|1,, = whtt

and T3, (M) |1, = wi" .

Note that the numerical assumption on r, s implies s < %.
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Proof. By Proposition there exist Breuil submodules My and M; in M such that
T3 (M) |1, = w5 and T3 (M) 1, ~ WP Let us write My = Smy, (resp. My = Smy)

with descent data g(my) = Zizo(wg(g)ki ® 1)my (resp. g(my) = Zgzo(wg(g)li ® 1)my),
filtration Fil®* M, = <(u"ﬂeo + u"lel)mk> (resp. Fil*M; = <(usﬂeo + uslel)ml>), Frobenius
map s : (u™0eq + uter)my — Amy, (resp. @5 @ (u*0eg + uler)my — nmy), and monodromy
operator N : my — 0 (resp. N : m; — 0). Note that the integers k;, l;, r;, s; satisfy
r; = pkiy1 — k; mod (e) and s; = pli41 — I; mod e (cf. [EGH13], Lemma 3.3.2).

Assume first that {my,m;} is linearly independent in M over S. By comparing the
cardinalities, it is clear that S(my,m;) = M, and so it is obvious that the Frobenius map
s and the monodromy operator N on M are immediately determined by the ones on My
and M;. We have Fil°M D <(u”’eo + uter)my, (u0eg + uslel)ml>. As the Frobenius on
Fil® M, Fil®* M; is induced from the Frobenius on Fil®* M, and since the Frobenius acts via
A, m € Fp2®p, Fon Fil® M, Fil® M;, the previous inclusion is an equality. Hence, the Breuil
module M is a direct sum of these two Breuil submodules in the obvious way.

We now check that {my,m;} is linearly independent over S. Assume on the contrary
that o'm; = B'my for o/, € S\ {0}. Then the minimal degree of o/ and 3’ should
be the same (if not, My and M; would not have the same cardinality): more precisely,
wloegmy = u'Begmy, v aeimy = u! Beymy, or both, for a, 8 € S™ and for 1,7 € [0,ep).
Say, u'aegmy, = u'Begm;. Then this immediately implies that kg = lp mod (e). We check
that this violates our numerical assumption on r and s. Since pro + 1 = 0 mod (e) and
pso + s1 = 0 mod (e), we let pro + 1 = ae and psg + s1 = be for 0 < a,b < s(p+ 1). Since
T (M) 1, =~ wi ™ and T3 (M) 1, =~ wg(r+1)7 we also have

ko + pa =r + 1 mod (e);
lo + pb=p(r+ 1) mod (e).

Subtracting the first one from the second one, (p — 1)(r + 1) = p(b — a) mod (e) and so we
may let b—a=¢(p—1),and —(s+1) <e< s+ 1since s <p—1. Hence, r + 1 = —e mod
(p+1) and so we may let r+1 = —e+0(p+1) for 6 € Z. Our assumption on r and s implies
that n(p+1) <d(p+1)=r+1+e<(n+1)(p+ 1), which is obviously impossible. O

Proposition 2.24. Lete =p?—1, Ko = Qp2, K = Ko(/=p), and S = (Fp2 ®r, F)[u] /u?.
We let x and y be integers with x #y mod (e) and M € F-BrMod3, be a Breuil module of
type T ~ wE BwY, such that T, (M) is an absolutely irreducible 2-dimensional representation
of G, i-e, TG (M)|1,, =~ witt Eng(TH). Assume further that n(p+ 1)+ (s+1) <r+1<
mn+1D(p+1)—(s+1) for somen € Z.

Then there exists a framed basis ¢ = (eg,ey) for M and a framed system of generators
f = (fpxs fpy) for Fil? M such that

T
o Mat s (Fil* M) = (ugy UO ) where 0 < 1y, 1y < es with ry = py —x mod (e) and
ry =pr —y mod (e);

Matgai(@S) = (Aw U > where Ay, Ay € (Fp2 ®r, F)*;

o Mat,(§) = (“3(90) @l " (;) . 1) for all g € G(K/Ko);
y—0=

o

o)

=
?an
—

=
~
~
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Proof. By Lemma -, we deduce that M has a basis e = (my,m;) over S, and a system

of generators f = (fx, fi) for Fil2 M such that:

s _ {u"eq+ute; 0

o Matgi(Fll M) = 0 wOey + utey
pki—1 — k; mod (e) and s; = pl;_1 — I; mod (e);

o Mat,, r(ps) = (3 2) where A\, n € (Fp> ®F, F)*;

) where 0 < r;, s; < es with r; =

5 — (Lizo(@E (9) @ Ve 0 .
o Mat.(g) = ( 0 0 s (@l (g) @ 1)e ) for all g € G(K/Ky);
)

o N(my)=0= N(my).

Let o be the unique lift in G(K/Q,) of the arithmetic Frobenius in G(K(/Q)) such that
o(/—p) = </—p, and let us try to recover the action of o on M. Let 6(my) = agmi + aymy
and 6(m;) = Bemy + Bimy where ., B« € S. The identity ogo~! = g? for g € G(K/Ky)
gives rise to the following two identities: from the equation 6§(msy) = §P&(my,)

[(WE (9) ® D)er + (Wi () © Deo] (army + apmy) =

3" () [(WE™ (9) @ 1eo + (W (9) ® Ve mu+

9" (a)[(WE (9) ® Deo + (Wi (9) ® L)ea)my,

and from the equation 6g(m;) = g6 (my)

(W2 (g) @ 1)er + (W (g) @ 1)e) (Bemx + Bimy) =
7" (Be) (W2 (9) ® Deg + (W2 (9) @ 1)er]mu+
3 (B) (WP (9) ® 1)eg + (wE (9) @ Dey]my.

Comparing the coefficients in these two identities, we have the following relations of descent
data:

Q) k1 = ag + ko mod (e) and egay, € egu®® <§0) if egay, # 0;
ko = a1 + k1 mod (e) and ejay € equ®(Sp)*  if e;ay # 0,
(i) k1 = b + lpmod (e) and egay € egu® (:0)>< if egay # 0;
ko = by + I3 mod (e) and ey € equbt (So)*  if eyoq # 0,
(i) Iy = ¢+ komod (e) and oSk € egu® (SO)X if egBx # 0;
lo =c1+ kimod (e) and e1 8k € equ(Sg)* if e18; # 0,

(iv) Iy =dy + lpmod (e) and epf; € eou (So) if eg8; # 0;
lo=di +11mod (e) and e13; € equ® (Sp)*  if e13 # 0.
It is immediate that ag + a1 = Omod (e), by + ¢1 = 0mod (e), b1 + co = Omod (e), and
dp + d1 = 0mod (e).
Since Fil" M is stable under the action of o, we have
o(Fil" M) = ((u™ey +u" eg) (arpmy + aymy), (u™er + u eo) (Bumu, + Bimy))
C Fil" M = ((u™eg + u" e1)mu, (u*eq + u®er)my),

which immediately implies the following inequalities:

(a) 1 +ag>rg and 19 + a1 > 71

(b) 71 4+ bg > so and rg + by > sq;
(c) s14+co>rgand sg+ ¢y > ry;
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(d) s1+do>sp and sg+dy > 5.

Since 02 = 1, we have

(1 0) _ (aka(ak)Jrﬂk-U(Oél) OékU(ﬁr)JrﬂkU(ﬁz))
ao(ox) + fio(au) o (Br) + Bio(B) )

0 1
From the (1,1)- and (2, 2)-entries, we have the equations:
(2.3.1) aro(ar) = fio(By) and Bro (o) = aio(Br),

and so at least one of aio(ay) and Sro(qy) are in gox. (Note that o fixes the quantities in
@31).)

Assume that ago(ag) € ?;, i.e., ag+a; = 0. By the identity , do+d; = 0. Hence,
we have ag = a; = dg = d; = 0. Then, by (i) and (iv), ko = k1 mod (e) and Iy = I; mod (e),
and we also have rg = r; and sp = s; by (a) and (d). But this is impossible since we
assume that the Breuil submodules Smy, and Sm; correspond to characters of niveau 2.
Hence, apo(ak) € ?5, i.e., either ayo(ax) =0 or ag +a; > 0.

Assume now that Sro(q;) € ?;, i.e., bg+c1 =0=>b1 +¢y. Thus, bg = b1 =cg=c; = 0.
Then, by (ii) and (iii), kg = Iy mod (e) and k; = |y mod (e), and we also have ry = s; and
r1 = so by (b) and (c). We let x = ko, y = lo, 7z = ro, and r, = so. Then, by change of
basis: e; = egmy+e1m; and e, = e;my +egm;, we get the description in the statement. [J

The following lemma lets us specialize the result of Proposition to a niveau 1 descent
data:

Lemma 2.25. Fori € {1,2}, lete; Ypio1, K ¥ Qi (/=p) and S; d:efIF®mp]Fpi [u]/(uPe).
Let v : S1 — Sy be the morphism defined by the embedding F, < Fp2 and u > uP™th.
If M € F-BrMod}, is a Breuil module of niveau one of niveau one type, then M ®3, . Sy

has a natural structure of a Breuil module of niveau 2 of niveau two type and the functor
M= M®g, , S2 is fully faithful. Moreover, one has T (M) = T5 (M @3, , S2)

Proof. Just for the duration of this proof, let us write ]F—BrModfjg to denote the category of
Breuil modules with F-coefficients and descent data from K; to Q,.
The exact sequence

1 — Gal(Ky/K,) — Gal(K,/Q,) — CGal(K1/Q,) — 0

shows that any object in F—BrModZﬁ is naturally endowed, by inflation, with a niveau two de-
scent datum. In particular, the natural morphism S; < S factors through (:Sy)G21(K2/K1).
by the explicit definition of the descent data action on Ss, one checks that the previous
factorization is indeed a isomorphism: §; —— (Sy)Gal(K2/K1),

Hence, by endowing M®g, Sa with the diagonal residual action of Gal(K2/Q,), we deduce
that the natural morphism M — M ®z, So factors through a (functorial) isomorphism
M = (M ®3, Sp)Gal(K2/K1) Tt follows that the functor M — M ®s3, S, defined on
F-BrMody;; is fully faithful,

As for the last statement, we recall the functor T : F—BrModjﬁ — Galp(Gg,) is defined
by M s Hom(M, Ag, ®r,; F), where Ag, = (]Fpi ® Og /p) (X) is a certain a period ring

described in [Carll], Section 2.1 (where is simply noted as A, as in loc. cit. the extension
i /Fp has been fixed).
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More importantly, one has A, = Ay /p ®F ; (uy Fps [u] /uc? (cf. [HLMIT], Section A.3).
By virtue of the fully faithfulness of M — M ®3, Sy, the last statement follows once we
show that

Ak, ®§1 ?2 — Ak,

is an isomorphism, which can be verified by a direct computation on the definition of A K-
|

‘We deduce:

Corollary 2.26. Lete = p—1, K = Q,(x/=p), and S = Flu]/u?. We also let x and
y be integers with x #Z y mod (e), and let M € F-BrModjy be a Breuil module of type
T~ w* @ wY such that T, (M) is an absolutely irreducible 2-dimensional representation of
Ga,, i-e, T5(M)|1,, ~wy™ & WPV Assume further that n(p+ 1)+ (s+1) <r+1 <
(n+1)(p+1)—(s+1) for somen € Z.

Then there exists a framed basis e = (eg,ey) for M and a framed system of generators

f = (fu, fy) for Fi* M such that

o Mat,,(Fil* M) = (;2 “0

ry =2 —y mod (e);

I) where 0 < 1y, 1y < es with v, =y —x mod (e) and

o Matef(cpé) = ()\m f) where Az, Ay € F*;
o Mat,( ( y(g(; @ 1) forall g € G(K/Qp);
o N(ew =VU= (
L+r pry+ra
o TS, (M )|I £p+1)z+p e ®w (p+1)y+p ——

Proof. Using the notation of Lemma , it suffices to apply Proposition to M @3z, S,
and then take the Gal(K»/K1)-fixed part. O

2.4. Crystalline lifts. We end this section with certain results for crystalline lifts of py.
The results in this subsection will be used in Section [6.5]

Proposition 2.27. Let 5, be as in Definition [2.4 Then p, admits a crystalline lift p :
Gq, — GL3(Qp) such that pla, , s ordinary crystalline with parallel Hodge-Tate weights
{az + 1,a1 + 1,a0 + 1}. In particular p is potentially diagonalizable.

Moreover, if FL(p,) = [0 : 1] then p, admits a crystalline lift with Hodge-Tate weights
{p+ap+1,a2+1,a1}.

Finally if py is split then then p, admits further crystalline lift with Hodge-Tate weights
{p+ai,p+ao, a2 +1}.

The proof of Proposition will occupy the reminder of this section.

Let o, € Z. By [GSIlal Lemma 6.2, there is a crystalline character £(4,g) : G@p2 —
O}, unique up to unramified twist such that HT o, (g(q,5)) = o, HTU1 (€(a,)) = B; such a

character verifies moreover Z(a,4)|1,, = w?"’pﬁ. If Via,p) el Ind E(a,p) then Vi, 5) o,

F = Ind, @p wg‘ +pb up to an unramified twist and we have the following particular case of
[GHS], Corollary 7.1.3:
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Lemma 2.28. The representation Vi, g)lc, , s crystalline with parallel Hodge-Tate weights
{a, 8}

Proof. Indeed, we have ‘/(067,6)|GQPQ = E(a,B) (&) 55(11)75), where we have defined the GQPZ'

character 5&) 8) by g = €(a, 5)(Fr0b; L g-Frob,) where Frob,, denotes a geometric Frobenius.

By [GHS], Lemma 7.1.2 we have that HT,, (g&)ﬁ)) = j, HT,, (5&)5)) = «. The represent-
ation Viq,g)laq , 1s crystalline, as the crystalline property is insensitive to unramified base

change. O

If v € Z we define the space of O g-valued crystalline extensions EXt(le[G @p]’cris(V(m B8),€p)
. . 1
as the inverse image (under base change O — E) of EXtE[GQp],cris(V(a,ﬁ) ®op F,e) R0, E).
By an immediate application of the Hochschild-Serre spectral sequence and since the
crystalline condition is insensitive with respect to restriction to unramified base change, we
have the following commutative diagram:

1 ~ 1 (1) G

(2.4.1) EXtOE[G@p],cii\sa/(a,ﬁ%EZ) EE— (EXtOE[Gsz],cris(E(a,ﬁ) ® 5(a,5)75(7ﬁ)) ’
1 ~ 1 1) G
Exto,6q,)(Via,8),€5) —— (EXtoE[G@p2](5(a,5) D gy Erm))

F o * = 1 + + +1)v\ G
ExtF[GQP] (IHdGQP2 w;‘ Pﬁ, UJ"/) E— ( EXtF[G@p2 ] (wg‘ B D WQB ;Doz’ wép )V)) 2
pa

where the bottom vertical arrows are the mod w g-reduction maps and Gy & Gal(Qp2/Qy).

The following technical lemma is a simple manipulation with Fontaine-Laffaille modules.

. def def .
In its statement, we set eg = €ogs €1 = €590Frob, for the standard idempotent elements of

F,2 ®r, F, following the notation of Section

Lemma 2.29. Let M € F-F£°?~2 pe o Fontaine-Laffaille module over F, ®r, F, with
Hodge-Tate weghts (8, ,). Assume that

0 )\1 x
(242) Matf(¢.) = )\() 0 Yy
a 0 0 X

in a basis f = (fo, f1, f2) which is compatible with the Hodge filtration on M. Then if we
write M’ for the induced Breuil module F,2 ®p, M, we have two Fontaine-Laffaille quotients
M' — N, M’ — NO of rank two over F,2 ®@p, F. FExplicitly, we have N = Ney © Ne;
where Ne; are F-linear spaces, with Hodge-Tate weights («,) and (B,v) fori =0 andi =1
respectively, and

Mat(Ne; 2 Neg) = <’\O° i’) & Mat(Neg 2 Ney) = <A01 f)
2 2

We have a similar description for N = NWeg @ NWe, -

Mat(N ey % NWey) = <>(\)1 ;) & Mat(NWeg 2 NWep) = <>(\)0 )\y)
2 2
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and NMey, NWe; have Hodge- Tate weights (3,7), (o, ) respectively.

Proof. This is elementary. Let f = (fo, f1, f2) be a basis on M, compatible with the Hodge
filtration, such that the matrix of the Frobenius on M is given by (2.4.2)). In particular, we
have
M if 1< p
qitl 1, ) (1, fop if Bli<a
FEEM =90 i a<i<n
0

if >
Then, considering the change of basis we get
dof €y €1 0
1o f=01®fo,1®fi,10f) (e e O
0 0 1
we obtain
A1eg + Ager 0 Teg + yer
Mat1®i(¢.) = 0 )\060 + /\161 Yyeo + xeq
0 0 Ao

We define N to be the Fontaine-Laffaille quotient characterized by
ker(M' — N) = ((1® fo) - €0+ (1 ® f1) - €1).

This is well-defined since the kernel is a rank one submodule. Note that, by construction,
we have

M'e _ . .
ey =Neo if i<a
' Fil™H M'eq + (19 fo) - eo)
Fil* ! Nep & 0 0) €0 _ ) (1®f2)e0,(1®f0)€0) .
1 0 (1® fo) - eo) (1 /0)-e0) if a<i<ny
0 if  i>n
M'e . i
Tamen = Ner i 1<p
; Fil'™ M’ey + (1 ® f1) - e1)
F.l’LJrl N d:ef = (1R f1)-e1,(1Qf2)-€e1) . X
1 " (1@ f1) - er) (@f)e) if g<i<ny
0 it i>.

Hence, N has Hodge-Tate weights HT,, = {a, v} and HT s 0rvob, = {8,7}-
Similarly, one takes N to be the Fontaine-Laffaille quotient of M characterized by

ker(M' — NWY = ((1® fo) - e1 + (1@ f1) - eo).
This is well-defined by the same reason as N. ([

We deduce from Lemma [2.29}

Lemma 2.30. Assume that p, is as in Definition . Let M € F-FL£°7~2 pe the associated
Fontaine-Laffaille module and fix a basis on it in such a way that Mat£(¢.) has the form
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, with moreover z = 0. Let T be the image of py|a, , via the projection map
p

(24.3) Exthig, ) (wf" TP g oot Dipat  prniet)
P

|

Brthg,,) (6" 010D, Wfp VD).

Then T has a crystalline lift with Hodge-Tate weights HT,, = {az + 1,a1 + 1}, HT,, =
{a2 +1,a0 + 1}.

If moreover FL(py) = [0 : 1] then 7 has also a crystalline lift with Hodge-Tate weights
HT,, = {CLQ + 1,@1}, HT,, = {p—|— apg+1,as + 1}.

If finally py is split then T admits further a crystalline lift with the following Hodge-Tate
weights HT;, = {p + a1,a2 + 1}, HT,, = {p + ap, a2 + 1}.

Proof. We can assume that ag = —1 and set ¢ Lef as—ag— 1,7 Lef ay —ag — 1.

By Lemma [2.29| we see that the Fontaine-Laffaille module N = Ney + Ne; associated
to 7 has Hodge-Tate weights HT,,(Neg) = {r + 1,c¢ + 1}, HT,,(Ne1) = {0,c + 1} and
Frobenius described by

-1
(2.4.4) Mat(Ne; % Neg) = (#8 y1>
Ho
-1
(245) Mat(Neo g N@l) = (Mé {1>
Ho

We now use the explicit description of the set of modular weights for 7, given in [Brel4]
pag. 26. Following the notation in loc. cit. we deduce from that the weight
(c—r—1,¢) ®@det"™" (which would be written as o(. ) (-+1,0) in the notation of [GLSIH],
Definition 4.1.1) is always modular, while the weight (¢ — r,p — 2 — ¢) ® det" P+ (ie.
O(c,p—1),(r,e4+1) in the notation of [GLS15]) is modular when x = 0. For sake of completeness,
the weight (p—2—c+r,p—3—0¢)® deteTiHPletD) o O(p—14r,p—2),(c+1,c+1) i the notation
of [GLS15] is modular when = y = 0. We now can globalize 7: by [GK14], Corollary
A.3 there is a totally real field 't such that F,” = Q, for all places v|p, and a RAESDC
automorphic representation 7 of GLa(A g+ ) such that the mod p reduction of the associated
p-adic Galois representation 7, ,(7) : Gp+ — GLo(F) (cf. [BLGGT14] §2.1) is absolutely
irreducible (modular) and verifies 7, ()| _, = 7 for all places v[p. The conclusion follows

from [GLS15], Theorem A. O

Proof of Proposition[2.27. The existence of the crystalline lifts as in the statement of Propo-

sition follows now from Lemma and the diagram (2.4.1). More precisely, let

7@ 1M be the image of p, in ExtIIF[G@ R (wéal+1)+p(a°+1), wépﬂ)(aﬁl)) via the isomor-

phism in the bottom line of the diagram ([2.4.1). By Lemma 7 admits a crystalline
lift 7 : Gg, — GLy(Op) with Hodge-Tate weights HT,, = {a,7}, HT,, = {8,7}
where the integers «, 3,y are suitably specialized according to p, (e.g. specialized at
a=a+1, 8 =a9+1, v =ay+ 1 for the first case of Proposition [2.27). By letting
7 . Gq,. — GL2(Op) be defined by 7D (g) & 7(Frob, ! g Frob,) we see that 7(!) is a
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crystalline lift of 7(1) with Hodge-Tate weights HT,, = {a,~}, HT,, = {8,7}. By con-
struction 7 @ 7)) ¢ ExtéE[GQpﬂ’ms(s(aﬁ) ® 5&)”6),8(%7)) is fixed under the Gs-action on
the Ext!-space. Its inverse image via the isomorphism in the first line of the diagram
provides the required crystalline lift.

Moreover, any element of EXt}E[GQP],cris(V(a,B) ®op F,e)) becomes ordinary when re-
stricted to Gsza as it can be directly checked on the associated filtered ¢-module. O

Remark 2.31. The existence of the crystalline lift for p, with Hodge-Tate weights {as+ a1+
1,a9 4+ 1} can be obtained in a more elementary way that avoids the integral p-adic Hodge

theory of [GLS15]. Indeed it is enough to prove that the first two vertical arrows in diagram
are isomorphisms, i.e. that any Galois extension of e, ) by €(q ) (resp. 6&)6)) is

automatically crystalline. To this aim note that if (ao,...,ar-1),(ag,...,a}_;) € 77 are
such that a; — o > 1 for all ¢, then we are in the setting of [Nak09], Lemma 4.2(1) and
Lemma 4.3(3), so that

. 1
dimp (EXtE[Gpr],Cris(g(a()y--waffl)’6((16,-“705}71))) =f

(cf. also loc. cit., Definition 2.4 and Remark 2.5). On the other hand, under the previous
hypotheses on «a; — o, we have also dimg (EXt};[G@pf](5(a0,...,af,1)7 5(a6,.~-,a},1))) = f hence

1 1
EXtE[Gpr],cris(e(amn-,af—l)’ 5(%7---@}_1)) = EXtE[G@pf}(5(ao,~.,af71)v 5(04(),...,04}_1))

(INak09], Proposition 2.15).

3. ELIMINATION OF (GALOIS TYPES

The aim of this section is to perform elimination of Galois types for a niveau 2, generic
representation p, : Gg, — GL3(FF) (cf. Definition , by means of integral p-adic Hodge
theory.

For K' € {Qp, Ko} we recall the category Modg™ (¢, N, K/K') of weakly admissi-
ble filtered (p, N, K/K', E)-modules (see e.g. [EGHI13], Section 3.1). We have a con-
travariant equivalence of categories D:,;K/ . RepB=*(Gx/) — Mod}y™ (o, N, K/K'), where
Rep®™"(G k) denotes the category of finite dimensional E-representations of G that be-
come semistable over K. If p € Reps (G ) has Hodge-Tate weights in {—r, 0}, we define
D" (p) € DI (¥ @),

The following result will be particularly useful to us:

Proposition 3.1. Let p : Gg, — GL3(Og) be a potentially semistable Galois representation,
becoming crystalline over K with Hodge- Tate weights in {—r,0}. Let M be a strongly divisible
Og-module in Og-Mody, such that TSP’T(JVE) ®o, E=p.

Then DRP’T(p) & JV[[%] ®@Sq, .50 Qp and and M has inertial type WD(p © e,")

WD(p)|1,, (where so: Sg, — Qp is the morphism defined by “u — 07).

|1@p =

~

Proof. The isomorphism D" (p) = M[1] ®sq, 50 Qp is proved in [EGHI3], proof of Propo-
sition 3.1.4.

As for the second part of the proposition, let us write WD(p)|1Qp =1 PP Yy, for the
inertial type associated to p.

By definition of type on a strongly divisible lattice JVE, we have to prove that there exists
a basis (e1,...,€,) of M such that g-&; = 1®x;(g)€; for all g € Gal(K/Kp) andi=1,...,n.
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For » = 1 this is proved in [GS1Ibh], Proposition 5.1 (note that the functors M —
T;Q“;”’T(J\/[)7 p Dg‘“’r(p) would be written as Tg’:rﬂ, Dg’:r+1(p) in loc. cit.). But the
proof in loc. cit. generalizes verbatim for higher Hodge-Tate weights. See also [EGHI3],
Proof of Proposition 3.3.1. ([l

Recall that the restriction functor py + Py, is not full. The following elementary
lemma shows that in our situation, the Fontaine-Laffaille invariant FL(p,) can be deduced
from ﬁO|GK0 if FL(pO) € {O, OO}

Lemma 3.2. Let p, be as in Deﬁnition and let F' € GL3(F) be the matriz describing
the Frobenius action on the associated Fontaine-Laffaille module as in .

Assume that the Fontaine-Laffaille module M’ associated to ﬁo|GK0 has parallel Hodge-
Tate weights {0,7 4+ 1,c+ 1} and Frobenius action described by

wor 0 N\ X
F < N 0 Y | e GLg(k ®]Fp F)
0 0 X

Then X =0 if and only if x =0, and Y = 0 if and only if y = 0.

Proof. In the given hypotheses, we have an isomorphism of Fontaine-Laffaille modules (in
parallel Hodge-Tate weights {0, + 1,c+ 1}) over k£ ®p, F. This means that there exists a
lower triangular matrix B € B°PP(k ®p, IF) such that

(3.0.1) B-F' - (p®1)(gr(B)) = F @, k,
where gr(B) € T(k ®p, F) is defined by (gr(B)),;, = (B);, for i = 0,1,2 and ¢ ® 1 denotes
the induced Frobenius automorphism on k ®p, F.

By an immediate computation we deduce that condition (3.0.1]) forces B to be diagonal.

In particular, there exists units o, 8, v € k ®p, F such that 1 ® z = ac(y)X and Bo(7)Y.
As the natural morphism F — k ®p, F is injective, the result follows. |

For the reminder of this section, we assume that ag = —1 and define ¢ def as —ag + 1,
r ay — ap — 1 (it is always possible to reduce to this case by twisting by w*(“”l)).

3.1. Elimination of Galois types of niveau 1. We start this subsection by recalling
the following (cf. [MPI17], Lemma 3.3): let 4,j, k be integers , and let p be a potentially
crystalline representation with Hodge-Tate weights {—2, —1,0} and of inertial type &' @
@&’ @ W* such that p§* ~ p**. Then we have the identity

(3.1.1) W det Bl = w( e

In this subsection, we fix e = p — 1 and K = Q,(y/—p). We also let S = Flu]/u? and
So = Fluf]/u?. Recall that by [m]; for an integer m we mean the unique integer in the
interval [0, e) congruent to m mod (e).

Proposition 3.3. Let M € F-BrModid be a Breuil module of type 7 = w?® & w® & wY such
that T2 (M)** = p5° and py C T2 (M), where py is the one-dimensional subrepresentation
of By Assume moreover that the submodule corresponding to py is of type w?.

Then there exists a framed basis e = (e, ez, ey) and a framed system of generators f for
Fil> M such that

r—z —z
u[ ]1 . 'Uy u[y ]1 c Vg

(3.1.2) Mat, s (Fi? M) = [ 0 0 u' ;
0 u'y 0
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[ u[mfz]l . 7]1 u[ylel . ny
(3.1.3) Mat, (p2) = | 0 Qy 0 ,
0 0 Qy

where ag, oy, o, € F* and vy, vy, 0g, 1y € So. Moreover, the tuple (z,y,2,73,7y,S) satisfies
one of the following properties:

(a:z=r+1—momod(p—1), y=0mod(p—1), z2=c+1—my mod(p—1), and

re = (—1)mg— (r+1—my);
Ty =1+ 1—myg;
s =Mma,

where mg, mg € {1,2} satisfy mo + mg = 3;
(b): z=r—momod(p—1), y=p—2mod(p—1), z2=c+1—my mod(p—1), and

re = (p—1)(mo+1) — (r+1—myp);
ry=({@—1)+(r+1—mp);
§ = M2,

where mg, ma € {0,1} satisfy mg +ma = 1.

Proof. Since py is an extension of a two-dimensional irreducible representation by a character
of niveau 1, M is also an extension of a simple Breuil module of rank 2 by a Breuil module
of rank 1 by Proposition Hence, it is immediate that the filtration and the Frobenius
map @9 of M are described as in (3.1.2]) and (3.1.3)) respectively, by using the classification
of simple Breuil modules of rank 2 in Corollary and the classification of simple Breuil
modules of rank 1 in [MP17], Lemma 3.1.

By Corollary We have r, =y — 2 mod e and ry = x — y mod e, 7, +ry = 0 mod e.
We let ry + 1y = ae for a € {0,1,2,3,4}. Again by Corollary we have

(p+1)x + pry +pa=r+1mod (p? — 1);
(3.1.4) (p+ 1)y +pry +pa = p(r+1) mod (p* — 1);
z+s=c+1mod(p-—1).

By the determinant condition , 3p+1)+(r+1)—p(ry+a)+plr+1)—p(ry+a)+
p+1)(c+1—-8)=(p+1)(c+1+7r+1)mod(p*—1). Hence, we get a + s = 3, and so
a € {1,2,3} since s € {0,1, 2}.

Via the equations we now write r, in terms of a and the inertial weights z, z,y.
We have (p+1)r, = (p+ 1)z —y) = (1 —p)(r + 1) — p(ry — 7y) mod (p*> —1). So
ry = —(p—1)(r+1) — p(ae — r,) mod (p* — 1). Solving this for r,, we get r, =7+ 1—a
mod (p+1). Welet ry, =r+1—a+e(p+1) for e € {0,1} (since 0 < ry, < 2e). Then
ry = ae—(r+1—a)—e(p+1). Moreover, by the equations , we also have z = r+1—a+e
mod e and y = e — € mod e. We let s = ms. Then we have a + mo = 3.

Assume that € = 0. If mg = 0, then ¢ = 3, and so r, = 3¢ — (r + 1 — 3) > 2¢e, which
contradicts r, € [0,2¢]. Hence, a,my € {1,2} and this gives rise to the case (a), letting
mo = a.

Assume that e = 1. If mg =2, thena=1,andsor, = (p—1) —r — (p+ 1) <0, which
contradicts r, € [0,2e]. Hence, my € {0,1} and a € {2,3}. Letting my = a — 2, this gives
rise to the case (b). O

Lemma 3.4. Keep the notation as in Proposition (in particular, recall the elements v,

and vy, in the matriz (3.1.9)) and let s = 1.

(i) If ry — [y — 2]1 > e then there is a framed basis for which v, = 0.
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(i) If ry — [x — z]1 > e then there is a framed basis for which v, = 0.

Proof. Since s = 1, we may assume that v,,v, € F. We only give a proof for (i), but one
can prove (ii) by the same argument.
Assume that v, # 0. Then the matrix (3.1.2) is column-equivalent to

0 ule—2l1 . vy wlv=2l g
urw+ef[y7z]1 0 u’= ;
0 u'v 0

which implies that

Fi? M ®5 5/u = w” @ w® @ w?,
since r, + e — [y — z]1 > 2e. But this is impossible unless * = z mod (p — 1). Note
that « Z z mod (p — 1) by Proposition since we are assuming that p, is generic (cf.

Definition . |
Lemma 3.5. Keep the notation as in Proposition[3.3 If
p(ly—zl1 +ry —se) > [z — 21 and p([x — z]1 + 72 — se) > [y — 2|1

then there is a framed basis such that n, = 0 = n, in the matriz . Moreover, this
change of basis does not affect the vanishing of v, and vy.

Proof. We let V be the matrix in (3.1.2) and Ag the matrix in (3.1.3). We also let

se x—zl1 | o/ Yy—z|1 .
u*®  ulr=?l vy, uly =21 !

Vi=120 0 u'
0 u'v 0
and
o u[CE*Z]I . 7]; u[yfz]l 7’;
Bl = 0 Oly 0
0 0 O
One can easily check that the equation
(3.1.5) Ay = Vo By

holds if and only if the following two equalities hold:

r—z / —2z|1+7, __ ,.setlz—=z / r—z .
OZZU[ h’l}y + U,[y 1 ./ny =u [ ]177$ + ayu[ ]1vy7

o ulv =y oyle=hdrey, useHy*z]ln; + agult= g,
Hence, the equation (3.1.5) holds true if we let v}, = ooz vg, v), = aya; vy,

ulr ==l = ylv=shtry=sen e G and ulv= iy = ylomehtremeey e g

Note that our assumption implies that [x — 2], +7, —se > 0 and [y — z]; + 7, —se > 0. Now
let us consider the new basis ¢’ def eAy. Then Vi = Mats s (Fil2 M) and A def »(By) =
Mat,/ i/(@g), where f is the system of generators given by the column vectors of V;. By

our hypothesis the (1, 2)-entry and (1, 3)-entry of A; can be written as follows:
@(U[x_z]ln;) — u[:c—z]lup([y—z]1+ry—se)—[a:—z]l@(ny)

and
(p(u[y%hn/y) — u[y*Zhup([z*Z]ﬁrz*se)*[y*Zh(p(nx)
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As p([y—=z]1+ry—se)—[z—z]1, p([x —z]1 +ry —se) —[y—z]1 > 0, by iterating the previous
procedure, we end up with a basis with the required properties. For the last statement, it
is obvious that v, = 0 (resp. v, = 0) if and only if v, = 0 (resp. v, = 0). O

Proposition 3.6. Keep the notation as in Proposz'tion and assume py = T2 (M).
(i) If s=1 in the case (a) and p, is non-split, then FL(p,) = [0: 1].
(ii) If s = 0 in the case (b), then py splits as a sum of a two-dimensional irreducible
representation and a character.

Proof. Assume that s = 1 in the case (a), Proposition ie., (mg,mg) = (1,2). Then
z=r—1mode y=0mode, z=cmode,r, =2—(r—1), 7, =r—1,and s = 1.
Clearly, [z — 2]y =e—c+ (r — 1) and [y — z]; = e — c¢. Then by Lemma [3.5 we can assume
v, = 0 in the matrix (3.1.2), and by the Lemma we can assume 7, = 0 = 7, in the
matrix . We can also assume that vy, € F as s = 1.

Let V be the matrix and A the matrix (3.1.3). By Proposition the ¢g-module

def

over F ®p, F,((w)) defined by M = Mp, ((o))(M*) is described by

a;lw® 0 0
(3.1.6) Mat(¢) = VH(A™Y)! = | a '@l -0, 0 oy lw"
0 alw 0

in an appropriate basis ¢ = (e, ¢,, ¢,). By considering the change of basis ¢/ = (@ e, " e, ¢,)
we have:

a;lge(chl) 0 0
Mate (@) = | oz to,m®tD) 0 !
0 a;lze(r—&-l) 0

We easily see that the ¢-module 9 is the base change via F ®r, F,((p)) — F ®r, F,((@))
of the ¢-module My over F @, Fy,((p)) described by

a;lg(c+1) 0 0
Mat(¢g) = a;lvy£(5+1) 0 a;l
0 al—lp(r—&-l) 0
Now we can find a basis for 91y such that
0 ot 0
Mat(¢o) = Diag(L,p"™',p") [yt 0 alty, |,
0 0 a;t

and so FL(p,) = [0 : 1] as p, is non-split.

Assume that s = 0 in the case (b), Proposition i.e., (m2,mp) = (0,1). Since s =0,
we can assume v, = 0 = v,. One can readily check that we can assume 7, = 0 = 7, as well,
using Lemma [3.5] By the same argument as above, it is easy to check that

0 a;l 0
Mat(¢g) = Diag(l,y’“,gc"'l) a;l 0 )

0 z

O O8 |

«

(the only difference is the base change: ¢/ = (@™ te,,@" 'e,,w '¢,)). Hence, the corre-

sponding representation p, splits as a sum of a two-dimensional irreducible representation
and a character. O
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3.2. Elimination of Galois types of niveau 2. We start this subsection by recalling the
following (cf. [MP17], Lemma 3.3): let j, k be integers with k£ #Z 0 mod (p+ 1), and let p be
a potentially crystalline representation with Hodge-Tate weights {—2,—1,0} and inertial
type &’ © 0k @ @gk such that 5}° ~ p°°. Then we have the identity

(3.2.1) W3tk — det Plry, = WD +(e+1)

In this section, we fix e = p*> — 1, Ky = Q,2, and K = Ky(y/—p). We also let S =
(Fp2 @F, F)[u]/u®? and Sy = (Fp2 ®p, F)[u¢]/u?. Recall that by [m]; for an integer m we
mean the unique integer in the interval [0, e) congruent to m mod (e).

Proposition 3.7. Let M € IF—BrMod?id be a Breuil module over S of type T ~ wi @
wE @ wY such that T%(M)** = p5* and py C T%(M), where py is the one-dimensional
subrepresentation of py. Assume that the submodule corresponding to py has descent data wj.
Then there exists a framed basis e = (e, e, €y) and a framed system of generators f such
that B
uSe—1) g lpr—2]2 -0, ulPy==212 .

(3.2.2) Mat, ;(Fil> M) = 0 0 (T ;
B 0 u'v 0
o, u[w72]2 N u[yfzb My
(3.2.3) Mat, (p2) = [ 0 Qy 0 ,
0 0 Qy

where o, oy, o, € (Fp2 @F)* and vy, vy € So. Moreover, the tuple (x,y,2,r5,7y, s) satisfies
the following properties:
(a): if x = k mod (e), y = pk mod (e), and z = (p+ 1)j mod (e), then

j=c+1—momod(p—1), k=r+1—mog—pm; mod (e),

and
Ty = MQE;
Ty = M1€;
s =ma(p+1),

where m; € {0, 1,2} satisfy mo + my + ma = 3.
(b): ifx=(p+1)j mod(e), y =k mod (e), and z = pk mod (e), then
j=r+l—emod(p—1), k=0+€e—3)+p(c+1—17) mod/e),
and
re=(c—r—0+€)+p(d+2—1r—4)+ee;
ry=(r+4—0—2€)+p(r—c+d—€)+(3—0—¢€)e;
s=(c+4—e—9)+pd,
where € € {1,2} and 6 € {0,1} with e + ¢ # 3.
(¢): ifx =k mod(e), y = (p+1)j mod (e), and z = pk mod (e), then
j=e+d—3mod(p—1), k=(r+1—¢)+plc+1—46) mod(e),
and
e = (26+0—1r—4)+ple+2) —c—4) + ee;
ry=(c+4—€e—20)+p(r+4—06—2¢)+(3—0—¢€)e;
s=(c—r+e€)+pd,
where € € {1,2} and 6 € {0,1} with e + 9§ # 1.
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Proof. Since py is an extension of a two-dimensional irreducible representation by a character
of niveau 1, M is also an extension of a simple Breuil module of rank 2 by a Breuil module
of rank 1 by Proposition [2.22] Hence, it is immediate that the filtration and the Frobenius
map @9 of M are described as in (3.2.2)) and (3.2.3)) respectively, by using the classification
of simple Breuil modules of rank 2 in Proposition and the classification of simple Breuil
modules of rank 1 in [MP17], Lemma 3.1.

Recall from Proposition that

(3.2.4) ry = py —x mod (e), ry, = pr —y mod (e), and z+ ps = 0 mod (p + 1).

We also recall that 0 < r;,7, < 2e, 0 < s <2(p+1), and by Lemma 3.3.2 in [EGH13| and
by Proposition [2.24] we have:

(3.2.5) z+pPete = 4+ 1 mod (e);
- z+ps=(p+1)(c+1) mod (e).

For case (a), assume that z = k mod (e), y = pk mod (¢), and z = (p + 1)j mod (). We
let r, = mge, ry, = mye, and s = (p + 1)my for m; € {0,1,2}, due to the equation (3.2.4).
Then it is immediate from the equation ([3.2.5) that

k+ p(pmo +m1) =7+ 1 mod (e);
j+pme=(c+1) mod(p—1).

Hence, j =c+1—mgmod(p—1) and k =r + 1 —mg — pm; mod (e¢). The determinant
condition gives rise to the condition mg + m; + ms = 3 mod (p — 1) and so mg +
m1 + meo = 3 since p > 5.

For case (b), assume that z = (p 4+ 1)j mod (e), y = k mod (e), and z = pk mod (e).
From equation we can write pry + 1, = ae for 0 < a < 2(p+ 1). From the equation
B25) we get

(p+1)j+pa=r+1mod (e);
pk+ps=(p+1)(c+ 1) mod (e).
From the determinant condition , we have

(3.2.6) (p+(c—r+3)—(p+1)s=pa— (r+1) mod (e),

and so a = —(r+1) mod (p+1). Welet a = e(p+1) — (r + 1) where € € {1,2} (recall that
0<a<2(p+1)).

We now determine j, k, and s in terms of a = e(p+ 1) — (r + 1) and the inertial weights.
We have (p+1)j=(r+1)—pa=(r+1)—ple(p+1)—(r+1)] = (p+1)(r+1—¢) mod(e)
and hence j = r 4+ 1 — e mod(p — 1). From equation we have (p+ 1)s = (p +
De—r+3)—plelp+1)—(r+ D]+ (r+1)=(p+1)(c+4—¢) mod(e) and so we have
s=c+4—emod(p—1). We write s =c+4—e+d(p—1) for § € {0,1} (again, since
0 < s <2(p+1)). Finally k is immediately deduced from s: k = (p+ 1)(c+ 1) —s =
p+1)(c+1)—[c+d—€e+d(p—1)]=(e+5—3)+plc+1—46) mod (e).

We now describe r,, 7, in the filtration. From the equation , r.. =pk—(p+1)j=
(c=r4+e—0)+pd+2—r—4)mod(e)andry, = (p+1)j —k=(r+4—0—2)+
p(d — e+ r —¢) mod (e). Hence we have r, = (¢ — 7+ € —06) + p(d + 2¢ — r — 4) + mpe and
ry = (r+4—30—2¢)+p(d —e+1r—c)+me for some mg,m1 € {1,2} (since 0 < 7,7, < 2e).

We finally determine mg, m;. We have ae = pry +ry = (6 +2¢ —r —4+pmy+m,)e and
so e(p+1)—(r+1) = a=0+2e—r—4+pmo+m;. Hence, we have d+e—3+m1 = p(e—my)
which immediately implies that mg = € and m; = 3 — § — e. The requirement m; € {1,2}
implies that (d,¢€) # (1,2).
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For case (c), assume that © = k mod (e), y = (p+ 1)j mod (e), and z = pk mod (e). We
write pry + 7, = ae for 0 < a < 2(p + 1) from the equation (3.2.4). From the equation

(3.2.5) we get

pk+ps=(p+1)(c+ 1) mod (e).

We now determine j, k, s in terms of a and the inertial weights. From the determinant
condition ([3.2.1)), we have j =r+c—1—k=r4+c—1—[r+1—pa] =c—2+a mod (p—1).
We also have p(r+1—pa) = pk = (p+1)(c+1)—ps which gives s = (p+1)(c+1)—(r+1)+pa
(c—71)+p(lc+ 1+ a)mod(e). Hence we can write s = (¢ —7) + p(c+ 1+ a) — ee =
(c—r+e€)+p(c+1+a—pe) where e € {1,2} since 1 < s,a < 2(p+1). Define § := c+1+a—pe.
Then 6 € {0,1} (since 0 < s < 2(p+1)) and we have a = § 4 pe — (¢ + 1). We finally obtain
j=e+d—-3mod(p—1)andk=r+1—pa=r+1—e+plc+1—27) mod(e).

We now describe 7,7, in the filtration. From the equation , re=@p+1)j—k=
2e+0—r—4)+p20+ec—c—4)mod(e) and ry =pk— (p+1)j = (c+4—20 —¢) +
p(r+4— 9 —2¢) mod (e). So we can write r, = (26 +6 —r —4) + p(26 + ¢ — ¢ — 4) + mgpe
and ry = (c+4—20 —€) + p(r +4 — 3§ — 2¢) + mye for some mg € {1,2} and m; € {0,1}
(since 0 < 74,7y, < 2e). We have ae = pry + 1, = (20 + € — ¢ — 4 + pmy + mq)e so that
d—(c+1)+pe=a=2+€e—c—4+pmg+m;. Hence, we have 6 + € —3+my = p(e —myg)
which easily implies mo = € and m; = 3 — § — e. The requirement m; € {0, 1} implies that
(6,¢) £ (0,1). O
Lemma 3.8. Keep the notation as in Proposition (in particular, recall the elements v,
and vy in the matriz ) and assume s < p+ 1.

(i) If ro + s(p — 1) — [py — z]2 > 2e then there is a basis such that v, = 0.
(ii) Ifry +s(p—1) — [px — z]a > 2e then there is a basis such that v, = 0.

{ k+pa=r+1mod(e);

Proof. The same argument as in Lemma [3.4] works. O

Lemma 3.9. Keep the notation as in Proposz'tz'on (in particular, recall the elements n,
and n, in the matriz )
(i) If[r—zla+rs—s(p—1)+e>0and [y —z]o+1y —s(p—1) —e > 0 then there is
a basis such that n, € F,2 @p, F and n, = 0.
(ii) Iflx—zlo+71s —s(p—1)—e >0 and [y — z]o + 1, — s(p — 1) + e > 0 then there is
a basis such that n, =0 and n, € F,2 Qp, F.
(i) 1f plw — 2]z + 70 — 5(p — 1)) > [y - 2Jz and p(ly — 2Ja + 7y — s(p — 1) > [z — 2l
then there is a basis such that n; =0 and ny = 0.

Moreover, the change of basis does not affect the vanishing of v, and v,.
Proof. One can prove case (iii) by the same argument as in Lemma and case (i) is
similar to case (ii). We only provide with a proof for case (ii).

Let Vy be the matrix and Ay the matrix . We define 7, € u® - Sy by
Ny = 7]2 + 1)y with 772 € I,z @, F and let Ay be the matrix obtained from Ay by replacing
71y in Ag by 7. We also let

ar Wl ey T Dl gy
Bi=10 Qy 0
0 0 O

for some 7, 1;, € So.
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One can easily check that the equation
(3.2.7) Aoy = Vo By
holds true if and only if the following two equalities hold:

aulPr=2l2y) glv=latrig - T e 2 e LT

o u[py—z]zvl +ulrle ey o US(p—l)Hp’l(y—Z)]zn; + agulPy=?l2q,,

Hence, the equation (3.2.7) holds if we choose v}, = a0 'vg, v}, = o 'y,

Y

ulp T @Ry el sy and yl T -y 2 ylemehitre—se-Ly

Here, both u[pfl(c”_z)hn; and u[pfl(y_z)]"‘n?’/ are well-defined elements in S by our assumption
n (z,y,2) and (s,74,7y).
Now let us consider the new basis ¢/ % eAg. Then V; = Mat,s ¢ /(Fil> M), where f’ be the

system of generators given by the column vectors of V;. Note that o(ulP” Hy=2)l2 n,) =0,
again by our assumption. We compute Mat,/ ;(¢2) as follows:

2 (lel) :QAOCP(Bl)

_~ 0 0 n(y)u[y 2] o(a) uPlP T @)l 20(n)) 0
=e|Aog+ |0 O 0 0 cp(ay) 0
I 0 0 0 p(aa)
[ 0 0 %u a.) wl @ Dppry
=e|Ao+4|0 o p(ay) 0
i 0 0 0 p(az)
olas) wlP” Ya—2)]2 o) "W(‘“) ly—=2]
=edo| o so(ay) 0
0 0 w(as)
(olas) plulvHltrimseong ) M)
=¢ 0 w(ay)
0 0 w(aw)
:Matgyw(gpz)

Hence, for Mat, s/(p2), we see that n, = 7y, i.e., 7, = 0. Performing the above procedure
one more time, we see that n, = 0 and 7, € Fj2®p, F. It is obvious that the above procedure
does not affect the vanishing of v, and v,. O

Proposition 3.10. Keep the notation as in Pmposition and assume that py = T2 (M).

(i) If ma = 0 in the case (a), then p, splits as a sum of a two-dimensional irreducible
representation and a character.
) If (ma,m1,mp) = (1 0,2) in the case (a) and p, is non-split, then FL(p,) = [0 : 1].
iii) If (ma,m1,mp) = (1,2,0) in the case (a) and p, is non-split, then FL(p,) = [1 : 0].
) If (¢,6) = (2,0) in the case (b) and p, is non-split, then FL(p,) = [0: 1].
(v) If (¢,6) = (2,0) in the case (c) and p, is non-split, then FL(py) = [0: 1].

Proof. Let V' be the matrix and A the matrix (3.2.3), and assume that s(p—1) <e
Since s < (p+1), we may assume that Uz, vy € Fp2o®p, F. By Proposition the ¢-module
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over F @, Fp2(()) defined by M = Mg , (o)) (M*) is described by

QLES(p—l) 0 0
(32.8)  Mat,(¢) = VH(A) = [ Zeglre—2lot gtz 0 g
Vo plpy—2la 4 e oretlr—2]s o' 0

1
= L0y — [o

in an appropriate basis ¢ = (e, ¢z, ¢y).

We now prove case (iii). Assume that (mg, m1, mg) = (1,2,0). Then we have © = r+1—2p
mode,y=p(r+1)—2mode, z=(p+1l)c, s=(p+1), r, =0, and r, = 2e. So we have
[x—zls=e+r+1-2p—(p+1)cand [y—z]o =e+p(r+1)—2—(p+1)c. By lemma[3.9
case (i), we may assume that 7, = 0 and 7, € F, ®F, F, and, by Lemma case (ii), we
may assume that v, = 0 as well. Hence, in this specific case, we have

1 e
@z 0 1 0 2
1 e
Mate((b) = 0 0 ayz
Vg petr+l=2p—(p+l)e | s etr+l-2p—(p+l)c L 0
Qy — Ay Oy — Qg

By considering the change of basis ¢/ = (w®+Yee,, @P+1=2¢, @ +1-2P¢,) we have:

O%@e(chl) 0 0
Mate/ (¢) = O 0 Oziy
%Qe(c-&-l) 4 aﬁ.; Qe(c-i-l) D%@e(r-i-l) 0

We easily see that the ¢-module 9 is the base change via F ®r, Fj2((p)) — F ®r, F,2(())
of the ¢g-module My over F @, F,2((p)) described by

O%B(chl) 0 0
Mat (6o) = 0 0 &
Vz o (C z c 1 r

Now we can find a basis for 9%, such that

0 1 v + Nz
Mat(¢o) = Diag(1,p" ", p°t1) a% 0
0 0 +
and so FL(p,) = [1 : 0], by Lemma[3.2] as p, is non-split.
Case (ii) is very similar to the previous one. We now have v, = 0 = 7, and 7, € F2 @, F.
By the same argument as above, one can check that

0 ;T 0
Mat(%):Diag(LBrH’BCH) Ole 0 %—i_aﬁiay 7
0 0 ai

and so FL(p,) = [0 : 1], by Lemma[3.2] as p, is non-split.

Assume that s = 0, i.e., mg = 0. Since s = 0, we may let v, = 0 = v,. One can readily
check 1, = 0 =, as well, using Lemma case (iii). By the same argument as above, it
is easy to check that

0o L o
Mat(¢o) = Diag(L,p""',p""") | &> 0 0
o o X
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Hence, the corresponding representation p, splits as a sum of a two-dimensional irreducible
representation and a character.

Assume that (¢,6) = (2,0) in the case (b). By Lemma (3.8), case (i), we have v, = 0,
and, by Lemma , case (iil), n, = n, = 0. By the same argument as above, one can
check that

0 &= 0
Mat(¢g) = Diag(LQTH,QCH) a—ly 0 Z—Z ,
0 0
and so FL(py) = [0 : 1], by Lemma[3.2] as p, is non-split.
Assume that (¢,0) = (2,0) in the case (c). In this case, we may let v, = 0 since

s(p—1) < [py — z]2. By Lemma (3.9), case (iii), n, = 1, = 0. By the same argument as
above, one can check that

0 =— O
Mat(¢o) = Diag(L,p" ™, p™) [ &5 0 24|,
0 0 4+
and so FL(p,) = [0 : 1], by Lemma[3.2] as p, is non-split. O

4. FONTAINE-LAFFAILLE PARAMETER AND CRYSTALLINE FROBENIUS

The aim of this section is to explicitly determine the Fontaine-Laffaille module associated
to the mod-p reduction of a potentially crystalline lift of p,, with a carefully chosen inertial
type. The main result is Theorem whose proof relies on some direct manipulation in
semilinear algebra (cf. Section Lemmas 2.13).

As we did in Section [3} in the reminder of this section we may and do assume ay = —1
def def
and definec = as —ag— 1, r = a1 —ag — 1.

4.1. Filtration on strongly divisible modules. We go back to the setting of section
and we let py : Gg, — GL3(F) be as in (2.1.1) with the genericity condition as in
Definition 24

Proposition 4.1. Let M € IF—BrMod(Qid be a Breuil module of type T = w® ®w” ®w™ ! such
that T2, (M) = p,.

Then there exists a framed basis e = (e, er,e—_1) on M and a framed system of generators
= (fer frs fo1) for Fil* M such that

ue uteTmN ety a. 0 0
Mat, ;(FiiM) = | 0 0 us= ) | and Mat, j(p2)=| 0 a 0
B 0 ettt 0 - 0 0 a_

where \; € F* and A\, € F.
Moreover, we have the following properties:
(i) A=0=p if and only if p, splits;
(ii) 4f po is non-split, then FL(p,) = [pcy : =] € PY(F).

Proof. From Proposition (b) for mg = 0 and my = 1, it is immediate to get Mat, (Fil* M)
as above. By Lemma it is also easy to check that 1, = 0 = n, in the matrix (3.1.3),
and so we get Mat, r(¢2) as above.
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By the same argument as in Proposition one can readily compute the following
¢-module over F ®p, F((p)) from the Breuil module structure as above:

o L £
. 1 e+l 1 4%
Mat(¢o) :Dl@ug(l,]ﬁ)’dr D27 e o
1
0 0 4
The second part is immediate from this matrix. (Il

From now on in this section, we restrict our attention to p, that is non-split. We easily
deduce the following:

Lemma 4.2. Let M € F-BrMod3, and A\, € F as in the statement of Proposition .
Assume that py is non-split, i.e., not both A and p are zero.
Then the elementary divisors for M/ Fil> M are described by one of the following possi-
bilities:
(i) Zf A/’[/ # 0) by (ue_(c+1)7u€7ue+(c+l));
(11) Zf A= 0, by (uef(c+1), ueJr(cfr)7 ue+(r+1))’.
(iii) if p =0, by (w7 =D yet(erh)),

In particular, one has:

(a) (Fil® M), S ue=(*UM; moreover, (Fil® M), S we= " tOM holds true if and

only if p=0;
(b) (FiPMNueM) -, Cu?e=(Fm;

(c) (Fil>M) e S utM.
Proof. The elementary divisors are immediately deduced from the Smith normal forms of

Mat, (Fil> M) in Proposition
It is easy to check the following computation:

(Fil2 M) e = <ueec, ue. +ucte Ve, upe. + ue+(c’r)e,1> ;
(Fil2 M),r = <ue+’"ec, w™ M Ney + uftT ey wfm ) e, 4 uee,1> :

(Fil> M),,-1 = <u2€_(c+1)eC7 w? =D \e. 4+ ue_q, ut ™t pe, + ue_(’“+1)e,1> )

The second part is also immediate from the computation above. O

Proposition 4.3. Let p : Go, — GL3(Og) be a p-adic Galois representation becoming
crystalline over K, with inertial type T = 0°®w" ®w ' and Hodge-Tate wezghts { 2,-1,0}
such that p = p,. Let Me Or-Mod3y be a strongly divisible lattice such that T (M) =p.

Then there exists a framed basis (€., €,,e_1) for M and a framed system of generators
(fc, ]?r, f_l) for Fil? JV[/ Fil> S - M whose coordinates are described as follows:
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A : if FL(p,) € PY(F)\ {[0:1],[1: 0]} then

fe= 0 + E(u) 0
puc+1 uc+1
N 0
fr=E)| 1
0
uef(chl)
fo1= 0
a

where 0 < vp(a) < 2.

B: if FL(py) = [1: 0] then

_pB 0
J/i = 0 +E(u) | usr
Buct! 0
R 0
fr = E(u) _%
ur—i—l
uef(chl)
f-1= 0
«

where 0 < v (8) and 0 < vp(a) < vp(B) +1 < 2.

C: if FL(py) = [0 : 1] then

_rla
- N 0
fo=| —guer |+ E@| 0
puctt uct!
ue—(c—r) 0
= -2 J+eE@| o0
ﬁurJrl ,YUT+1
@
aue—(c+1)
f71 = ue_('r‘""l)
B

where 0 < v (o) <1, 0 < vp(7), and 0 < vp(a) < vp(B) < 2.

def
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Proof. Let e def (éc, er,e_1) be a framed basis for M. We write the elements of M in terms of
coordinates with respect to e. Moreover, we let M = M®gS/(wg, Fil? S) denote the Breuil
module associated to JT/{, define D & J/\\/[(X)@E Sg and, if x : F,” — O is a tame character, we
write X, & (Fil> D/ Fil* S - D)X, which is a E[E(u)]/(F(u)?)-module explicitly described
in [HLMI7], Lemma 2.4.9.
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By [HLMI7], Proposition 2.4.10 we have an element f_; € Xz-1 N M of the form

xuef(chl) m/uef(c+1)
f—l . yuef(’r‘Jrl) + E(u) y/uef(r+1)
z z'

where z,y,z,2',y,2 € O and (z,y, 2) # (0,0,0). By Lemma [4.2}(iv) we necessarily have
z = 0 modulo wg.

Case A : Assume that FL(p,) # [1 : 0],[0 : 1], or equivalently, by Proposition that
At # 0. Then vy (z) = 0 as u®~(“*1 is an elementary divisor for M/ Fil*> M and v, (y) > 0

by Lemma (iv). We define e, € M as follows:
x4 2’ E(u)
et | u Ty + Yy E()
uc+1z/
Asvp(z) =0, ¢ & (el,er,e_1) is again a framed basis for M. By letting « L pz' we
therefore have the following coordinates for f_; in the basis ¢’
ue—(c+1)

J 0
a
where v, () > 0. From now onwards we use the basis ¢’ to write the coordinates of the

elements in M.
By [HLMI7], Proposition 2.4.10 we easily deduce:

~ e—(c+1) e—(c+1) 0
Fil* M “ “
e = 0 y E(u 0 , Elu ue*("'JFl)
(Fﬂz sm)wl < (w W |

« « 8 Op

where 3,7 € Op. Moreover, by Lemma [£.2}(v) we necessarily have v,(8) > 0 so that,
without loss of generality, we can assume v = 1.
By [HLMI17], Proposition 2.4.10 we have

ue—(c—r) ue—(c—r) 0
Xor = < 0 s E(u) 0 s E(u) p >

aur+1 aur+1 6ur+1
E

If 0 < v,(8) < 1, then one can easily check that it violates Lemma[4.2}(i). Assume that
vp(8) > 1. Then the element e defined by

0
’ . 1
e, .
" _ﬁur+1
p

is in (FI“IESMN\[)~ and the family ¢ %' (¢/, ¢/, e_;) is again a framed basis for M. Until the
o

end of case A we use the basis e” to write the coordinates of the elements in M.

= .
Hence, ( Fil Wi) is generated by
FilZ SM / 5-1

uef(c+1) uef(chl) 0
0 , E(u) 0 , B(u) | ue=(tD)
« « 0
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over Og, and ( Fil® M )~ by
w"‘

Fil2 SM
ue—(c—r) ue—(c—r) 0
0 , E(u) 0 , B(u) | 1
autt autt 0

over Og. Again by [HLMI17], Proposition 2.4.10 we further deduce

—p 1 —p 0
X;Jc< 0 +E)| 0 |, E(u) 0 , B(u) [ we™" > ,

auct! 0 auct! 0 5

and an immediate manipulation provides us with:

2

_p- 0
0 |+Ew| o0 |eXz.
puc+1 uc+1

By Lemma (Vi) we necessarily have Vp(%) > 0, in particular

2

—E 0 Fil2 M
e ) Fil> SM ) _,

Hence, we obtain the following inclusion:

e—(c+1) 0 _p 0 12 X
u 2
o Fil> M
0 JBEw | 1], 0 +E@ | o c !
c+1 uc+1

(0% 0 pu Op

~ Fil2SM
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By Nakayama’s lemma and noticing that the elementary divisors of M/ Fil> M are described

by Lemma [4.2}(i) we conclude that the inclusion is indeed an equality.

Case B : Assume that FL(p,) = [1 : 0], or equivalently, by Proposition that A =0
and p # 0. By exactly the same argument as in the proof of case A, we get the same

Fil2 SM
violates Lemma [£.2}(ii). Assume 0 < v,(3) < 1.
As in case A we easily deduce

0 12

Fil*M

E(u) —% S e
r+1 Fil*SM ) .

( Fil2 M

i
and
—p 1 —p 0
Xge = 0 +E@) | 0 |, E(u) 0 JB(u) | —5u”
auct! 0 auct! e+l
E

In particular,
_pB ~
o 0 Fil2 M
O + E(U) ’U,C r e ﬁ
Buet! 0 Fil" SM ) _.
and, by Lemma [£.2}(vi) we necessarily have vy, (8) > 0 and v, (8) +1 > vy (a).

>~71 as well as Xz~ as in case A. If v,(8) > 1, then one can easily check that it
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Hence, we obtain the following inclusion:

ue—(ct+1) 0 _pB 0 2
o FilI* M

0 y E(U) _% s 0 + E(U) u¢~" - %

o ur L 5uc+1 0 Fil“ SM

Op

which implies that the elementary divisors for M/ Fil? M are necessarily of the form de-
scribed by Lemma [4.2}(ii). It follows, as for case A, that the inclusion is actually an
equality and the case B claimed in the statement of the proposition follows.

Case C :Assume that FL(p,) = [0 : 1], or equivalently, by Proposition that A # 0
and = 0. We may assume that y = 1 as v~ ("1 is an elementary divisor for M/ Fil? M

and v, (x), vy (y) > 0 by Lemma (iv). We define ¢/, € M as follows:

x/uef(cfr)
e : 14+ y' E(u)
zlur+1
Then ¢’ & (ec, e, e_1) is again a framed basis for M. By letting o & z+pa’ and 8 & 24 p2/
we therefore have the following coordinates for f_; in the basis e’:
aue—(c—i—l)
ffl . ue—(r+1)

B

where v,(a) > 0 and v,(8) > 0. From now onwards we use the basis €’ to write the

coordinates of the elements in M.
By [HLMI17], Proposition 2.4.10 we easily deduce:

—~ e—(c+1) e—(c+1) 5 e—(c+1)
12 au au u
(Ffi MA> - < w0 | B [ wee ) Bwy [ 0 >
Fil* SM -1 3 3 ~ o,

where v,0 € Og. Moreover, by Lemma (V) we necessarily have v,(y) > 0 so that,
without loss of generality, we can assume § = 1.
By [HLMI7], Proposition 2.4.10 we have

Oéue—(c—r) 0 aue—(c—r) ue—(c—r)
Xgr = < —p +Ew) | 1 |, E(u —p , E(u) 0 >

r+1 r+1 r+1
Bu 0 Bu Yu 5

If min{1,v,(8)} < vp(e), then one can easily check that it violates Lemma [£.2} (iii). Assume
that 0 < vp(a) < min{l,v,(8)}. Then easy manipulations provide us with

0 uef(cf'r‘) 0
E(u) 1 , -2 + E(u) 0 € Xgr.
,B—p(x"furﬂ gur-i-l ﬁ;iwurﬂ

Again by [HLM17], Proposition 2.4.10 we further deduce

Xge = —2u"" | + E(u) 0 , B(u) u" , E(u) 0
guc+1 B—a'yuc-i-l _ﬁ—a'yuc-s-l 7Uc+1
a P P
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and an immediate manipulation provides us with:

_Pla
2 6 0
7p7,uc7r + E(U) 0 S X@c.
chJrl uC'H
By Lemma (Vi) we necessarily have vp(%) > 0, in particular
P’a
LB 0 Fil2 M
_iuC—T + E(u) 0 € <12A .
p/;cﬂ uct! Fil* SM Se
Hence, we obtain that ;ifgz contains
_1’270‘ 0 ue—(c—'r') 0 aue—(c+1)
_%UH +E(u) 0 , -2 +E(u) , 0 CBu) | ue (D
puct! uctt gu’"*l =t u 8

By Nakayama’s lemma and noticing that the elementary divisors of M/ Fil> M are described
by Lemma [4.2}(iii) we conclude that the inclusion is indeed an equality. Note that v, (8 —

a7y) > 1+ vp(a) by Lemma (iii). O

Corollary 4.4. Let p and M be respectively a Galois representation and a strongly divis-
ible lattice as in Proposition . Write (e, Ay A—1) for the Frobenius eigenvalue on the

(we,@", w™Y)-isotypic component of the filtered (p, N)-module Dgf’z(p).
Then the valuation of the Frobenius eigenvalues on Dg”’2(p) is described as follows:
A : if FL(p,) € PY(F)\ {[0: 1],[1: 0]} then
(vp(Ac), vp(Ar), vp(A-1)) = (Vp(@), 1,2 = vp(a))
where 0 < vp(a) < 2.
B: if FL(py) = [1: 0] then
(Vp(Ac), Vp(Ar), vp(A-1)) = (1 + vp(a) = vip(B), vp(B), 2 — vp(a))
where 0 < v, (8) and 0 < vp(a) < vp(B) +1 < 2.
C: if FL(py) = [0: 1] then
(vp(Ac), Vp(Ar), vip(A-1)) = (vp(B) — vp(a), 1 + vp(a),2 — v, (5))
where 0 < vp(a) <1 and 0 < vp(a) < vp(B) < 2.
Proof. Let us write so : Sp, — E to denote the morphism defined by u + 0. Then one
has Dg”’Q(p) = JVE[]%] ®8q,,50 £ Moreover, the Frobenius ¢ on Jv[[%] ®s5q,,s0 F 1s uniquely
determined by the condition
90(61’ Bso 1) = p2(902 ®sg 1)(ﬁ ®sg ’%i)

for i € {¢,r,—1}, where the elements €;, J?Z can be chosen to be as in Proposition and
the x; € E are such that f; ®;, k; = €; Qs, 1.

The result is therefore immediate from the explicit description of the elements ﬁ given
in Proposition [£.3] O
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4.2. From Frobenius eigenvalues to Fontaine—Laffaille parameters. We are now
ready to state the main local results on the Galois side. Let red : P1(Og) — P(F) be
the natural reduction map on the rational points of the projective line over Op. Namely,
red([z : y]) is defined as [(z/y) : 1] if v, (x) > v (y) and [1: (y/z)] if vy (2) < vy (y). We
fix a coordinate on P*(Og) (hence on P!(F)).

Theorem 4.5. Let p : Go, — GL3(Og) be a potentially crystalline Galois representation
with parallel Hodge-Tate weights {—2,—1,0} and inertial type WD(p)|1, =T Yoo e
WL such that p = p,. We also let (A, Ay A_1) € (Og)? be the Frobenius eigenvalues on the
(w¢,@", w~Y)-isotypic component of Dg‘”’z(p).

Then the Fontaine-Laffaille parameter associated to py is computed by:

FL(py) = red ([A; : p)).

The rest of this subsection is devoted to the proof of Theorem In the case where
FL(py) = [0: 1] or FL(py) = [1 : 0], it is straightforward to prove it from the results in the
previous subsection (see the end of this subsection) and in what follows we will be firstly
interested in the case where FL(5,) ¢ {[1: 0], [0: 1]}.

Lemma 4.6. Keep the notation of Proposition @ Define ae € F* by the condition
Ole€e = 2—5?. modulo (wg, u) for all e € {c,r,—1} (note that the a; here is not necessarily
the same as the ones in Proposition[{.1)), and assume that FL(p,) ¢ {[1: 0], [0 : 1]}.

IfMe F—BrModgd denotes the associated Breuil module to Jv[, then there exists a framed
basis e = (ec,er,e—1) on M and a framed system of generators f = (fe, fr, f-1) for Fil> M
such that Mate, r(p2) = Diag(a, o, 1) and B

0 0 ue—(eth)
Mat, ;(FilM) = 0 u® ut Tty
B u€+(0+1) ue-&-('r‘-&-l)x utz

for some x,y,z € F.

Proof. The proof follows closely the argument of [HLMI7], Proposition 2.5.2, which we
outline here for the comfort of the reader.

Let Meo E- Moddd be a strongly divisible lattice as in the statement of Proposition
In partlcular we have a framed basis € on M and a framed family f of generators for
Fll2 M/ Fil® S - M which is explicitly described in terms of e-coordinates according to the
value of FL(p,).

Write e, f 0 for the base change of €, Zvia S — S and set

def

Vo = Mateo (F112 M), Ap def Ma‘tgo’io ((pg).

Note that, by construction, we have (Ag)y,€c = acle = z%fc modulo (u, wg), and, simi-
larly, (Ao)y; &r = 6y = %fr, (Ag)gp €1 = a_1€_1 = %f_l. Moreover, by the height
condition, we can write Voadj = u*Wpy where Wy € MP(S) is well defined modulo u¢®=1),

We deduce from Proposition Case A that the matrix of the filtration for Fil*> M has
the form
0 0 uef(chl)

u® 0

pet(et) 0
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Then there exists b1a, ba1, bao € F such that

0 0 ue—(c+1)
(421) —Wy-Ap - 0 u® ue—(r+1)b12 = ’LL2EBO
ue+(c+1) ue+(r+1)b21 uChasy
d:ef‘/1

where By € GLS'(S) verifies moreover

a_y utTeT By uem et gy,

By = 0 a, ut= DBy, mod u®
0 0 Qc
for some 3;; € F. Indeed, an elementary computation shows that it suffices to take bip =
—a; Yayg, bay = —a_jaz; and by = —a” | (az1biz + azp) modulo u¢, where the a;;’s denote

the corresponding entries of Ag.

By Lemma [2.19| we deduce that V; describes the coordinates of a framed system of gener-
ators f L for Fil> M with respect to the basis e, def e+ Ao and moreover A; def Mat, 1, (p2) =
¢(By) is the matrix for the associated Frobenius action.

We now iterate the previous procedure: as A; € Diag(a_1,a,, a.) + u>MP(S) (by the
genericity assumption (2.1.2)), we easily find Vo € M (S) as in the statement, and By €
Diag (e, o, 1) + uMy'(S) verifying:

Al‘/g = 31V1 mod ’U,Se.
By virtue of Lemma this completes the proof. O

Lemma 4.7. Keep the notation of Lemma[].6] and assume that FL(p,) ¢ {[1: 0], [0 : 1]}.
Let M € F-F£9P=2 be the contravariant Fontaine-Laffaille module associated to py.

Then there exists a basis f on M, compatible with its Hodge filtration, such that the
Frobenius action on M is described by

0 ya, ! ozgll

-1 N
Maty(¢e) = [ @Z1@ 0 —OiTl

0 0 =

for some x,y € F*.

Proof. By Lemma and Lemma the Frobenius action on the (¢, F((w)))-module
M = My, () (M) is described by

0 0 ze—i—(c+1)oé:}
Mat.(¢) = 0 wlao; ! wtrtza 1
Qef(chl)Oé;l @ef(r+1)ya;1 Qeza:%

Y

where ¢ = (e_,e_,, ¢1) is a framed basis for the dual type 7 and z,y,z € F.

By performing the change of basis ¢’ def (zec, @ e, @ Le1), it can be easily checked that
M = Mo ®r((p)) F((@)) where the (¢,F((p)))-module My is described by

0 0 a’]
Mat(pg) = [ 0 at za”l 'Diag(gcﬂ,]f“, 1)
a Yo, zaj
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i.e., by an evident change of basis over F,

Mat(¢g) = Diag(l,p’“"'l,pc'*'l) - F

where
-1 -1 -1
o za_% Yo o
F=|zaZ] ot 0
a”; 0 0

By Lemma we deduce that My = F(M) for a rank 3 Fontaine-Laffaille module
M e F-5£17~% with Hodge-Tate weights {0, + 1,¢ + 1} and Mat(¢s) = F for a basis f
on M compatible with the Hodge filtration. B

On the other hand the condition T, (M) = p, implies, by Lemmthe existence of

213

another basis i’ on M such that Mat (¢, ) is the one described in ( . Equivalently,
there exists of a change of basis A € GL3(F) from f to f’, compatible with the Hodge

filtration (i.e. A = (a;;);,; is lower unipotent) and such that

0 nt v
(4.2.2) A-F=|nt 0 ¢
0 0 n'

for some v,0 € F, n; € F*.
It is easy to check that the equation in (4.2.2)) holds true if and only if one has the
following identities

z2=0, 14+yaig =0, 1 +xax =0, az + yaz =0,

-1 _ —1 -1 __ —1 -1 _ -1 _ -1 _ -1
Ng = TCQ_q, 1y =Y, 5 Ty = A00, , ¥ = Q. -, and (5—0,10CVC .

Solving these equations for nal, nfl, n;l, v, and ¢ completes the proof. O

Proof of Theorem[].5 First of all, note that Proposition [£.3] and its corollary apply in our
context. If FL(p,) = [1 : 0], then it is immediate that

FL(po) = [1: 0] = red([A, : 7)),

since vi,(Ar) < 1 by Corollary [4.4] Case B. Similarly, one can prove the case FL(py) = [0 : 1]
by Corollary Case C.
For the case that FL(py) ¢ {[1: 0], [0 : 1]} it is also easy to check that

FL(po) = [awr : 1] = red([A = p]),

by Lemma [£.7] and by Definition O

5. THE LOCAL AUTOMORPHIC SIDE

We now need to recall certain group algebra operators for Og[GL3(F,)], F[GL3(F,)]
which are needed to obtain local-global compatibility in terms of Hecke action. In order
to introduce such operators, we need some notation. In what follows, we have [Jan03| as a
main reference for the notation and terminology.
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5.1. Basic set up. Welet G &f GL3/z,, T be the maximal split torus consisting of diagonal
matrices and B D T the Borel subgroup of upper triangular matrices. The character and
cocharacter groups X*(7T'), X.(T) are identified with Z? in the usual way. In particular the
positive simple roots {a1,as} for the pair (B,T) become a; = (1,-1,0), s = (0,1, —1).
Finally, we let G, B, ... denote the base change of G, B,... via Ly — Fp.

The Weyl group Wg of G is canonically isomorphic to the Weyl group of G. We write
wy € Wg for the longest element and define

. def 1 . def 1
S1 = 1 s So = 1
1 1

which are lifts in G(Z,) of the simple reflections sq, so € Wg corresponding to g, as. In

particular wq Lef $189281 is a lift of wg € Wi

For any dominant character A € X*(T') we let
o — alg
HOO) Y (maGwor) @, F

be the associated dual Weyl module. It is an algebraic representation of G' (or more precisely
def

of G/p) and we write F(X) = socg (H°(X)) for its irreducible socle. If the weight X is
p-restricted, i.e. if 0 < (A, o) < p—1 for i = 1,2, then F()\) is irreducible as a G(F,)-
representation (see for example [Her09], Corollary 3.17).

As in [HLMI7] we let I be the Iwahori subgroup of G(Z,) (preimage of B(F,) under
the reduction map G(Z,) - G(F,)) and I; < I for its maximal pro-p subgroup. If V is
a smooth representation of G(Z,) over O and a; € Z we write VI(az.a1,00) to denote the
0% ® W™ ® L%-isotypic component for the I-action on V1.

5.2. Group algebra operators and the automorphic parameter. Let (a,b,c) € Z3 be
a triple satisfying condition (2.1.2)) (when specialized at (ag,a1,a0) = (a,b,c)). In this case

the weight (a, b, c) is in particular restricted. In [HLMI7] the following elements of F[G(F})]
are defined:

def —(a— —(b— Loz oy .
5 E Y plea 0 c)(o : Z)wO
0 0 1
x,y,z€F,
1
g et Z pp—(a=b) p—(a—c) [ 5 T 7 wo
0 0
x,y,z€F,
as well as their characteristic zero counterparts
~ dot PP 13 g
G gm0 c><0 : g>w0
0 0 1
z,y,2€F,
&y def ~—p—(a— _(a— 1z g .
S = E gp—(a=bzp—(a C)<0 1 E)wo.
0 0 1

z,y,z€F,

The behavior of such operators is described in [HLMIT], §3 and we include here the
statements for the convenience of the reader.

Proposition 5.1. Let (a,b,c) € Z3 be a triple satisfying ) (when specialized at

(a2,a1,a0) = (a,b,c)) and consider the associated operators S, S' € F[G(F,)].



44 DANIEL LE, STEFANO MORRA, AND CHOL PARK

(i) There is a unique non-split extension of irreducible G(F,)-representations
0—Fla—1,b,c+1) =V > Fb+((p-1),a,¢c) >0

and S induces an isomorphism S : V1 (»:a:0) 2y yLla=Lbetl) of one_dimensional
vector spaces. ~
ii) There is a unique non-split extension of irreducible G(IF,)-representations
P

0— Fla—1,b,c+1) = V"= F(a,c,b—(p—1)) =0

~

: . . I(ac I(a—1,b,c+1
and S’ induces an isomorphism S’ : (V') (b)) V" Aa=bbet ) or one-
dimensional vector spaces.

In characteristic zero, we have:

Proposition 5.2. Let (a,b,c) € Z3 be a triple satisfying ) (when specialized at

(a2,a1,a0) = (a,b,c)). Letm, &f Indgggp; (Xb@Xa®Xc) be a principal series representation,
P

where the smooth characters xe : Q) — E* wverify X°|Z; =w* for e € {a,b,c}.

. . ‘ . I,(b,a,
On the one-dimensional isotypic component ﬂp’( “) we have

1

-~ ~

(5.2.1) S o L | =pxs(p)n S,
P

where the element n € Z,; verifies n = (—1)b=c. % mod p.
Recall that if o is a smooth representation of G(Q,) we can define certain U,-operators

0 0 1 0 0 1
the U; operator is defined as the double coset operator [I1t;11], i.e.

Ui(v) = Z xt;v.

meh/(tiht;lﬂll)

e 0 0 e 0 0
on isotypic components of o’t. Concretely, by letting t; L 0) and to % (g P o),

Lemma 5.3 ([HLM17] Lemma 3.1.11). Let (a,b,c) € Z3 be a triple with a—b > 0, b—c > 0,
a—c<p-—1 and define T = Indf{ (wb Q@ w? ®wc), Let o be a representation of G(Qyp) over
F. Then
HomK<?, 0)[Uz] = HOHIK(?/M“ 0‘)

for i € {1,2}, where My (resp. Ms) is the minimal subrepresentation of T containing
F(a,ec,b—p+1) (resp. F(c+p—1,b,a—p+1)) as subquotient.

In characteristic zero, we have:
Lemma 5.4 ([HLMI7] Lemma 3.2.8). Let m, < Indgggfg (Xb © Xa ® Xc) be a principal
series representation, where the smooth characters xeo : Q) — E* wverify X°|Z§ = w* for
o € {a,b,c} and where a, b, ¢ are distinct modulo p — 1.

4:2:2) e have Ui = xo(p)~" and

(i) On the one-dimensional isotypic component 7T£’
Uz = xp(P) "' Xa(p) "
(ii) On the one-dimensional isotypic component Wé’(a’c’b) we have Uy = pxq(p)~! and

Uz = p*xa(p) ' xe(p)
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6. LOCAL-GLOBAL COMPATIBILITY

This section contains the main global application of the local results obtained in Section 4]
We follow closely the setup of [FILM17], which we reproduce in Sections [6.1] and [6.2] for the
convenience of the reader.

6.1. Automorphic forms on unitary groups. Let F/Q be a CM field, F'™ # Q its
maximal totally real subfield. We write ¢ for the generator of Gal(F/F™) and assume that
all places v of F* above p further decompose as v = ww® in F. We let S (resp. S,) the
set of places of F'T (resp. F) above p. For v (resp. w) a finite place of F'* (resp. F') we
write k, (resp. k) for the residue field of F,f (resp. F,).

We let G,p+ be a reductive group, which is an outer form for GL3, and which splits
over F. We assume that G(F,") ~ U3(R) for all v|cc. By [CHTO0S§]|, Section 3.3, G admits
an integral model G such that G x O Fit s reductive if v is a finite place of F'+ which splits
in F. If v is such a place and w|v is a place of F', we obtain and fix an isomorphism

(6.1.1) tw: §(0p+) = §(0F,) = GL3(Or,).

Define F < F* 0 Q, and Op+ , = Op+ @7 Z,.

If W is a Og-module endowed with an action of §(Op+ ,,) and U < G(AZ) x G(Op+ )
is a compact open subgroup, the space of algebraic automorphic forms on G of level U and
coefficients in W is the following O g-module:

(6.1.2) SUW) = {f: GFINGAR) = W] fgu) =u," f(9) ¥ g € G(AF),u € U}

(with the usual notation u = uPu, for the elements in U).

Recall that the level U is sufficiently small if t='G(F*)t N U has order prime to p for
all t € G(A%,). For a finite place v of F'* we say that U is unramified at v if one has a
decomposition U = G(0 .+ )U" for some compact open U” < G(AZ}"). If w is a finite place
of F' we say, with an abuse, that w is an unramified place for U if its restriction w|p+ is
unramified for U.

Let Py denote the set consisting of finite places w of F' such that v def w|p+ is split in F,
v ¢ Sf and U is unramified at v. For a subset P C Py of finite complement and closed

with respect to complex conjugation we write T? = (‘)E[T(l)7 we P, ie{0,1,2,3}] for the

universal Hecke algebra on P, where the Hecke operator TQSJ) acts on S(U, W) as the usual

double coset operator

— ww1d1 O
o |:GL3(OFw)( o Idgi) GLg(on)].

Remark 6.1. Tt important to note that for places v which split as v = ww® in F' the composite
cot, is conjugate by an element of GL3(Op,.) to the transpose inverse of ¢, (cf. [EGH13],
Section 7.1.1).

We briefly recall the relation between the space A of classical automorphic forms and
the previous spaces of algebraic automorphic forms, in the particular case which is relevant
to us.

Let S % Hom(F, Q,) and, for any place w|p, let S,, &of Hom(Fw,@p) S < Hom(ky, Fp).
Following [EGHT13], Section 7.3 we consider the subset (Z23 )5 of dominant weights A = (),
verifying the condition

(613) >\1,oc + )\370 = 07 /\2,a + )\2,00 = 07 >\3,UC + /\1,<7 =0
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for all triples A, = (M,0,A2,0,A3,0) and all o € S. If w|p and A € (Zi)g we write A, for
the projection of A on (Zi)g v and W, ~for the OF,-specialization of the dual Weyl module
associated to A, (cf. [EGHI3|, Section 4.1.1); by condition and Remark one
deduces an isomorphism of (O .+ )-representations Wy o, = W)y . o tye. Therefore, by

letting Wy & W), oty for any place wlv, the G(Op+ ,)-representation

def
Wi = QWa,
v|p

is well defined.

For a weight A € (Zi)os and an irreducible smooth G(O g+ ,)-representation 7 over @p,
let us write Sy ;(Q,) to denote the inductive limit of the spaces S(U, Wy ®¢,, T) over the
compact open subgroups U < G(AZY) x §(Op+ ) (note that the latter is an inductive
system in a natural way, with injective transition maps induced from the inclusions between
levels). Then Sy ,(Q,) has a natural left action of G(A$,) induced by right translation of
functions.

Fix an isomorphism 2 : @p 5 C. As we did for the O, -specialization of the dual Weyl
modules, we define a smooth G(F* ®q R)-representation o) = @ oy with C-coefficients,

v|oo
where o) ~depends only on ), for a place wlv (we invite the reader to refer to [EGH13],
Section 7.1.4 for the precise definition of ).

Lemma 6.2. The isomorphism 1 : @p 5 C induces an injective morphism of smooth
G(A,)-representations

SAJ(@;D) ®@pﬂ Cc HOmG(F+®QR)(UX,‘A).

IfII is an irreducible automorphic representation of G(Ap+), then II,, contains T g, . Cif
s

and only if the isotypic space Homg(p+®QR)(aX,H) is in the image of 1.

6.2. Serre weights. We recall the notion of Serre weights of 7 : Gp — GL3(F) and relate
constituents of GL3(OF, )-types and potentially crystalline lifts of 7|q,, .

Definition 6.3. A Serre weight for G (or just Serre weight if G is clear from the context)
is an isomorphism class of a smooth, absolutely irreducible representation V' of G(Op+ ).
If v|p is a place of F'™, a Serre weight at v is an isomorphism class of a smooth, absolutely
irreducible representation V,, of S(OFJ). Finally, if w|p is a place of F, a Serre weight at w
is an isomorphism class of a smooth, absolutely irreducible representation V,, of GL3(OF, ).

In particular, if V, is a Serre weight at v, the Serre weights at w® defined by V, o1t oc,
V, 0 Ly are dual to each other by Remark

As explained in [EGH13], Section 7.3, a Serre weight V admits an explicit description
in terms of GL3(k, )-representations. More precisely, let w be a place of F' above p and
write v & w|p+. The element ¢ € Gal(F/F*) induces an involution Sy, = Sy and we

define the set @w‘p(Zi)gw as the set of tuples (@, by, Cw)w (Where each triple (aq, buw, Cw)
is dominant) verifying:

(6.2.1) Ow,o + Cwe,ge = 0, buw,o + bwe,ge =0, Cuw,o + Qe ,ge =0

for all 0 € S,,. If the triple a,, def (A by, ) € Zi is restricted (i.e. 0 < a0 —buw,os bw,o—

cwo < p—1forall wlp, o € Sy) we consider the Serre weight F, = F(auw,bw,cw) as
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defined in [EGHT3], Section 4.1.2. It is an irreducible representation of GL3(k,,), hence of
9(k,) and (by inflation) of §(Op+) via the morphism ¢,

As above, condition implies that F(auw,bw,cw)Y 0 twe = F(ay, by, Cw) © Ly as
G(k,)-representations (i.e. F(aye,bye,Cpe) © tye =2 F(ay, by, Cw) © ty) and the smooth
5(0 .+ )-representation Fy o Fy oty is well defined.

We set
= QP
vlp
which is a Serre weight for §(Op+ ). From [EGHI3|, Lemma 7.3.4 if V is a Serre weight
for G, there exists a tuple a = (@, by, Cw)w € @wlp(Zi)g“’ and a decomposition V = QV,,
vlp
where the V, are Serre weights at v verifying V, o ;' & F(au, by, cy). Again, thanks to
condition (6.2.1) and Remark [6.1 we deduce that V,, is well defined.

Definition 6.4. Let 7 : Gp — GL3(F) be a continuous, absolutely irreducible Galois
representation and let V be a Serre weight for §. We say that 7 is automorphic of weight V (or
that V' is a Serre weight of T) if there exists a compact open subset U in G(AZ") x G(Op+ )
unramified above p and a cofinite subset P C Py such that 7 is unramified at each place of
P and
S(U,V)mz #0
where m; is the kernel of the system of Hecke eigenvalues @ : T¥ — F associated to 7, i.e.
3 .
det (1 — 7V (Frob,)X) = Y (=1 (N, sq, () Ba(r) x
§=0
for all w € P.

In what follows (sections we will be needing the notion of Serre weight above a
specific place w|p. That is the reason for the following:

Definition 6.5. Let 7 : Gp — GL3(IF) be a continuous Galois representation and let wp|vg
be places of F', FT respectively, above p.

If V,,, is a Serre weight at wy, we say that 7 is automorphic of weight V,,, at wg (or that
Vi 1s & Serre weight of 7 at wy) if for all v|p, v # vy there exist Serre weights V,, such that
by letting V0 & ®  V,, the smooth S(OF;) representation V" ® V,, is a Serre weight

v|p, v#vo
of 7 as in Definition [6.4] where V,,; = Vi, © tuy,-

As above, we write W, (7) for the set of all Serre weights of ¥ at a place w|p. Note that
condition implies that W, (7) and W (7) are in natural bijection via the involution
c€ Gal(F/FT1): V,, € Wy (r) if and only if (V,,)Y o ¢ € Wy (7).

We recall some formalism related to Deligne-Lusztig representations and potentially crys-
talline lifts for 7|q Fug WV refer the reader to [Her09], Section 4 for a precise reference.

Let w|p be a place of F', n € {1,2,3} and let ky n/ky be an extension verifying [k, » :
kw] = n. Let T be a maximal torus in GL3 . Following [Her09], Lemma 4.7 we have an
identification

(6.2.2) T(kw) = [ ] Ko,
J

where 3 > n; > 0 and Zj n; = 3; the isomorphism is unique up to Hj Gal(kw,n; /kw)-

conjugacy. In particular, any character 6 : T(k,) — @; can be written as § = ®;60; where
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0; :kiym, — @; We say that 0 is primitive if 6; is primitive as in [Her(9], Section 4.2 for
all 7.

Given a maximal torus T and a primitive character 8 we consider the Deligne-Lusztig
representation RY. of GL3(k,,). By letting ©(6;) be the cuspidal representation of GLy,; (ki)
associated to the primitive character 6; via [Her(09], Lemma 4.7, we have

~ n—r GL3 (kw
Rf = (-1)" " Ind5 5" (2,0(0;))

where P, is the standard parabolic subgroup containing the Levi [] j GLyp; and r denotes
the number of its Levi factors.

Let Fy, p & W(kwyn)[%]; we consider ; as a character on O by inflation and we
w,m

define the following character rec(9):
i) rec(0) D> . 0.0 Artnl if 6, : kyw — @X are niveau one characters;
j=1Yj F, LUj P
(ii) rec(9) L9, 0 Art;i &) &) o (92 o Art;i 2) if 6; is a niveau one character
o€Gal(kw,2/kw) '
and 65 is a niveau 2, primitive character on kgyz;

(iii) rec(d) & éh o (91 o Art;i 3) if 01 is a niveau three, primitive character.
o€Gal(kw,3/kw) ’

From now on we assume that p is unramified in F+. In particular, the set of embeddings

Sw, Sy are in natural bijection.

Theorem 6.6. Assume that p is unramified in F+* and let w be a place of F' above p. Let V,,
be a Serre weight at w for the Galois representation 7 : Gg — GL3(F) and assume that V,,
is a Jordan-Hélder constituent in the mod-p reduction of a Deligne-Lusztig representation
RY. of GL3(kw), where T is a maxzimal torus in GLs ., and 0 : T(kw) — @: is a primitive
character. Ifrec() is as in item (i) above, we assume the characters 0; are pairwise distinct.

Then 7|qy, has a potentially crystalline lift with parallel Hodge—Tate weights {—2,—1,0}
and Galois type rec(0).

Proof. This is the statement of [MP17], Theorem 5.5. Note that in loc. cit. one assumes
further that p splits completely in F', but this condition is unnecessary as long as p is

unramified in F™ (the statement of loc. cit., Proposition 5.2 holds true for p unramified
in F'1). O

6.3. Weight elimination. Let wg|vg be places above p of F and F7T respectively with

Fu, =2 Qp. We define a predicted set of Serre weights WZJO (7) for 7 at wp. Assume that

77|(;Fw0 is of the form . We write p, for F|(;Fw0 in this subsection. Recall that we defined

in Section the Fontaine-Laffaille parameter FL(p,) € P*(F). From now onwards, we fix

an affine coordinate in P*(F) = A'(F) U {oo} via [2o : 21] = 2% if 29 # 0 and [0 : 1] = oo.
If py is split, then we let

W?

wo

(F) =W, U Wy U Wg

where
def

Wi = {F(a1 — 1,a0,a2 +2 —p), F((p— 1) + ag,az,a1), F(az — 1,a1,a0 +1)};

def

Wy = {F((p—1)+ao,a1—1,a2+2—p), F((p—1)+ai,a2,a0), Faz—1,a0+1,a1—(p—1))};

def

WS = {F(a25a07a1 - (p_ 1))7 F(p_2+a17a27a0+ 1)’ F(p_ 1+a’07a’17a2 - (p_ 1))}
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If py is non-split, then

2, | Flag—1,a1,a0+1), F((p—1)+ag,a1,a2 — (p—1)),
WWO(T)_{ ’ 1F(0a2—1,ao+1,a1—(]§—11))2 }UW

where
F(p—1+ap,as,a1), F(p—2+ay,as,a0 + 1), ) L
{ F(az,a9,a1 — (p—1)) if FL(pg) = oo;
W
{F((p = 1) + a1, 02,a0)} if FL(po) = 0;
0 otherwise.

Moreover, we define the set of obvious weights at wq as

Wlo(m) W (7)) N (W, U Wy).

wWo wo

Theorem 6.7. Let wo|vg be a place above p on F and F* respectively with F,, = Q,, and

assume that 77|(;Fw0 is of the form with the generic condition . If Vi, is a

modular weight for ¥ at wo, then V,,, € W} (7).

In what follows, we prove the inclusion Wy, (¥) C W, (F) under the assumption ag = —1,
¢c=as—ap—1, and r = a1 — ap — 1. This assumption is harmless since W,,, (F ® w®) =
W (F) @ w.

The proof is performed case by case, by a series of lemmas. The main strategy to prove

Theorem is the following: if a Serre weight V' is a constituent of E? for some 6 and if
TGr,, does not have a potentially crystalline lifts with Hodge—Tate weights {—2, —1,0} and

Galois type rec(f), then V' is not a modular Serre weight of 7 at wq, by Theorem

Lemma 6.8. Keep the assumption as in Theorem . If Vi, is a Serre weight of ¥ at wy
and p, is semi-simple, then Vi, € W, (7).

Proof. Proposition tells us that there are only 4 possible Galois types of niveau 1 for
the potentially crystalline lifts with Hodge-Tate weights {—2,—1,0} of p,. Hence, by the
strategy discussed right before Lemma the modular Serre weights of p, must be con-

stituents of Ry for 6 determined in Proposition Moreover, we can restrict our attention

—0
to the obvious weights in JH (RT) since a shadow weight is either non-modular or an ob-

. . ol . . s
vious weight of Rp for another §. For each 6 determined in Proposition there are 9

. -0 . . .
constituents of R and 6 of them are obvious weights. Thus, there are 24 weights we need
to consider.
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The following 7 weights are some of those 24 weights we need to consider, and it is easy
to check the following:

=

Flp—1,¢,r—1)€JH ford =" 2w

=

F(p—-1)+rp—1,c—1)€JH for 0 =2 ? @0 @

=)

\_/\/\_/V\/\_/v

Flp—1,c—1,r)eJH for 0 =t @a" ol

Flp—2,c+1,r—1)eJH for 0 =t @a"? @&

Ry) for0 =" oo ?

0
T
6
T
0
T
0
T
Fle+1,r—1,-1) € JH (R,
—0
T

F(C,Tv—l) eJH (R for @ = oct! Q" ®&v}72;

AA/;?AAA

F((p—1)+rp—2c) e JH (ET for 0 =5l @+ @ !

None of the Galois types 6 of niveau 1 above appears in Proposition [3.3] Hence, by The-
orem we can eliminate all of the weights listed above so that we now have 17 weights
survived.

Simiarly, Proposition tells us the possible Galois types of niveau 2 for the potentially
crystalline lifts with Hodge-Tate weights {—2,—1,0} of p,. The following 8 weights are
some of those 17 weights that are survived after the niveau 1 elimination, and it is also easy
to check the following:

F(c,r—1,0) € JH (Eg,) ford=0""1® O~JQ—2+p(c+2);

F(p—1)+r—1,p—1,c EJH(RT for 0 =" @ Wb

)

F(lp-1),r—1,c—(p—1)) € JH for 0 =" @ @b

F(p—1)4c¢p—1,r—1)€JH pet1Hp(r=2),

for0=w"@w (C b,

)

F(lp—1)+rc—1,0)€JH for 6 = 5P~ @ &L T

)
)
) for 6 = P~ @ @y
)
)
)

0
T
0
T
0
T
0
T
0
T

(7
(7
F(lp—1),r,c—1— (p—1)) eJH(
(7
(

~—2+p(ct2),
Wo ;

Fllp—1)+r—1,c+1,-1)€JH(Ry) for 0 ="' ®

Fle+1,-1,r—1—(p—1)) € JH (R?) for § = P2 @ ST,

None of the Galois types 6 of niveau 2 above appears in Proposition 3.7} Hence, by The-
orem we can further eliminate the weights listed above so that there are 9 weights
survived, which are exactly the same as the set W;O (7) for py split. This completes the
proof. O

Lemma 6.9. Keep the assumption as in Theorem and assume that py is non-split with
FL(py) # 0. If Vi, is a Serre weight of T at wy, then Vi, is isomorphic to one of the weights
in the following list:

F(c—1,r0), F(p—2,r,c—(p—1)), F(c—1,0,7r — (p— 1)),
F(p_2a67r)a F(p—2—|—r,c,0), F((p—1)+c,p—2,7“).
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Proof. Tt is enough to consider the set of Serre weights listed in Lemma Proposi-
tion (ii) tells us that we can further eliminate the Galois type o' @@ @@=t It is
easy to check the following:

Flp—-1)+(r—-1),p—2,c+1)eJH (Ez«) forg =Mo" oo
F((p—2),r—1,c+1—(p—1)) € JH (Ei) for 0 =M @a ool
Hence, we can eliminate the two weights above by Theorem [6.6]

Proposition tells us that we can further eliminate the Galois type & ® @y~ 2P @

G’;(““)‘Q. It is easy to check the following:

F(p—1)+r,c,—-1)eJH (Eg,) for 0 = 3¢ ® &g+172p'

Hence, by Theorem we can further eliminate this weight, so that there are only the six
weights in the statement of this lemma remaining. |

Lemma 6.10. Keep the assumption as in Theorem @ and assume that p, is non-split
with FL(py) # 00. If Vi, is a Serre weight of 7 at wo, then Vi, is isomorphic to one of the
weights in the following list:

F(e—-1,r0), Flp—2,r,¢c—(p—1)), F(c—1,0,r — (p — 1)),
F((pf 1)+7’;Ca*1)'

Proof. 1t is, again, enough to consider in the set of Serre weights listed in Lemma
Proposition [3.6] tells us that we can further eliminate the Galois types @™ @ @™t @ w~!
and @° @ "' @ &°. It is easy to check the following:

F(p—-1)+(r—1),p—2,c+1) € JH (E?p) for o =Moo el

F((p—2),r—1,c+1—-(p—1)) €JH (E?) for =Moo el
F((p—1)+ (r—1),¢,0) € JH (Ei) for 0 =3° @ 0! @&
F((p—2),c,7) € JH (EOT) forg=w‘@u ! @’

Hence, by Theorem we can eliminate the four weights above.
Proposition (v) tells us that we can further eliminate the Galois type @wP~2 @

@;Hﬂ)(r*l) @ @£71+p(c+1). It is easy to check the following:
F(p—1)+e¢,p—2,7) € JH (E‘;) for § = P2 @ st PrY),

Hence, by Theorem we can further eliminate this weight, so that there are only the four
weights in the statement of this lemma remaining. O

Proof of Theorem[6.7, The lemma [6.8] provides a complete proof for the case p, split. If
FL(p,) = oo then it holds by Lemma [6.9] and if FL(p,) = 0 then it holds by Lemma
Finally, if FL(p,) ¢ {0,00} then, by Lemmas and the Serre weights must be
isomorphic to a weight that is listed in both lemmas. O



52 DANIEL LE, STEFANO MORRA, AND CHOL PARK

6.4. Local-global compatibility. From now on we assume that p is totally split in the
CM field F. We fix a place wq of F' above p and let vg € wo|p+. The aim of this section is to
prove that under suitable local hypotheses, the Fontaine-Laffaille invariant FL(p,) defined
in Section can be recovered from a refined Hecke action when p, : Gg, — GL3(F) is
realized as a local parameter in an automorphic Galois representation 7 : Ggp — GL3(TF).
From now on we assume that the Galois representation 7 : Grp — GL3(F) is automorphic
of weight Vi, = F(2.0, 01,09, @0.w,) at wo (cf. Definition [6.5) Let 1?0 R

where W), o Wias,w.a1.w,a0.0) © tw for any wlv (cf. Section .
We fix a sufficiently small subgroup U of G(AL"") x G§(Op+ ,), unramified at all places
dividing p, and such that

Wy (F) = {Serre weights V' at wg such that S(U, (V 0 ty,) @ V' )m. # 0}

v|p, v#vo Wi,

where m; is the system of Hecke eigenvalues associated to 7 in the Hecke algebra T as in
Section (such a subgroup exists, cf. [EGHI3], Remark 7.3.6.). Note that we can write
U=U" x S(OFJO) where U < G(A°>") is compact open.

We first prove the modularity of certain Serre weights, which will be needed to prove

Theorem We introduce the following useful notation. If W (resp. V) is a GL3(Op,, )-
representation over O (resp. over ), we write

def

S(W) = S(U,W 0 ty, oy ‘7””) (resp. S(V) def S(U,V 0 tu, R0, Vvo)) )

Lemma 6.11. Assume that 7 : Gp — GL3(F) is absolutely irreducible and automorphic,

and that p, i 77|(;Fw0 is of the form (2.1.1) with the generic condition (2.1.9). Assume
further that p, is non-semisimple. Then

{F(az —1,a1,a0 + 1), F(ag — 1,a0+ 1,a1 — (p — 1))} C Wiy, (7).

Proof. The argument is the “weight cycling” technique for GLg, first used in [EGHI13],
Theorem 6.2.3 for a niveau three Galois representation, and recently adapted in the niveau
two semisimple case in upcoming work by Hui Gao [Gaod]. We give a summary of the
argument in our context.

We first claim that the commuting operators Ty, Ta (acting on S(V )y, for any V € W, (7)
and defined as in [EGHI3|, Section 4.2) act nilpotently on S(V)n, whenever V ¢ {F(ay —
1,a1,a0+1), F(ag—1,a9+1,a;—p+1)}. Forinstance if V = F(p—1+ag, az,a;) and T (resp.
T5) does not act nilpotently on S(V )y, then we deduce exactly as in the proof of [EGHI3]
corollary 4.5.4 that p, admits a crystalline lift over E having a 1-dimensional quotient of
Hodge-Tate weight {—(a;1)} (resp. a l-dimensional subrepresentation having Hodge-Tate
weight {—(p 4+ 1 + ap)}); this implies that 5, admits a 1-dimensional quotient isomorphic
to w? (resp. a l-dimensional subrepresentation isomorphic to w*?2), contradicting our
assumptions on py. Similarly, if V € {F(as — 1,a1,a0 + 1), F(az — 1,a0 + 1,01 —p+ 1)}
then T still acts nilpotently (but T need not).

As Ty acts nilpotently on both S(F(az —1,a0+1,a1 —p+1))m, and S(F(az —1,ay, a0+
1))m, we deduce from [EGHI3]|, Proposition 6.1.3 and the upper bound on W, (7) (Theorem
that Fas —1,a0+ 1,a1 —p+1) € Wy, (7) if and only if F(as —1,a1,a0+1) € Wy, (F)
i.e. that these two weights cycle to each other (this is independent on the value of FL(p,)).

Assume that FL(p,) ¢ {0,00} and that F(p — 1 + ag,a1,a2 —p+ 1) € Wy (7). As T;
acts nilpotently on S(F(p — 1+ ag,a1,a2 — p+ 1))m, for i = 1,2 we conclude by [EGHI3],
Proposition 6.1.3 and the weight elimination above that F(as — 1,a1,a0 + 1) € Wy, (7).
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Assume that FL(p,) = 0 and that one of F(p—1+4ag,a1,a2 —p+1), F(a1+p—1,as,ap)
is modular. By Theorem (and again [EGHI3|] Proposition 6.1.3(ii)) we deduce that
F(a; +p—1,a2,a0) can be cycled to F(az — 1,ay,a9 + 1) via Ty (cf. Remark and
. Similarly, F'(p — 1 + ag, a1,as — p + 1) can be cycled to F(ay — 1,a1,a0 + 1) via T}.

Finally, consider the case FL(p,) = co. As above, the weight F(as,ag,a; —p+ 1) (resp.
F(p—1+agp,a1,az —p+ 1)) cycles to F(az — 1,a1,a0 + 1) via Ty (vesp. T1). Similarly,
F(ag+p—1,a2,a;) cycles to F(as,ag,a; —p+1) via To (resp. to F(p—1+ag,ar,as—p+1)
via T1). Finally, F(a; + p — 2,a1,a9 + 1) cycles to F(ag +p — 1,as,a1) via both T; and
T,. O

Remark 6.12. In the semisimple case it is easy to prove, along the argument of Lemma|6.11
that either {F(ag — 1,a1,a0 + 1), F(az —1,a0 + 1,a1 —p+ 1)} C W, (7) or {F(ap +p —
lya1 —1,a2 + 2 —p), F(a; — 1,a9,a2 +2 — p)} C Wy, (7).

Indeed, the only weights where T4, T need not both act by zero are F(as — 1,a1,a0 +
1), F(ag—1,a0+1,a; —p+1) (where T1 may be non-zero, according to the normalizations)
and F(ag+p—1,a1 —1,a2 +2—p), F(a; —1,a0,as +2 — p) (where Ty may be non-zero).

By weight cycling an easy but tedious check, using [EGHI3|] Proposition 6.1.3 and The-
orem [6.7] shows that:

(i) F(az —1,a1,a0+1), F(az —1,a0+1,a1 —p+1) (resp. F(ap+p—1,a1 —1,a2 +
2 —p), F(a; —1,a9,a2 +2 — p)) cycle to each other via T (resp. via T3);

(ii) F(a; — 2+ p,as, a9+ 1) cycles to F(ag +p — 1,az2,a;) (via both T and T);

(iii) F(ag+p — 1,a2,a;1) can be cycled to either F(ag +p — 1,a1,a2 —p+ 1) (via Ty)
and F(ay,ap,a; —p+ 1) (via Ts);

(iv) both F(ag,ap,a1 —p+ 1) and F(ap +p — 1,a1,a2 — p+ 1)) can be cycled to one
of the weights in {F(a; — 1,a9,a2 —p +2), F(az —1,a1,a9 + 1)}, via Ty and T,
respectively.

(v) F(a1 +p—1,az2,a9) can be cycled to one of the weights in {F(a; — 1,ap,a2 — p+
2), F(as —1,a1,a0+ 1), F(ap+p—1,a1,as —p+ 1)} via Ty (resp. to one of the
weights in {F(a; — 1,ap,a2 —p+2), F(ag —1,a1,a9 + 1), F(az,ap,a1 —p+ 1)}
via TQ)

In the following picture, we draw the Hasse diagram of the cosocle filtration in the

GLs(Fp) a2 @ a1 @ wao: letting e % p — 1 for brevity,

rincipal series T < Ind
printip 0= "B,

F(az,a1,a0)

/\

e >Vﬂ 76)
F(a1,a0,az2 —e) F(ap —1+4e,az,a1 +1) F(az —1l,a1,a0 +1) F(a1 —1,a0,a2 +1 —¢) F(ag + e, az2,a1)

e T e

F(ag +e,a1,az —e)

Provided that p, is non-semisimple as in the statement of Theorem [6.7]

W, (F) NJH(7o) = {F(az — 1,a1,a0 + 1), F(ag + e, a1,az — )} U w’
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where
et {F(ao + e,az,a1), F'(az,a0,a1 —e)} %f FL@)) = o0;
W= ¢ {F(a1 +e,az,a0)} if FL(p,) = 0;
0 otherwise.

Using the notation and convention of Section [6.2] we define
S, V) E A GENGAR) = V™ | f(gu) =, f(9) ¥ g € GAF:),u e U™}

which is G(F[) representation by right translation of functions. We write S~ (Uv, V)
to denote the submodule of S(U", V") consisting of locally constant functions (i.e. the
submodule of smooth vectors for the G(F;) action on S(U",V™)).

Theorem 6.13. Let F be a CM field in which p splits completely and let 7 : Ggp — GL3(TF)
be an absolutely irreducible and automorphic Galois representation. Let wolp be a place of
F with v & wo|p+ and fiz a sufficiently small compact open U = U, x U < G(AZ?) x
S(Op+,p) where U C G(ARL™). We make the following two assumptions:

(i) 77|GFw0 is indecomposable of the form with the strongly generic condition ;
(ii) FL(7|cp,, ) ¢ {0,00};
(iii) The Og-dual of Ssm(UUO,‘7”0)@&“1’7“0’7‘12) is free over T, where T denotes the
O g-subalgebra of End (SSm(U”O, V”O)i{&alﬁao’*a?)) generated by T7, Uy and Us,.
Let S, S’ be the operators defined in Section@ specialised to (a,b,c) = (—ag, —a1, —asz).
Then

010
(6.4.1) Sol o0 1 )=(n=a L2 PLg,, )-S5
p 00 42— ’

SN

on 8™ (U0, Vo) [my] D (ma1=a0.=a2)[1], Uy]. Moreover, S™ (U, V¥0)[my]l(=a,—e0.—a2) [, U]
is embedded into S (U0, V¥0)[my]l(-e0—1L=av.=a241) ynder the map S.

Proof. The proof follows closely the proof of the local-global compatibility statement of
[HLMIT] (Theorem 4.5.2 in loc. cit.). We sketch here the argument.

We identify G(F;}) with GL3(Qp) via Ly, without further comment. Let 6 : T'(F,) — O
be the character W™ @ W* ® w2, (where T is the maximal split torus in GL3) and consider
the Deligne-Lusztig representation RJ (which will be considered as a smooth GL3(Z,)-
representation by inflation).

Recall that we have fixed at the beginning of Sectionthe weights Ay = (@w,2, Quw,1, Gw,0)

for places w|v above p with v # vg. By letting Ay, &of (0,0,0) we define the tuple

def
A= ((/\w)v|p7v¢vo,)\w0) € ®U|p(Z?’) and set
def

M & 5 (e, ooy L (—on a0 —az)

We write Mg, Mp, Tg etc. to denote the extension of scalars of M, T to E, F etc. B

By Lemma6.11|we have that S(U, F(az—1,a1,a0+1))m, # 0. As F(az—1,a1,a9+1)@pF
is a constituent of Ry we can lift the system of Hecke eigenvalues associated to m; to deduce
the following;:

(i) Mg = @Mg[pg] where the direct sum runs over the minimal primes of T;
p
(i) For each minimal prime p of T we have Mglpp] = @m(r)mh " %) g

vo
(WOO*”O)U , where m ® g C runs among the cuspidal automorphic representations
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such that the representation 7., ® g C is algebraic, of weight determined by (V”O)V,
rY lifts 7, and the Satake parameters of the base change of m, to G(F,) (for
v = w|p+ with w € P) are determined by pg;

(iii) there are smooth, E-valued characters v,, : Q5 — @: such that 1, |Z; = for
i € {0,1,2} and such that for any 7 as in item (ii) we have

1. 1GL3(Q, )
Tyy = IndB(éi) )'I/Jal‘ : |2 ®wa2| ! | ®'l/}aov

(iv) for 7 as in item (ii), r;ﬂGFw0 is potentially crystalline with Hodge-Tate weights
{2, 1,0} lifting 7, and moreover WD(rx|cy, )" 2= 9, © tha, © Va-
From (iii)-(iv) above and Corollary [{.4 we deduce (cf. Lemmal5.4)) that the eigenvalues of the
Up-operators have positive valuation. In particular T is a finite reduced, local Og-algebra,
with maximal ideal m generated by the image of mz, Uy, and Us.
Moreover, from (iii)-(iv) above and Corollary {4.4| the ¢-eigenvalue on Dg” ’Q(T;/)IFwo =&
is given by p*t,, (p)~! and hence

FL(7|cy, ) = red(%;(p)

).
By Proposition specialized at (a, b, c) = (—ag, —a1, —a2) we have
(6.4.2) S oIy = 7’”‘1;@77%

on Mg [pE] .
Assume now that Home , (M, Of) is free of rank d > 1 over T. The argument of [HLMIT],
Theorem 4.5.2 shows that M|[p] is free of rank d and we have an isomorphism

Mg[p] — Mg[m]

which implies the desired relation (6.4.1) on My[m] = (S™ (U?0, V) [m])l(-a1—e0.~a2) [} 1]
def

Let N = Ssm(U”,17”0),{{&“0’_“2’_“1), T’ the Op-subalgebra of End(N) generated by T,
Uy, Uy, m’ the maximal ideal of T/ generated by my, Uy, Us. Then one sees that IT induces
an injective morphism Mp[m] < Ng[m'].

Let v € My[m] be non-zero. Then by the upper bound of Theorem we see by Lemma
and [Le|, Proposition 2.2.2 that (K - v) is uniserial, of shape F(—ay — 1, —ai, —az +
1)—F(—ay +p—1,—ag,—az) and (K - IIv) is uniserial, of shape F(—ag — 1, —a1, —as +
1)—F(—ap,—a2,—a; —p+1). Hence Sv, S’ o Ilv are non-zero by Proposition and the
result follows. O

Remark 6.14. There is a symmetry under the involution wy — w§. Indeed, if wg is
a place where p,, & f|GFwO admits a Fontaine-Laffaille parameter (in particular, it is
non-semisimple, and maximally non-split if its niveau is moreover one) then FL(p,, ) =
L (FL(ﬁw8)> where ¢ : P}(F) — P(FF) denotes the standard involution on the projective line.
Similarly, the role of the group algebra operators is exchanged: one has S, = S{Ug and
Swe =S,

w, (in the obvious notation).

o
From the proof of Theorem [6.13] we deduce the following modularity result:
Corollary 6.15. Assume that T satisfies the assumption (i) in Theorem . Then
{F(a2 - 1,&1,(10 + 1)7 F(a2 - 17(10 + 1,&1 - (p - 1))} g Wwo(’f‘_).
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Furthermore,

F((p — 1) + al,ag,ao) S Wwo('F>7 ifFL(f‘GFwO) =0
F(az,a9,a1 — (p — 1)) € Wy, (7), ifFL(F\GFwO) = 0.

Assume moreover that F' is unramified at all finite places of FT and that there is a
RACSDC automorphic representation I of GL3(AFr) of level prime to p such that
o 7~ 7y, (II);
o For each place wlp of F, rp,;(I)|ay, is potentially diagonalizable;
o 7(GF,)) s adequate.

Then W25oP (7) C Wy, (7).

Proof. The first part is immediate from Lemma Assume now that FL(7|g Fwo) = oc.
The argument is now similar to [HLM17], Proposition 4.5.10.

We claim that F(az,a9,a1 —p+ 1) € Wy, (7). Suppose that (K - v) contains the weight
F(—ay,—ag,—ag —p+1). Then an easy check (as in the proof of Lemma shows that
both Hecke operators T and T act by zero on F(ag + p — 1, as,a1), which implies, by
weight cycling and Theorem above, that F(az,ag,a; —p+ 1) is in Wy, (7).

We now suppose that (K -v) does not contain the weight F(—aq, —a2, —ag —p+1). Then
both (K -v) and (K -Ilv) are quotients of the uniserial representations F(—ao—1, —ay, —as+
1)—F(-a1 +p—1,—ag,—az2) and F(—ag — 1,—a1, —as + 1)—F(—ag, —az,—a; —p + 1),
respectively (by [HLMI17], Lemma 3.1.11 and Theorem above). As w‘”T(m = —1 where
0 < vp(a) < 1, the equality on Mg[pg| implies that Sv = 0 for some non-zero v €
Mpg[m']. By Proposition (cf. [HLM17] Proposition 3.1.2) and the previous observation
on (K - v) this forces (K - v) to have length one, i.e. F(az,ap,a1 —p+ 1) is modular. The
case FL(F|GFwO) = 0 is easier and treated similarly.

As for the last statement (which needs to be proved only if FL(p,) = 00), it is enough
to remark that for FL(p,) = oo, the representation p, admits a potentially diagonalizable
lift with Hodge-Tate weights {p+ 1+ ag, az + 1, a1} by Proposition and the conclusion
follows from [BLGGI18], Theorem 4.1.9 and Lemma 5.1.1. |

6.5. Freeness over the Hecke algebra. In this section, we prove Theorem [6.16] which
states that the dual
Homo (S(U", V*)m' ™77, 0p)
of the space of automorphic forms is free over a Hecke algebra for certain choices of compact
open subgroup U"° (‘7”0 and m; are as defined in Section .
We keep the notation of Section Hence F/Q is a CM field in which p splits, F'*
its maximal totally real field, with F//FT unramified at all finite places and [F : FT] =0

mod 4. Fix a place wlp of F, and let v &of w|p+. Let 7 : Gp — GL3(F) be a Galois
representation with 7|, niveau two non-split as in Theorem|[6.13] (i) satisfying the following
additional properties.
(i) 7 is unramified at places away from p.
(ii) 7 is Fontaine-Laffaille and regular at all places dividing p.
(iii) 7 has image containing GL3(k) for some k C F with #k > 9.

—ker ad7

(iv) F does not contain F((,).

By condition (stronger than the usual condition of adequacy (see Definition 2.3 of
[Thol2])) we can choose a place v; of F* which is prime to p satisfying the following
properties (see Section 2.3 of [CEG™16]).
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o vy splits in F' as v; = wiwy.
o vy does not split completely in F(().
o p(Frob,, ) has distinct F-rational eigenvalues, no two of which have ratio (Nv;)*!.
We now fix an unitary group G\ p+ and a model § over Op+ as in Section We require
moreover that G is quasi-split at all finite places (which is possible by the choice of F'). Let
Uv < G(A;f’f") be a compact open subgroup satisfying the following properties.
(v) Uy, = 9(0,,) for all places v which split in F' other than v; and those dividing p;
(vi) U,, is the preimage of the upper triangular matrices under the map

9<Ov1) — 9(kvl) LL> GL3<kw1);

(vil) U, is a hyperspecial maximal compact open subgroup of G(F,) if v is inert in F.
The choice of the compact open set U, implies that U"°U,,, is sufficiently small in the sense
of Section for any compact open subgroup U,, of G(F,,).

Let P denote the set consisting of finite places w’ of F such that v/ < '’ |+ is split in F
and w’ does not divide p or v;. We define the maximal ideal m; of T” as in Recall the
space of automorphic forms ™ (Uvo, V7v0) L (7#1:790:792) qefined in Section|6.1] which carries
a natural action of the algebra T” and the operators Uy, Us. From now on, we assume that
the highest weights \y, € (Zi)g” appearing in the constituents of V0 = ®v‘p,v;ﬁv0 W, all
lie in the lowest alcove (i.e. for all wlv, v € S\ {vo} we have ag.w — aow < p —2).

We make finally the following assumption:

(viii) ™ (U, V'), is nonzero.

Let T, (resp. T, resp. T;) denote the Og-subalgebra of
End(S™ (U0, Vo) e aemae))

generated by T7 (resp. T?, Uy, and Us, resp. U;). Here the subscript a stands for the
“anemic” Hecke algebra. See Section 5.2 of [HLMI17] for the definitions of M, and Ro. As
in [HLMI7], we let R; be the Roo-subalgebra of Endp_ (Moo (7)) generated by Us.

Theorem 6.16. Let 7 be as in Theorem [6.13 (i). Assume (i)-(viii) in the setup above. If
FL(7|Gy, ) # oo (resp. FL(7|gy, ) # 0) then the space

(87 (U, Vo) T (resp. (87U V0T T
is free over T, where the superscript “d” stands for Schikhof duality (see Section 1.8 of
ICEG™16]). Moreover, if FL(F|g,, ) ¢ {0,00} then R; = Ry, T; = T and

sm

8™ (U, V) g e e ] = 7 (U0, V) my )T [, U
_ Ssm((]l}07 VUO)[mF]I,(—ao,—am—al) [Ul]

Proof. The proof is exactly as in Section 5 of [HLM17]. The key point is that Lemma 5.3.3
of [HLM17] still holds using Theorem in place of Theorem 4.3.1 of [HLMI7]. O

Note that by combining Proposition [2.27, Theorems and [EGI4] Corollary A.7
we can infer the following:

Theorem 6.17. Let p, be as in Definition[27]} Then there is a CM field F, an automorphic
Galois representation 7 : Gp — GL3(F), verifying T|r, = py for all w|p, such that all the
hypotheses in the setup of Section [6.5 are satisfied.
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In particular Theorem applies to 7: if FL(7|q,, ) # oo (resp. FL(7|g, ) # 0) then
S (Uve, Vo) [mg) L (-an—a0.=a2) [T,] (resp. ST (U0, VU0)[my] (=20 =a2,=a1)[T]}] ) is free over
T and if moreover FL(7|g,, ) ¢ {0,00} then the equality of refined Hecke operators
on S (Uv, Vo) [my]l(mav.ma0=a2) (17, - Uy] holds true.
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