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Abstract. Let F/Q be a CM field where p splits completely and r̄ : Gal(Q/F ) →
GL3(Fp) a continuous modular Galois representation. Assume that r̄ is non-ordinary and

nonsplit reducible (niveau 2) at a place w above p. We show that the isomorphism class
of r̄|Gal(Fw/Fw) is determined by the GL3(Fw)-action on the space of mod p algebraic

automorphic forms by using the refined Hecke action of [HLM17]. We also give a nearly
optimal weight elimination result for niveau two Galois representations compatible with

the explicit conjectures of [Her09] and [GHS]. Moreover, we prove the modularity of
certain Serre weights, in particular, when the Fontaine-Laffaille invariant takes special

value ∞, our methods establish the modularity of a certain shadow weight.
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1. Introduction

Let p be a prime. In this paper, we address a problem about local-global compatibility
in the mod p Langlands program for GL3(Qp). In [Ser87], J.-P. Serre conjectured that if

r̄ : Gal(Q/Q)→ GL2(Fp) is a modular Galois representation, then the minimal weight of a
modular form giving rise to r̄ is determined (in an explicit way) from the local datum r̄|Ip ,
where Ip denotes the inertia group at p. From the explicit description, one easily sees that
the conjectured minimal weight actually determines the isomorphism class of r̄|Ip (outside
the très ramifiée case). Serre interpreted this as evidence for compatible mod p local and
global Langlands correspondences (cf. loc. cit., Section 3.4). These correspondences were
established along with their p-adic analogues in several works of many authors—Breuil,
Berger, Colmez, Dospinescu, Emerton, Kisin, and Paskunas to name a few (see [Bre03,
Col10, Eme]). In particular, r̄|Gal(Qp/Qp) can be recovered from the minimal weight and the

Hecke action on it.
One would hope for analogous correspondences in greater generality. For a CM extension

F/F+ in which p splits completely, fix a place w|p in F . For a modular Galois representation
r̄ : Gal(Q/F )→ GL3(Fp), one could consider the GL3(Fw)-representation Π(r̄) coming from
the space of mod p automorphic forms on a definite unitary group. It is not known whether
Π(r̄) depends only on r̄|Gal(Fw/Fw). It is expected that if r̄|Gal(Fw/Fw) is tamely ramified,

then it is determined by the set of modular Serre weights (the GL3(Zp)-socle of Π(r̄)) and the
Hecke action on its constituents. However, this is not true if r̄|Gal(Fw/Fw) is wildly ramified,

and the question of determining r̄|Gal(Fw/Fw) from Π(r̄) lies deeper than the weight part of

Serre’s conjecture. Using a refined Hecke action, we show that the GL3(Fw)-action on Π(r̄)
determines r̄|Gal(Fw/Fw) in the non-ordinary cases following the work in the ordinary cases

of [HLM17] for GL3(Qp) and [BD14] for GL2 over unramified extensions of Qp.
In order to present the main results in more detail we need to fix some notation. We let

E/Qp be a finite extension, OE its ring of integers and F its residue field. These are the
rings of coefficients of our representations and are always assumed to be sufficiently large.
Let ρ : GQp → GL3(F) be a continuous reducible indecomposable Galois representation. It
is believed that the semisimplification of ρ is determined by the modular Serre weights of
ρ and the Hecke actions on them. (For instance, see [GG12] for the ordinary case.) When
we fix the undramified part and the tamely ramified part of ρ that is Fontaine–Laffaile,
the extension class, and hence the isomorphism class of ρ, is determined by an invariant
FL(ρ) ∈ P1(F) generalizing the one in [HLM17] (cf. Definition 2.8).

One can also define a parameter on the automorphic side. Let I1 denote the standard
pro-p Iwahori subgroup. If πp is a smooth F-valued representation of GL3(Qp), which verifies
certain multiplicity one properties with respect to its GL3(Zp)-socle, then there is a natural
action of certain group algebra operators S, S′ on (a2, a1, a0)-isotypic parts of πI1p (isotypic
with respect to the residual action of the finite torus) and one can associate a non-zero
parameter to the pair (S, S′) (see Section 5 for the precise definition of the operators and
their properties).

The main result of this paper is to prove that the two local parameters defined above
coincide when the local representations are obtained from the cohomology of unitary arith-
metic manifolds (cf. Theorem 6.13). Let F/Q be a CM field with F+ its maximal totally

real subfield and let r̄ : GF
def
= Gal(Q/F )→ GL3(Fp) be a continuous Galois representation.

Assume that p is totally split in F and fix a place w0|v0 of F, F+ respectively, above p. We
assume that r̄ is modular: for the purpose of this introduction this means that there exists
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a totally definite unitary group G defined over F+ (outer form of GL3 and split at places
above p), a tame level Up ≤ G(A∞,pF+ ) away from p and a maximal ideal mr̄ associated to r̄

in the Hecke algebra acting on S
sm

(Up,F) (the space of algebraic automorphic forms with
infinite level at p and coefficients in F) such that S

sm

(Up,F)[mr̄] 6= 0.
We write W (r̄) for the set of Serre weights of r̄, i.e., the irreducible smooth G(OF+,p)-

representations V over F such that

HomG(OF+,p)

(
V ∨, S

sm

(Up,F)[mr̄]
)
6= 0.

We fix a Fontaine-Laffaille set of weights V v0 away from v0 (i.e. V v0 is an irreducible
smooth representation of

∏
v|p, v 6=v0

G(OF+
v

) and there exists an irreducible smoothG(OF+
v0

)-

representation Vv0
such that V v0⊗Vv0

∈W (r̄); see Definition 6.5 for details on the definition
of V v0). In particular, we define the space S

sm

(Uv0 , V v0)[mr̄] of algebraic automorphic forms
of infinite level at v0 and coefficients in V v0 ; it is a G(F+

v0
)-representation.

Theorem 1.1. In the previous hypothesis and settings, let U = Uv0
× Uv0 ≤ G(A∞,pF ) ×

G(OF+,p) be a sufficiently small compact open (see §6.1), where Uv0 ⊂ G(A∞,v0

F+ ). We make
the following assumptions:

(i) r̄|GFw0
is indecomposable of residual niveau 2 as in (2.1.1) with genericity condi-

tion (2.1.2);
(ii) FL(r̄|GFw0

) /∈ {0,∞};
(iii) r̄ is Fontaine-Laffaille at all places dividing p;
(iv) r̄ is unramified at places away from p;
(v) r̄ has an image containing GL3(k) for some k ⊂ F with #k > 9;

(vi) F
ker(adr̄)

does not contain F (ζp).

Let S, S′ be the group algebra operators defined in §5 (associated to the triple of integers
(−a0,−a1,−a2). Then

S′ ◦

 0 1 0
0 0 1
p 0 0

 = (−1)a2−a1 · a1 − a0

a2 − a1
· FL(r̄|GFw0

) · S(1.0.1)

on S
sm

(Uv0 , V v0)[mr̄]
I,(−a1,−a0,−a2)[U2], where the notation (•)I,(−a1,−a0,−a2) denotes the

(−a1,−a0,−a2)-isotypic part, for the residual action of the finite torus, of the pro-p Iwahori
fixed vectors of S

sm

(Uv0 , V v0)[mr̄], and U2 is a Hecke operator at v0 (see §5.2).

In the theorem above, the assumptions (iii)-(vi) are needed in order to obtain a freeness
result for a Hecke algebra acting on S

sm

(Uv0 , V v0)[mr̄] (cf. Theorem 6.16). Assumptions (v)
and (vi) are needed to choose auxiliary primes in the Taylor–Wiles method. Assumptions
(iii) and (iv) could likely be removed with a closer study of local Galois deformation rings
at and away from p, respectively.

As mentioned before, in order to obtain Theorem 1.1 one needs a certain multiplicity
one condition on the G(OF+

v0
)-socle. This is obtained by a thorough type elimination in

niveau 2, which highlights that the set of Serre weights for r̄ depends on the associated
Fontaine-Laffaille parameter.

When r̄|GFw0
is semisimple, there is a conjectural description of the set W ?

w0
(r̄) of irre-

ducible smooth representations Vv0 of G(OF+,p) such that V v0 ⊗ Vv0
∈ W (r̄) (cf. [Her09]).

When r̄|GFw0
is not semisimple, we define here an explicit set W ?

w0
(r̄), which depends on the

Fontaine-Laffaille parameter associated to r̄|GFw0
(cf. Definition 6.3). We remark that in
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the set W ?
w0

(r̄) we can distinguish an explicit subset W ?,obv
w0

(r̄) of obvious weights (related
to “obvious” crystalline lifts of r̄|GFw0

). Our main result on Serre weights for r̄ is contained

in the following theorem:

Theorem 1.2. Assume that r̄ verifies assumption (i) of Theorem 1.1. Then

Ww0
(r̄) ⊆W ?

w0
(r̄).

Moreover, the obvious weights F (a2 − 1, a1, a0 + 1) and F (a2 − 1, a0 + 1, a1 − p + 1) are
always modular, while, if the Fontaine-Laffaille parameter at w0 verifies FL(r̄|GFw0

) = ∞,

the shadow weight F (a2, a0, a1 − (p− 1)) is modular.
Finally, assume that F is unramified at all finite places and that there is a RACSDC

automorphic representation Π of GL3(AF ) of level prime to p such that

(i) r̄ ' r̄p,i(Π);
(ii) For each place w|p of F , rp,i(Π)|GFw is potentially diagonalizable;

(iii) r̄(GF (ζp)) is adequate.

Then we have the following inclusion:

W ?,obv
w0

(r̄) ⊆Ww0
(r̄).

Remark 1.3. If r̄|GFw is split, and r̄ verifies items (i)-(iii) of Theorem 1.2 we can always

prove that W ?,obv
w0

(r̄) ∩ WL ⊆ Ww0
(r̄) where W ?,obv

w0
(r̄) ∩ WL is the set of obvious lower

weights of r̄ at w0 (cf. §6.3)

We now wish to describe the relationship between this paper and [HLM17]. On the Galois
side we need to introduce new technical tools, the first of which is the classification of simple
Breuil modules of rank 2 (Proposition 2.24). This is required both for weight elimination
results, and to show the connection between the Fontaine-Laffaille parameter and a Frobe-

nius eigenvalue of a certain potentially crystalline lift of ρ0
def
= r̄|GFw0

(cf. Proposition 4.3

and Theorem 4.5). Moreover, the proof of the existence of crystalline and potentially diag-
onalizable lifts for ρ0 appearing in [HLM17] (Corollary 4.4.4 and Theorem 5.3.7 in loc. cit.)
are global in nature and specific to the niveau 1 case and we develop purely local techniques
from Galois cohomology to obtain the analogous result in the non-ordinary case. (The exis-
tence of potential diagonalizable lifts shows in particular that representations satisfying the
hypotheses of Theorem 1.1 do exist, cf. Theorem 6.17).

On the automorphic side we still consider spaces of automorphic forms whose coefficients
at places above p are principal series, since the same group algebra operators as in [HLM17]
recover the Fontaine–Laffaille parameter of ρ0 via classical intertwining operators. That we
can prove our freeness result (Theorem 6.16) using our weight elimination result seems to
be a coincidence specific to GL3. We plan to address generalizations to higher dimension
and niveau in future work (for the niveau one case, see [PQ]).

We conclude this introduction with an overview of the sections of this paper. In the
remainder of this introduction, we introduce the notation that will be used throughout
the paper. In Section 2, we analyze the local mod p Galois representation ρ0 in terms of
Fontaine–Laffaille theory. We also classify rank 2 simple Breuil modules with tame descent
data and show the existence of crystalline lifts with certain Hodge–Tate weights of the rep-
resentation ρ0. In Section 3, we perform elimination of Galois types, by determining the
structure of possible Breuil modules with descent data corresponding to the representation
ρ0. In Section 4 we completely determine the filtration of strongly divisible modules lifting
the Breuil modules, with a carefully chosen descent datum, corresponding to the represent-
ation ρ0. The filtration on strongly divisible modules gives information of the eigenvalues of
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the Frobenius map of the corresponding weakly admissible filtered (φ,N)-modules, and we
find an explicit relation between certain Frobenius eigenvalues and the Fontaine–Laffaille
parameter. In Section 5, we quickly review certain group algebra operators and their prop-
erties, developed in [HLM17]. Our main results are stated and proved in Section 6. We
establish a weight elimination result in Section 6.3, and prove mod p local-global compata-
bility and modularity of certain weights in Section 6.4. A freeness result for a Hecke algebra
acting on S

sm

(Uv0 , V v0)[mr̄] is proved in Section 6.5.

1.1. Notation. Let Q be an algebraic closure of Q. All number fields F/Q will be considered

as subfields in Q and we write GF
def
= Gal(Q/F ) to denote the absolute Galois group of F .

For any rational prime ` ∈ Q, we fix an algebraic closure Q` of Q` and an embedding
Q ↪→ Q` (and so an inclusion GQ` ↪→ GQ). In a similar fashion, we fix an algebraic closure

F` for the residue field F` of Q`. As above, all algebraic extensions of Q` (resp. F`) will be
considered as subfields in the fixed algebraic closure Q` (resp. F`).

Let f ≥ 1 and k = Fpf . We let K0
def
= W (k)[ 1

p ] be the unramified extension of degree f

of Qp. We consider the Eisenstein polynomial E(u)
def
= ue + p ∈ Zp[u] where e = pf − 1. We

fix a root $ = e
√
−p ∈ Qp and set K

def
= K0($). In particular, K/K0 is a tamely, totally

ramified extension of K0 of degree e and a uniformizer $.
Let E be a finite extension of Qp. We write OE for its ring of integers, F for its residue field

and $E ∈ OE to denote an uniformizer. From now on, we fix an embedding σ̃0 : K ↪→ E,
hence an embedding σ0 : k ↪→ F.

The choice of $ ∈ K provides us with a map:

ω̃$ : Gal(K/Qp) −→ W (Fpf )×

g 7−→ g($)

$
whose reduction mod $ will be denoted as ω$. Note that the choice of the embedding σ0 :

k ↪→ F provides us with a fundamental character of niveau f , namely ωf
def
= σ0◦ω$|Gal(K/K0).

Write ϕ for the absolute Frobenius on k. By extension of scalars, the ring k ⊗Fp F is
equipped with a Frobenius endomorphism ϕ ⊗ 1 and with a Gal(K/Qp)-action via ω$ ⊗
1. In particular, we recall the standard idempotent elements eσ ∈ k ⊗Fp F defined for
σ ∈ Hom(k,F), which verify ϕ(eσ) = eσ◦ϕ−1 and (λ ⊗ 1)eσ = (1 ⊗ σ(λ))eσ. We write
êσ ∈W (k)⊗Zp OE for the standard idempotent elements; they reduce to eσ modulo p.

Given a p-adic Galois representation ρ : GQp → GLn(E), we write ρ∨ to denote the linear
dual representation. Given a potentially semistable representation ρ : GQp → GLn(E), we
write WD(ρ) to denote the associated Weil-Deligne representation as defined in [CDT99],
Appendix B.1. We refer to WD(ρ)|IQp as to the inertial type associated to ρ. Note

that, in particular, WD(ρ) is defined via the (covariant) filtered (ϕ,N)-module D
Qp
st (ρ)

def
=

lim−→
H/Qp

(Bst ⊗Qp ρ)GH (and D
∗,Qp
st denotes the contravariant filtered (ϕ,N)-module).

Let f ≥ 1 be a fixed integer. By [m]f for an integer m ∈ Z we mean the unique integer
in the interval [0, pf − 1) congruent to m mod (pf − 1).

2. The local Galois side

In this section, we analyze the local mod p Galois representations we impose in terms
of Fontaine–Laffaille theory. After recalling some integral p-adic Hodge theory, we classify
rank 2 simple Breuil modules with tame descent data of niveau 1 and 2, which will be used
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in Sections 3 and 4. We also show the existence of crystalline lifts with certain Hodge–Tate
weights of the local mod p representations, which will be useful later.

2.1. The Fontaine-Laffaille parameter. Let ρ0 : GQp → GL3(F) be a continuous Galois
representation. We assume that ρ0 is of niveau 2, i.e., an extension of a 2-dimensional
irreducible representation by a character. More precisely, we may let

(2.1.1) ρ0|IQp ∼=

ω
a2+1 ∗ ∗
0 ω

(a1+1)+p(a0+1)
2 0

0 0 ω
a0+1+p(a1+1)
2


for some integers a0, a1, a2 ∈ N. It is obvious that it can be rewritten as follows:

ρ0|IQp ∼=

ω(a2−a0−1)+1 ∗ ∗
0 ω

(a1−a0−1)+1
2 0

0 0 ω
p((a1−a0−1)+1)
2

⊗ ωa0+1.

We let ρ2 be the one-dimensional subrepresentation such that ρ2|IQp ∼= ωa2+1 and ρ10 the

two-dimensional irreducible quotient such that ρ10|IQp ∼= ω
a0+1+p(a1+1)
2 ⊕ ω(a1+1)+p(a0+1)

2 .

2.1.1. Preliminaries on Fontaine-Laffaille theory. We briefly recall the theory of
Fontaine-Laffaille modules with F-coefficients and its relation with mod-p Galois represent-
ations. The main reference will be [HLM17], Section 2.1.

A Fontaine-Laffaille module (M,Fil•M,φ•) over k ⊗Fp F is the datum of

(i) a finite k ⊗Fp F-module M , free over k;

(ii) a separated, exhaustive and decreasing filtration {FiljM}j∈Z on M by k ⊗Fp F
submodules (the Hodge filtration), which are k-direct summands;

(iii) A ϕ-semilinear Frobenius isomorphism φ• : gr•M →M

Note that, by property (iii), a Fontaine-Laffaille module is indeed free over k ⊗Fp F.
Defining the morphisms in the obvious way, we obtain the abelian category F-FLk of

Fontaine-Laffaille modules over k ⊗Fp F. If the field k is clear from the context, we simply
write F-FL to lighten the notation.

Given a Fontaine-Laffaille module M , the set of its Hodge-Tate weights in the direction
of σ ∈ Gal(k/Fp) is defined as

HTσ
def
=

{
i ∈ N, dimF

(
eσ FiliM

eσ Fili+1M

)
6= 0

}
.

In the remainder of this paper we will be focused on Fontaine-Laffaille modules in parallel
Hodge-Tate weights, i.e. we will assume that for all i ∈ N, the submodules FiliM are free
over k ⊗Fp F. This is harmless since all of the representations we consider in this paper are
either GQp -representations or restrictions of GQp -representations to GK0 .

Definition 2.1. Let M be a Fontaine-Laffaille module in parallel Hodge-Tate weights. A
k ⊗Fp F basis f = (f1, . . . , fn) on M is compatible with the filtration if for all i ∈ N there

exists ji ∈ N such that FiliM =
∑n
j=ji

k ⊗Fp F · fj . In particular, the principal symbols

(gr(f1), . . . , gr(fn)) provide a k ⊗Fp F basis for gr•M .

Note that if the graded pieces of the Hodge filtration have rank at most one then any
two compatible bases on M are related by a lower triangular matrix in GLn(k ⊗Fp F).
Given a Fontaine-Laffaille module and a compatible basis f , it is convenient to describe the
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Frobenius action via a matrix Matf (φ•) ∈ GL3(k ⊗Fp F), defined in the obvious way using

the principal symbols (gr(f1), . . . , gr(fn)) as a basis on gr•M .

It is customary to write F-FL[0,p−2] to denote the full subcategory of F-FL formed by
those modules M verifying Fil0M = M and Filp−1M = 0 (it is again an abelian category).
We have the following description of mod p Galois representations of GK0

via Fontaine-
Laffaille modules:

Theorem 2.2. There is an exact fully faithful contravariant functor

T∗cris,K0
: F-FL

[0,p−2]
k → RepF(GK0

)

which is moreover compatible with the restriction over unramified extensions: if K ′0/K0 is
unramified, with residue field k′/k, then

T∗cris,K′0
(k′ ⊗kM) ∼= T∗cris,K0

(M)|GK′0 .

Proof. The statement with Fp-coefficients is in [FL82], Théorème 6.1; its analogue with
F-coefficient is a formal argument which is left to the reader (cf. also [GL14], Theorem
2.2.1). �

We will simply write T∗cris if the base field K0 is clear from the context.
It is well known, (for instance [GG12], Lemma 3.1.5), that under mild conditions on the

inertial weights, ρ0 is Fontaine-Laffaille:

Proposition 2.3. Let ρ0 : GQp → GL3(F) be as in (2.1.1). If the triple (a2, a1, a0) ∈ Z3

verifies p− 2 ≥ (a2 − a0 − 1) ≥ a1 − a0 ≥ 2 then ρ0 is Fontaine-Laffaille.

In order to obtain results on local-global compatibility and to perform weight elimination
(cf. Section 3), we shall assume a stronger genericity condition on the integers ai.

Definition 2.4. We say that a niveau 2 Galois representation ρ0 : GQp → GL3(F) as in
(2.1.1) is generic if the triple (a2, a1, a0) satisfy the condition

p− 3 > (a2 − a0 − 1) > (a1 − a0) > 3.(2.1.2)

2.1.2. The Fontaine-Laffaille parameter. Let ρ0 be as in (2.1.1) and assume that the
integers ai ∈ N verify the generic condition (2.1.2). By Proposition 2.3 there is a Fontaine-
Laffaille module M such that T∗cris(M) ∼= ρ0⊗ω−a0−1 and which is moreover endowed with
a filtration by Fontaine-Laffaille submodules M0 ( M1 ( M2 = M induced via T∗cris from
the cosocle filtration on ρ0 (cf. Theorem 2.2).

Lemma 2.5. Assume (2.1.2) and let M ∈ F-FL be such that T∗cris(M) ∼= ρ0 ⊗ ω−a0−1.
Then there exists a basis f = (f0, f1, f2) on M which is compatible with the Hodge filtration

Fil•M and with the filtration by Fontaine-Laffaille submodules on M , and such that

Matf (φ•) =

 0 µ−1
1 x

µ−1
0 z y
0 0 µ−1

2

(2.1.3)

for some µi ∈ F×, x, y, z ∈ F.

Proof. We first note that M has Hodge-Tate weights {0, a1 − a0, a2 − a0}. Let N be the

rank two irreducible Fontaine-Laffaille submodule of M corresponding to T∗cris(N) ∼= ρ0

ωa2−a1
.

Then we have FiliN = N ∩ FiliM for all i ∈ N. As N is irreducible, we can find a
basis (f0, f1) on N , such that Fil1N = · · · = Fila1−a0 N = 〈f1〉 and Mat(f0,f1)(φ•) =
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0 µ−1

1

µ−1
0 z

)
. Let f2 be a generator of Fila1−a0+1M . As Fila1−a0+1N = 0 and the Frobe-

nius on N is induced from the Frobenius on M , it is obvious that Mat(f0,f1,f2)(φ•) ∈ GL3(F)
has the desired shape (2.1.3). �

Remark 2.6. Keep the notation in the proof of Lemma 2.5. As N is a rank two irreducible
Fontaine-Laffaille module, it is easy to show that it is always possible to choose (f0, f1) so
that z = 0.

The Fontaine-Laffaille invariant FL(ρ0) associated to ρ0 is defined in terms of Matf (φ•).

Lemma 2.7. Keep the hypotheses and the notation of Lemma 2.5. Assume moreover that
ρ0 is non-split, i.e., x, y in (2.1.3) are not both zero. Then the elements(

µ0µ1, µ2,
[
−x : det

(
µ−1

1 x
z y

)])
deduced from Matf (φ•) do not depend on the choice of a basis which is compatible with both

the Hodge and the submodule filtration on M .

Proof. The proof is an elementary computation in GL3(F). Indeed, let f be a basis on M as
in the statement of Lemma 2.5. Then the matrix B ∈ GL3(F) associated to a change of basis
(compatible with the Hodge filtration) on M is lower triangular and the requirement that
the new basis is compatible with the submodule filtration on M provides us the following
equation:

B ·Matf (φ•) · gr(B)−1 =

(
0 λ−1

1 x′

λ−1
0 z′ y′

0 0 λ−1
2

)
where the diagonal matrix gr(B) is defined by gr(B)i,i = (B)i,i, and the left hand side is an
element of GL3(F).

By letting B =

(
α 0 0
δ β 0
ε η γ

)
, an easy computation provides us with 0 λ−1

1 x′

λ−1
0 z′ y′

0 0 λ−1
2

 =

 0 µ−1
1 β−1α αxγ−1

α−1µ−1
0 β µ−1

1 β−1δ + z xγ−1δ + yγ−1β
0 0 µ−1

2

 .

We have [
−αxγ−1 : det

(
µ−1

1 β−1α αxγ−1

µ−1
1 β−1δ + z xγ−1δ + yγ−1β

)]
=
[
−x : det

(
µ−1

1 x
z y

)]
and the conclusion is now clear. �

Definition 2.8. Keep the hypothesis and notation of Lemma 2.7. In particular, let M be
the Fontaine–Laffaille module associated ρ0 ⊗ ω−a0−1 whose Frobenius Matf (φ•) is given

as in (2.1.3), assuming ρ0 is non-split.
The Fontaine-Laffaille parameter associated to ρ0 is defined as

FL(ρ0) =
[
−x : det

(
µ−1

1 x
z y

)]
∈ P1(F).

Remark 2.9. Let ρ0 be as in (2.8). The isomorphism class of ρ0 is completely determined by
the pair (µ0µ1, µ2) and the Fontaine-Laffaille parameter FL(ρ0) as well as their Hodge–Tate
weights.
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2.2. p-adic Hodge theory: Preliminaries. We place ourselves in the framework of
strongly divisible lattices, Breuil module, étale ϕ-modules with coefficients and descent
data, having [EGH13] Section 3.1 and [HLM17] Section 2 as a main reference.

2.2.1. Preliminaries in characteristic zero. The ring SW (k) (cf. [Bre97], Section 4.1,
[Car08], Section 2.1) is defined as the p-adic completion of the divided power envelope of
the polynomial ring W (k)[u] with respect to the ideal generated by E(u) (compatibly with
the standard divided powers on pW (k)[u]).

It is canonically isomorphic to the following sub-algebra of K0[[u]]:

SW (k) =

{ ∞∑
i=0

wi
E(u)i

i!
, wi ∈W (k)[u], lim

i→∞
wi = 0

}

where W (k)[u] is endowed with the topology of the pointwise convergence.
The ring SW (k) is endowed with a continuous, semilinear Frobenius endomorphism ϕ :

SW (k) → SW (k) (semilinear with respect to the absolute Frobenius on W (k)), uniquely char-
acterized by u 7→ up and a W (k)-linear derivation N , uniquely determined by N(u) = −u
(hence Nϕ = pϕN). This ring is naturally endowed with a filtration {Fili SW (k)}i∈N, where

Fili SW (k) is the closure of the ideal generated by E(u)j

j! , j ≥ i, and with a residual Galois ac-

tion by W (k)-algebra endomorphisms, defined by ĝ(u) = ω̃$(g)u for any g ∈ Gal(K/Qp). In
particular, the action of any g ∈ Gal(K/Qp) is compatible with the Frobenius, the filtration

and the monodromy on S. Note that, by extension of scalars, the ring SQp
def
= SW (k)⊗Zp Qp

is endowed with the evident additional structures inherited from SW (k).
We will be mainly concerned with objects having E-coefficients. Concretely, we write

S
def
= SW (k) ⊗Zp OE , SE

def
= S ⊗Zp Qp, so that the additional structures on SW (k) induce,

by OE and E-linearity respectively, a Frobenius, a derivation, a filtration and a compatible
residual Galois action on S, SE .

Recall that a strongly divisible lattice in weights (0, r) is the datum of a free S-module of

finite type M̂, an S-submodule Filr M̂ ⊆ M̂, together with additive morphisms ϕr, N such
that:

(i) Filr S · M̂ ⊆ Filr M̂ and M̂/Filr M̂ is $E-torsion free;

(ii) the morphism ϕr : Filr M̂ → M̂ is semilinear with respect to the Frobenius on S

and its image contains a family of S-generators for M̂;

(iii) the morphism N : M̂→ M̂ is W (k)⊗Zp OE-linear and verifies

(a) N(sx) = N(s)x+ sN(x) for all x ∈ M̂, s ∈ S;

(b) E(u)N(Filr M̂) ⊆ Filr M̂;

(c) ϕr(E(u) ·N) = cN ◦ ϕr where c
def
= ϕ(E(u))

p ∈ S×.

Let K ′ ∈ {K0, Qp}. A descent data from K to K ′ on M̂ are the data of an action of

Gal(K/K ′) by additive automorphisms on M̂, which are semilinear (with respect to the

descent data on S) and compatible with the additional structures on M̂ (i.e. with the
Frobenius, monodromy, and the filtration). We write OE-Modrdd to denote the category of
strongly divisible lattices in weights (0, r), with descent data from K to K ′.

We have a contravariant functor

T∗,K
′

st : OE-Modrdd → Rep
K-st,[−r,0]
OE

(GK′)
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where Rep
K-st,[−r,0]
OE

(GK′) is the category of GK′-stable OE-lattices inside E-valued, finite
dimensional p-adic Galois representation of GK′ becoming semi-stable over K and with
Hodge–Tate weights in {−r, 0} (cf. [EGH13], Section 3.1). This functor establishes an anti-
equivalence of categories if r < p − 1 (cf. [EGH13], Proposition 3.1.4, building on work of
Liu [Liu08]).

2.2.2. p-adic Hodge theory: preliminaries in characteristic p. The residual Breuil

ring S
def
= (k⊗Fp F)[u]/(uep) is equipped with an action of Gal(K/Qp) by k⊗Fp F-semilinear

automorphisms. Explicitly if g ∈ Gal(K/Qp) and a ∈ k ⊗Fp F, we have

ĝ(au)
def
= (g · a)(ω$(g)⊗ 1)u

where g · a denotes the natural Gal(K/Qp) action on k ⊗Fp F.

We recall that S is equipped with an k ⊗Fp F-linear derivation N defined by N(u) = −u
and with a semilinear Frobenius ϕ defined by u 7→ up (semilinear with respect to the absolute
Frobenius on k ⊗Fp F).

Fix r ∈ {0, . . . , p− 2} and let Sk
def
= k[u]/uep. A Breuil module over F is the datum of a

quadruple (M,FilrM, ϕr, N) where

(i) M is a finitely generated S-module which is free over Sk;
(ii) FilrM is a S-submodule of M, verifying uerM ⊆ FilrM;

(iii) the morphism ϕr : FilrM→M is ϕ-semilinear and the associated fibered product
S ⊗k⊗FpF FilrM→M is surjective;

(iv) the operator N : M→M is k ⊗Fp F-linear and satisfies the following properties:

(a) N(P (u)x) = P (u)N(x) +N(P (u))x for all x ∈M, P (u) ∈ S;
(b) ueN(FilrM) ⊆ FilrM;
(c) ϕr(u

eN(x)) = N(ϕr(x)) for all x ∈ FilrM.

A morphism of Breuil modules is defined as an S-linear morphism which is compatible, in
the evident sense, with the additional structures (monodromy, Frobenius, filtration).

As above, we let K ′ ∈ {Qp, K0}. A descent data relative to K ′ on a Breuil module M is
the datum of an action of Gal(K/K ′) on M by F-linear automorphisms which are semilinear
with respect to the residual Galois action on S and which are compatible, in the evident
sense, with the additional structures on M. We write F-BrModrdd to denote the category of
Breuil modules over F with descent data to K ′.

We recall that we have an exact, faithful, contravariant functor

T∗st : F-BrModrdd → RepF(GK′)

M 7→ T∗st(M)
def
= Hom(M, Â)

where Â is a certain period ring (cf. [EGH13], Section 3.2 building on [Bre99a], Section 2.2;
see also [HLM17], appendix A).

The functor T∗st respects the rank on both sides, i.e. dimF T∗st(M) = rankSM (cf. [Car11],
Théorème 4.2.4 and the Remarque following it, see also [EGH13] Lemma 3.2.2)

We have a natural compatibility between strongly divisible lattices and Breuil modules:

Proposition 2.10. Let M̂ be an object in OE-Modrdd. Then M̂ ⊗S S/($E ,Filp S) is an
object in F-BrModrdd in a natural way and one has a natural isomorphism:

T∗,K
′

st (M̂)⊗OE F ∼= T∗st(M̂⊗S S/($E ,Filp S)).

Proof. This is contained in [EGH13], Section 3.2 (Lemma 3.2.2 and Definition 3.2.8). �
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In the rest of this paper we will be mainly interested in the covariant version of the previ-

ous functors toward Galois representations. For this reason we define TK
′,r

st : OE-Modrdd →
Rep

K-st,[−r,0]
OE

(GK′) and Trst : F-BrModrdd → RepF(GK′) via

TK
′,r

st (M̂)
def
=
(

T∗,K
′

st (M̂)
)∨
⊗ εrp, Trst(M)

def
= (T∗st(M))

∨ ⊗ ωr

(where we write •∨ to denote the usual linear dual for an F-linear space •).
We remark that this definition is compatible with the notion of duality on Breuil and

strongly divisible modules as defined in [Car05] and [Car11], namely T
∗,Qp
st (M̂∗) ∼= T

Qp,r
st (M̂)

and Trst(M) = T∗st(M
∗).

We recall the crucial notion of type associated to a Breuil module.

Definition 2.11. Let n ∈ N and let (a0, . . . , an−1) ∈ Zn be an n-tuple. A rank n
Breuil module M ∈ F-BrModrdd is of (framed) type ωa0

$ ⊕ · · · ⊕ ω
an−1
$ if M has an S-basis

(e0, . . . , en−1) such that ĝei = (ωai$ (g)⊗ 1)ei for all i and all g ∈ Gal(K/K0). We call such
a basis a framed basis of M.

We also say that (f0, . . . , fn−1) is a framed system of generators of FilrM if (f0, . . . , fn−1)

is a system of S-generators for FilrM and ĝfi = (ωp
−1ai
$ (g) ⊗ 1)fi for all i and all g ∈

Gal(K/K0).

A key tool in local to global compatibility is that the inertial type on a Breuil module M

is closely related to the Weil-Deligne representation associated to a potentially crystalline
lift of Trst(M).

Proposition 2.12. Let M̂ be an object in OE-Modrdd and let M
def
= M̂⊗S S/($E ,Filp S) be

the Breuil module associated to M̂ via the base change S � S.

Assume that T
Qp,r
st (M̂) has inertial type ⊕n−1

i=0 ω
ai
f . Then the Breuil module M is of type

⊕n−1
i=0 ω

ai
$ and FilrM admits a framed system of generators.

Proof. This can be spelled out from, e.g. [EGH13], Section 3.3 (proof of Theorem 3.3.13).
See also [HLM17], Lemma 2.4.8. �

2.2.3. Comparison between Breuil and Fontaine-Laffaille modules. We now recall
the following categories of étale ϕ-modules, first introduced by Fontaine ([Fon90]).

Let k((p)) be the field of norms associated to (K0, p). In particular, p is identified with

a sequence (pn)n ∈
(
Qp
)N

verifying ppn = pn−1 for all n and p0 = −p. We define the

category
(
ϕ,F⊗Fp k((p))

)
-Mod of étale (ϕ,F ⊗Fp k((p)))-modules as the category of free

F⊗Fp k((p))-modules of finite rank D endowed with a semilinear map ϕ : D→ D (semilinear
with respect to the Frobenius on k((p))) and inducing an isomorphism ϕ∗D → D (with
obvious morphisms between objects).

By work of Fontaine [Fon90], we have an anti-equivalence(
ϕ,F⊗Fp k((p))

)
-Mod

∼−→ RepF(G(K0)∞)

D 7−→ Hom
(
D, k((p))sep

)
,

where (K0)∞
def
= ∪n∈NK0(pn).

Let us consider $
def
= e
√
−p ∈ K. We can fix a sequence ($n)n ∈

(
Qp
)N

which is
compatible with the norm maps K($n+1) → K($n) such that $e

n = pn for all n ∈ N (cf.

[Bre14], Appendix A). By letting K∞
def
= ∪n∈NK($n), we have a canonical isomorphism

Gal(K∞/(K0)∞)→ Gal(K/K0) and we will identify ω$ as a character on Gal(K∞/(K0)∞).
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The field of norms k(($)) associated to (K,$) is then endowed with a residual action of
Gal(K∞/(K0)∞), which is completely determined by ĝ($) = ω$(g)$.

We can therefore define the category (ϕ,F⊗Fp k(($)))-Moddd of étale (ϕ,F⊗Fp k(($)))-
modules with descent data: an object D is defined in the analogous, evident way as for
the category (ϕ,F ⊗Fp k((p)))-Mod, but we moreover require that D is endowed with a
semilinear action of Gal(K∞/(K0)∞) (semilinear with respect to the residual action on
F⊗Fpk(($)), where F is endowed with the trivial Gal(K∞/(K0)∞)-action) and the Frobenius
ϕ is Gal(K∞/(K0)∞)-equivariant.

From [HLM17], Appendix A.3 (which builds on the classical result of Fontaine) we have
an anti-equivalence(

ϕ,F⊗Fp k(($))
)

-Moddd
∼−→ RepF(G(K0)∞)

D 7→ Hom (D, k(($))sep) .

The main result concerning the relations between the various categories and functors
introduced so far is summarized by the following proposition ([HLM17], Proposition 2.2.1).

Proposition 2.13. There exist faithful functors

Mk(($)) : F-BrModrdd →
(
ϕ,F⊗Fp k(($))

)
-Moddd

and

F : F-FL[0,p−2] →
(
ϕ,F⊗Fp k((p))

)
-Mod

fitting in the following commutative diagram:

(2.2.1) F-BrModrdd

T∗st

��

Mk(($))
//
(
ϕ,F⊗Fp k(($))

)
-Moddd

Hom(−,k(($))sep)

yy

RepF(GK0
)

Res // RepF(G(K0)∞)

F-FL[0,p−2]

T∗cris

OO

F
//
(
ϕ,F⊗Fp k((p))

)
-Mod

−⊗k((p))k(($))

OO

Hom(−,k((p))sep)

ee

where the descent data is relative to K0 and the functor Res ◦ T∗cris is fully faithful.

The functors Mk(($)), F are defined in [HLM17], Appendix A, building on the classical
work of Breuil [Bre99b] and Caruso-Liu [CL09].

Corollary 2.14. Let r ≤ p − 2 and let M, M be objects in F-BrModrdd and F-FL[0,p−2]

respectively. Assume that T∗st(M) is Fontaine-Laffaille. If

Mk(($))(M) ∼= F(M)⊗k((p)) k(($))

then one has an isomorphism of GK0
-representations

T∗st(M) ∼= T∗cris(M).
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2.2.4. Linear algebra with descent data. We recall here some formalism on linear alge-
bra with descent data which was introduced in [HLM17]. In what follows we fix a residual
Galois type τ : IQp → GLn(F), with a framing τ = ⊕n−1

i=0 ω
ai
f .

Definition 2.15. Let M ∈ F-BrModrdd be of type ⊕n−1
i=0 ω

ai
$ . Let e

def
= (e0, . . . , en−1) be a

framed basis for M and f
def
= (f0, . . . , fn−1) a framed system of generators for FilrM.

The matrix of the filtration, with respect to e, f , is the element Mate,f (FilrM) ∈Mn(S)

verifying

f = e ·Mate,f (FilrM).

Similarly, we define the matrix of the Frobenius with respect to e, f as the element

Mate,f (ϕr) ∈ GLn(S) characterized by

ϕr(f) = e ·Mate,f (ϕr).

As we require e, f to be compatible with the framing, the coefficients in the matrix of
the filtration verify important additional properties:(

Mate,f (FilrM)
)
i,j
∈
(
S
)
ω
p−1aj−ai
f

.

Concretely, one has
(

Mate,f (FilrM)
)
i,j

= u[p−1aj−ai]si,j where for any x ∈ Z we define

[x] ∈ {0, . . . , e− 1} by [x] ≡ aj − ai mod e and si,j ∈
(
S
)
ω0
$

= k ⊗Fp F[ue]/(uep).

We can therefore introduce the subspace M�
n (S) of “matrices with framed type τ”:

Definition 2.16. Let τ be a framed tame Galois type.
The space M�

n (S) is defined as

M�
n (S)

def
=
{
V ∈Mn(S), Vi,j ∈

(
S
)
ω
aj−ai
$

for all 0 ≤ i, j ≤ n− 1
}
.

Similarly, we set

GL�
n (S)

def
= GLn(S) ∩M�

n (S)

which is a subgroup in GLn(S).

As τ is a residual Galois type, there exists an element wτ ∈ Sn such that ĝfwτ (j) =

(ω
aj
$ ⊗ 1)fwτ (j) for all g ∈ Gal(K/K0) and 0 ≤ j ≤ n − 1. Moreover as ϕr(fi) is a ωaif

eigenvector for the residual Galois action we deduce that

Mate,f (FilrM) · wτ ∈M�
n (S), Mate,f (ϕr) ∈ GL�

n (S)

where we used the same notation wτ for the permutation matrix associated to wτ .
Given A,B ∈M�

n (S) and x ∈
(
S
)
ω0
$

we write , with a slight abuse of notation,

A ≡ B modx

meaning that there exists an element C ∈M�
n (S) such that A = B + xC.

Lemma 2.17. Let M be a Breuil module of framed type ⊕n−1
i=0 ω

ai
$ , and let e, f be a framed

basis for M and a framed system of generators for FilrM respectively.

Let V
def
= Mate,f (FilrM) ∈ Mn(S) and A

def
= Mate,f (ϕr) ∈ GL�

n (S) be the matrices for

the filtration and the Frobenius action respectively.
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Then there exists a basis e for Mk(($))(M
∗), framed with respect to the type ⊕n−1

i=0 ω
−p−1ai
$ ,

such that the Frobenius action is described by

Mate(φ) = V̂ t
(
Â−1

)t
∈Mn(F⊗Fp k[[$]])

where V̂ , Â are lifts of V, A in Mn(F⊗Fp k[[$]]) via the reduction morphism F⊗Fp k[[$]] �
SF and

(
Mate(φ)

)
ij
∈
(
F⊗Fp k[[$]]

)
ω
p−1ai−aj
$

.

Proof. This is Lemma 2.2.6 in [HLM17] �

Lemma 2.18. Let M ∈ F-FL[0,p−2] be a rank n Fontaine-Laffaille module in parallel Hodge-
Tate weights 0 ≤ m0 ≤ · · · ≤ mn−1 ≤ p− 2 (counted with multiplicity).

Let e = (e0, . . . , en−1) be a k ⊗Fp F basis for Mi, compatible with the Hodge filtration
Fil•M and let F ∈Mn(k ⊗Fp F ) be the associated matrix of the Frobenius φ• : gr•M →M

There exists a basis e for M
def
= F(M) such that the Frobenius φ on M is described by

Mate(φ) = Diag(pm0 . . . pmn−1)F.

Proof. This is Lemma 2.2.7 in [HLM17]. �

Finally, we need a technical result which lets us keep track of base changes on Breuil
modules with descent data.

Lemma 2.19. Let M ∈ F-BrModrdd be of type ⊕n−1
i=0 ω

ai
$ and let e, f be respectively a framed

basis for M and a framed system of generators for FilrM.

Write V = Mate,f (FilrM), A
def
= Mate,f (ϕr) to denote the matrix of the filtration and of

the Frobenius respectively.
Assume that there exists an element V ′ ∈M�

n (S) such that

(2.2.2) A · V ′ ≡ V · wτ ·B modue(r+1).

for some B ∈ GL�
n (S).

Then the element

e′
def
= e ·A.

defines a framed basis on M. Moreover:

(i) V ′ · w−1
τ = Mate′,f ′(FilrM) is a matrix of the filtration with respect to e′ and a

system f ′ of generators for FilrM;

(ii) ϕ(B) is the matrix of the Frobenius with respect to e′, f ′.

Proof. It easily follows from Lemma 2.2.8 in [HLM17]. �

2.3. Classification of simple Breuil modules of rank 2. In what follows, we give a
slight improvement of a technical result in [HLM17] (loc. cit., Lemma 2.3.2) concerning
the submodule structure of a given Breuil module M ∈ F-BrModrdd which will be crucial to
provide the classification of rank two irreducible objects in F-BrModrdd. This classification
may be of independent interest.

By [Car11], Théorème 4.2.4 and the Remarque following it, the category F-BrModrdd is
additive and admits kernels and cokernels. In particular a complex

0→M0
f0→M1

f1→M2 → 0
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in F-BrModrdd is exact if the morphisms fi induce exact sequences on the underlying S-
modules Mj and FilrMj (j ∈ {0, 1, 2}). This endows F-BrModrdd with the structure of an
exact category.

We recall the definition of Breuil submodule:

Definition 2.20. Let M be an object in F-BrModrdd. An S-submodule N ⊆ M is said to
be a Breuil submodule if N fulfills the following conditions:

(i) N is an Sk-direct summand in M;
(ii) N is stable under the descent data action and the monodromy operator on M;

(iii) the Frobenius ϕr on FilrM restricts to a ϕ-semilinear morphism N ∩ FilrM→ N.

The importance of Definition 2.20 is explained in the following two propositions.

Lemma 2.21 ([HLM17], Lemma 2.3.2). Let

0→M1
f→M→M2 → 0

be an exact sequence in F-BrModrdd. Then the S-module f (M1) is a Breuil submodule of
M.

Conversely if M is an object in F-BrModrdd and N ⊆M is a Breuil submodule of M, the

pair (N,Filr N
def
= FilrM ∩ N) with the induced structures is an object of F-BrModrdd in a

natural way and the complex

0→ N→M→M/N→ 0

is an exact sequence in F-BrModrdd.
In particular, if N is a Breuil submodule in M, then N is an S-direct summand of M.

Recall that we have a faithful, covariant functor Trst : F-BrModrdd → RepF(GQp) (cf.
Section 2.2.2)

Proposition 2.22 ([HLM17], Proposition 2.3.5). Let K ′ ∈ {K0,Qp}. With the above notion
of exact sequence, the category F-BrModrdd is an exact category in the sense of [Kel90] and
Trst is an exact functor. Moreover, if M an object in F-BrModrdd the functor Trst induces an
order preserving bijection

Θ : {Breuil submodules in M} ∼−→ {GK′ subrepresentations of Trst(M)}

sending N ⊆M to the image of Trst(N) ↪→ Trst(M) and canonically identifying Θ(M)/Θ(N)
with Trst(M)/Trst(N).

We now establish the main result of this section, namely the complete classification of
rank 2 Breuil modules with descent data of niveau 2 relative to Qp. We start with a
preliminary lemma:

Lemma 2.23. Let e = p2 − 1, K0 = Qp2 , K = K0( e
√
−p), and S = (Fp2 ⊗Fp F)[u]/uep. Let

M ∈ F-BrModsdd be a rank two Breuil module, with descent data relative to K0. Assume

that Tsst(M)|IK0

∼= ωr+1
2 ⊕ ωp(r+1)

2 and the integers r, s ∈ N satisfy n(p + 1) + (s + 1) <

r + 1 < (n+ 1)(p+ 1)− (s+ 1) for some n ∈ Z.
Then we have a decomposition of Breuil modules M ∼= Mk⊕Ml where Tsst(Mk)|IK0

= ωr+1
2

and Tsst(Ml)|IK0
= ω

p(r+1)
2 .

Note that the numerical assumption on r, s implies s < p−1
2 .
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Proof. By Proposition 2.22, there exist Breuil submodules Mk and Ml in M such that

Tsst(Mk)|IQp ' ω
r+1
2 and Tsst(Ml)|IQp ' ω

p(r+1)
2 . Let us write Mk = Smk (resp. Ml = Sml)

with descent data ĝ(mk) =
∑1
i=0(ω2(g)ki ⊗ 1)mk (resp. ĝ(ml) =

∑1
i=0(ω2(g)li ⊗ 1)ml),

filtration FilsMk =
〈
(ur0e0 + ur1e1)mk

〉
(resp. FilsMl =

〈
(us0e0 + us1e1)ml

〉
), Frobenius

map ϕs : (ur0e0 + ur1e1)mk 7→ λmk (resp. ϕs : (us0e0 + us1e1)ml 7→ ηml), and monodromy
operator N : mk 7→ 0 (resp. N : ml 7→ 0). Note that the integers ki, li, ri, si satisfy
ri ≡ pki+1 − ki mod (e) and si ≡ pli+1 − li mod e (cf. [EGH13], Lemma 3.3.2).

Assume first that {mk,ml} is linearly independent in M over S. By comparing the
cardinalities, it is clear that S(mk,ml) = M, and so it is obvious that the Frobenius map
ϕs and the monodromy operator N on M are immediately determined by the ones on Mk

and Ml. We have FilsM ⊃
〈
(ur0e0 + ur1e1)mk, (u

s0e0 + us1e1)ml

〉
. As the Frobenius on

FilsMk, FilsMl is induced from the Frobenius on FilsM, and since the Frobenius acts via
λ, η ∈ Fp2⊗Fp F on FilsMk, FilsMl, the previous inclusion is an equality. Hence, the Breuil
module M is a direct sum of these two Breuil submodules in the obvious way.

We now check that {mk,ml} is linearly independent over S. Assume on the contrary
that α′ml = β′ml for α′, β′ ∈ S \ {0}. Then the minimal degree of α′ and β′ should
be the same (if not, Mk and Ml would not have the same cardinality): more precisely,

uiαe0mk = uiβe0ml, u
jαe1mk = ujβe1ml, or both, for α, β ∈ S

×
and for i, j ∈ [0, ep).

Say, uiαe0mk = uiβe0ml. Then this immediately implies that k0 ≡ l0 mod (e). We check
that this violates our numerical assumption on r and s. Since pr0 + r1 ≡ 0 mod (e) and
ps0 + s1 ≡ 0 mod (e), we let pr0 + r1 = ae and ps0 + s1 = be for 0 ≤ a, b ≤ s(p+ 1). Since

Tsst(Mk)|IQp ' ω
r+1
2 and Tsst(Ml)|IQp ' ω

p(r+1)
2 , we also have{

k0 + pa ≡ r + 1 mod (e);
l0 + pb ≡ p(r + 1) mod (e).

Subtracting the first one from the second one, (p− 1)(r + 1) ≡ p(b− a) mod (e) and so we
may let b− a = ε(p− 1), and −(s+ 1) ≤ ε ≤ s+ 1 since s < p− 1. Hence, r + 1 ≡ −ε mod
(p+1) and so we may let r+1 = −ε+δ(p+1) for δ ∈ Z. Our assumption on r and s implies
that n(p+ 1) < δ(p+ 1) = r + 1 + ε < (n+ 1)(p+ 1), which is obviously impossible. �

Proposition 2.24. Let e = p2−1, K0 = Qp2 , K = K0( e
√
−p), and S = (Fp2 ⊗Fp F)[u]/uep.

We let x and y be integers with x 6≡ y mod (e) and M ∈ F-BrModsdd be a Breuil module of
type τ ' ωx$⊕ωy$ such that Tsst(M) is an absolutely irreducible 2-dimensional representation

of GQp , i.e, Tsst(M)|IQp ' ω
r+1
2 ⊕ ωp(r+1)

2 . Assume further that n(p+ 1) + (s+ 1) < r+ 1 <

(n+ 1)(p+ 1)− (s+ 1) for some n ∈ Z.
Then there exists a framed basis e = (ex, ey) for M and a framed system of generators

f = (fpx, fpy) for Fil2 M such that

◦ Mate,f (FilsM) =

(
0 urx

ury 0

)
where 0 ≤ rx, ry ≤ es with rx ≡ py− x mod (e) and

ry ≡ px− y mod (e);

◦ Mate,f (ϕs) =

(
λx 0
0 λy

)
where λx, λy ∈ (Fp2 ⊗Fp F)×;

◦ Mate(ĝ) =

(
ωx$(g)⊗ 1 0

0 ωy$(g)⊗ 1

)
for all g ∈ G(K/K0);

◦ N(ex) = 0 = N(ey);

◦ Tsst(M)|IQp ' ω
x+p

prx+ry
e

2 ⊕ ωy+p
pry+rx

e
2 .
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Proof. By Lemma 2.23, we deduce that M has a basis e = (mk,ml) over S, and a system
of generators f = (fk, fl) for Fil2 M such that:

◦ Mate,f (FilsM) =

(
ur0e0 + ur1e1 0

0 us0e0 + us1e1

)
where 0 ≤ ri, si ≤ es with ri ≡

pki−1 − ki mod (e) and si ≡ pli−1 − li mod (e);

◦ Mate,f (ϕs) =

(
λ 0
0 η

)
where λ, η ∈ (Fp2 ⊗Fp F)×;

◦ Mate(ĝ) =

(∑1
i=0(ωki$ (g)⊗ 1)ei 0

0
∑1
i=0(ωli$(g)⊗ 1)ei

)
for all g ∈ G(K/K0);

◦ N(mk) = 0 = N(ml).

Let σ be the unique lift in G(K/Qp) of the arithmetic Frobenius in G(K0/Qp) such that
σ( e
√
−p) = e

√
−p, and let us try to recover the action of σ on M. Let σ̂(mk) = αkmk +αlml

and σ̂(ml) = βkmk + βlml where α∗, β∗ ∈ S. The identity σgσ−1 = gp for g ∈ G(K/K0)
gives rise to the following two identities: from the equation σ̂ĝ(mk) = ĝpσ̂(mk)

[(ωpk0
$ (g)⊗ 1)e1 + (ωpk1

$ (g)⊗ 1)e0](αkmk + αlml) =

ĝp(αk)[(ωpk0
$ (g)⊗ 1)e0 + (ωpk1

$ (g)⊗ 1)e1]mk+

ĝp(αl)[(ω
pl0
$ (g)⊗ 1)e0 + (ωpl1$ (g)⊗ 1)e1]ml,

and from the equation σ̂ĝ(ml) = ĝpσ̂(ml)

[(ωpl0$ (g)⊗ 1)e1 + (ωpl1$ (g)⊗ 1)e0](βkmk + βlml) =

ĝp(βk)[(ωpk0
$ (g)⊗ 1)e0 + (ωpk1

$ (g)⊗ 1)e1]mk+

ĝp(βl)[(ω
pl0
$ (g)⊗ 1)e0 + (ωpl1$ (g)⊗ 1)e1]ml.

Comparing the coefficients in these two identities, we have the following relations of descent
data:

(i)

{
k1 ≡ a0 + k0 mod (e) and e0αk ∈ e0u

a0(S0)× if e0αk 6= 0;
k0 ≡ a1 + k1 mod (e) and e1αk ∈ e1u

a1(S0)× if e1αk 6= 0,

(ii)

{
k1 ≡ b0 + l0 mod (e) and e0αl ∈ e0u

b0(S0)× if e0αl 6= 0;
k0 ≡ b1 + l1 mod (e) and e1αl ∈ e1u

b1(S0)× if e1αl 6= 0,

(iii)

{
l1 ≡ c0 + k0 mod (e) and e0βk ∈ e0u

c0(S0)× if e0βk 6= 0;
l0 ≡ c1 + k1 mod (e) and e1βk ∈ e1u

c1(S0)× if e1βk 6= 0,

(iv)

{
l1 ≡ d0 + l0 mod (e) and e0βl ∈ e0u

d0(S0)× if e0βl 6= 0;
l0 ≡ d1 + l1 mod (e) and e1βl ∈ e1u

d1(S0)× if e1βl 6= 0.

It is immediate that a0 + a1 ≡ 0 mod (e), b0 + c1 ≡ 0 mod (e), b1 + c0 ≡ 0 mod (e), and
d0 + d1 ≡ 0 mod (e).

Since FilrM is stable under the action of σ, we have

σ(FilrM) =
〈
(ur0e1 + ur1e0)(αkmk + αlml), (u

s0e1 + us1e0)(βkmk + βlml)
〉

⊂ FilrM =
〈
(ur0e0 + ur1e1)mk, (u

s0e0 + us1e1)ml

〉
,

which immediately implies the following inequalities:

(a) r1 + a0 ≥ r0 and r0 + a1 ≥ r1;
(b) r1 + b0 ≥ s0 and r0 + b1 ≥ s1;
(c) s1 + c0 ≥ r0 and s0 + c1 ≥ r1;
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(d) s1 + d0 ≥ s0 and s0 + d1 ≥ s1.

Since σ2 = 1, we have(
1 0
0 1

)
=

(
αkσ(αk) + βkσ(αl) αkσ(βr) + βkσ(βl)
αlσ(αk) + βlσ(αl) αlσ(βk) + βlσ(βl)

)
.

From the (1, 1)- and (2, 2)-entries, we have the equations:

(2.3.1) αkσ(αk) = βlσ(βl) and βkσ(αl) = αlσ(βk),

and so at least one of αkσ(αk) and βkσ(αl) are in S
×
0 . (Note that σ fixes the quantities in

(2.3.1).)

Assume that αkσ(αk) ∈ S×0 , i.e., a0 +a1 = 0. By the identity (2.3.1), d0 +d1 = 0. Hence,
we have a0 = a1 = d0 = d1 = 0. Then, by (i) and (iv), k0 ≡ k1 mod (e) and l0 ≡ l1 mod (e),
and we also have r0 = r1 and s0 = s1 by (a) and (d). But this is impossible since we
assume that the Breuil submodules Smk and Sml correspond to characters of niveau 2.

Hence, αkσ(αk) 6∈ S×0 , i.e., either αkσ(αk) = 0 or a0 + a1 > 0.

Assume now that βkσ(αl) ∈ S
×
0 , i.e., b0 + c1 = 0 = b1 + c0. Thus, b0 = b1 = c0 = c1 = 0.

Then, by (ii) and (iii), k0 ≡ l1 mod (e) and k1 ≡ l0 mod (e), and we also have r0 = s1 and
r1 = s0 by (b) and (c). We let x = k0, y = l0, rx = r0, and ry = s0. Then, by change of
basis: ex = e0mk+e1ml and ey = e1mk+e0ml, we get the description in the statement. �

The following lemma lets us specialize the result of Proposition 2.24 to a niveau 1 descent
data:

Lemma 2.25. For i ∈ {1, 2}, let ei
def
= pi−1, Ki

def
= Qpi( ei

√
−p) and Si

def
= F⊗FpFpi [u]/(upei).

Let ι : S1 → S2 be the morphism defined by the embedding Fp ↪→ Fp2 and u 7→ up+1.

If M ∈ F-BrModsdd is a Breuil module of niveau one of niveau one type, then M⊗S1,ι
S2

has a natural structure of a Breuil module of niveau 2 of niveau two type and the functor
M 7→M⊗S1,ι

S2 is fully faithful. Moreover, one has T∗st(M) ∼= T∗st(M⊗S1,ι
S2)

Proof. Just for the duration of this proof, let us write F-BrMods,idd to denote the category of
Breuil modules with F-coefficients and descent data from Ki to Qp.

The exact sequence

1→ Gal(K2/K1)→ Gal(K2/Qp)→ Gal(K1/Qp)→ 0

shows that any object in F-BrMods,idd is naturally endowed, by inflation, with a niveau two de-

scent datum. In particular, the natural morphism S1 ↪→ S2 factors through (S2)Gal(K2/K1);
by the explicit definition of the descent data action on S2, one checks that the previous
factorization is indeed a isomorphism: S1

∼−→ (S2)Gal(K2/K1).
Hence, by endowing M⊗S1

S2 with the diagonal residual action of Gal(K2/Qp), we deduce

that the natural morphism M ↪→ M ⊗S1
S2 factors through a (functorial) isomorphism

M
∼−→ (M ⊗S1

S2)Gal(K2/K1). It follows that the functor M 7→ M ⊗S1
S2, defined on

F-BrMods,1dd is fully faithful.

As for the last statement, we recall the functor T∗,ist : F-BrMods,idd → GalF(GQp) is defined

by M 7→ Hom(M, ÂKi ⊗Fpi F), where ÂKi =
(
Fpi ⊗ OQp/p

)
〈X〉 is a certain a period ring

described in [Car11], Section 2.1 (where is simply noted as Â, as in loc. cit. the extension
Fpi/Fp has been fixed).
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More importantly, one has ÂKi
∼= Âst/p ⊗Fpi 〈u〉 Fpi [u]/ueip (cf. [HLM17], Section A.3).

By virtue of the fully faithfulness of M 7→ M ⊗S1
S2, the last statement follows once we

show that

ÂK1 ⊗S1
S2 → ÂK2

is an isomorphism, which can be verified by a direct computation on the definition of ÂKi .
�

We deduce:

Corollary 2.26. Let e = p − 1, K = Qp( e
√
−p), and S = F[u]/uep. We also let x and

y be integers with x 6≡ y mod (e), and let M ∈ F-BrModsdd be a Breuil module of type
τ ' ωx ⊕ ωy such that Tsst(M) is an absolutely irreducible 2-dimensional representation of

GQp , i.e, Tsst(M)|IQp ' ωr+1
2 ⊕ ωp(r+1)

2 . Assume further that n(p + 1) + (s + 1) < r + 1 <

(n+ 1)(p+ 1)− (s+ 1) for some n ∈ Z.
Then there exists a framed basis e = (ex, ey) for M and a framed system of generators

f = (fx, fy) for Fil2 M such that

◦ Mate,f (FilsM) =

(
0 urx

ury 0

)
where 0 ≤ rx, ry ≤ es with rx ≡ y − x mod (e) and

ry ≡ x− y mod (e);

◦ Mate,f (ϕs) =

(
λx 0
0 λy

)
where λx, λy ∈ F×;

◦ Mate(ĝ) =

(
ωx(g)⊗ 1 0

0 ωy(g)⊗ 1

)
for all g ∈ G(K/Qp);

◦ N(ex) = 0 = N(ey).

◦ Tsst(M)|IQp ' ω
(p+1)x+p

prx+ry
e

2 ⊕ ω(p+1)y+p
pry+rx

e
2 .

Proof. Using the notation of Lemma 2.25, it suffices to apply Proposition 2.24 to M⊗S1
S2

and then take the Gal(K2/K1)-fixed part. �

2.4. Crystalline lifts. We end this section with certain results for crystalline lifts of ρ0.
The results in this subsection will be used in Section 6.5.

Proposition 2.27. Let ρ0 be as in Definition 2.4. Then ρ0 admits a crystalline lift ρ :
GQp → GL3(Qp) such that ρ|GQ

p2
is ordinary crystalline with parallel Hodge-Tate weights

{a2 + 1, a1 + 1, a0 + 1}. In particular ρ is potentially diagonalizable.
Moreover, if FL(ρ0) = [0 : 1] then ρ0 admits a crystalline lift with Hodge-Tate weights

{p+ a0 + 1, a2 + 1, a1}.
Finally if ρ0 is split then then ρ0 admits further crystalline lift with Hodge-Tate weights

{p+ a1, p+ a0, a2 + 1}.

The proof of Proposition 2.27 will occupy the reminder of this section.
Let α, β ∈ Z. By [GS11a] Lemma 6.2, there is a crystalline character ε(α,β) : GQp2 →

O×E , unique up to unramified twist such that HTσ0
(ε(α,β)) = α, HTσ1

(ε(α,β)) = β; such a

character verifies moreover ε(α,β)|IQp = ωα+pβ
2 . If V(α,β)

def
= Ind

GQp
GQ

p2
ε(α,β) then V(α,β) ⊗OE

F = Ind
GQp
GQ

p2
ωα+pβ

2 up to an unramified twist and we have the following particular case of

[GHS], Corollary 7.1.3:
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Lemma 2.28. The representation V(α,β)|GQ
p2

is crystalline with parallel Hodge-Tate weights

{α, β}.

Proof. Indeed, we have V(α,β)|GQ
p2

= ε(α,β) ⊕ ε
(1)
(α,β), where we have defined the GQp2 -

character ε
(1)
(α,β) by g 7→ ε(α,β)(Frob−1

p ·g ·Frobp) where Frobp denotes a geometric Frobenius.

By [GHS], Lemma 7.1.2 we have that HTσ0
(ε

(1)
(α,β)) = β, HTσ1

(ε
(1)
(α,β)) = α. The represent-

ation V(α,β)|GQ
p2

is crystalline, as the crystalline property is insensitive to unramified base

change. �

If γ ∈ Z we define the space of OE-valued crystalline extensions Ext1
OE [GQp ],cris(V(α,β), ε

γ
p)

as the inverse image (under base change OE → E) of Ext1
E[GQp ],cris(V(α,β)⊗OE E, ε

γ
p⊗OE E).

By an immediate application of the Hochschild–Serre spectral sequence and since the
crystalline condition is insensitive with respect to restriction to unramified base change, we
have the following commutative diagram:

(2.4.1) Ext1
OE [GQp ],cris(V(α,β), ε

γ
p)

∼ //
� _

��

(
Ext1

OE [GQ
p2

],cris(ε(α,β) ⊕ ε
(1)
(α,β), ε(γ,γ)

)G2

� _

��

Ext1
OE [GQp ](V(α,β), ε

γ
p)

∼ //

��

(
Ext1

OE [GQ
p2

](ε(α,β) ⊕ ε
(1)
(α,β), ε(γ,γ))

)G2

��

Ext1
F[GQp ](Ind

GQp
GQ

p2
ωα+pβ

2 , ωγ)
∼ //

(
Ext1

F[GQ
p2

](ω
α+pβ
2 ⊕ ωβ+pα

2 , ω
(p+1)γ
2 )

)G2

where the bottom vertical arrows are the mod $E-reduction maps and G2
def
= Gal(Qp2/Qp).

The following technical lemma is a simple manipulation with Fontaine-Laffaille modules.

In its statement, we set e0
def
= eσ0

, e1
def
= eσ0◦Frobp for the standard idempotent elements of

Fp2 ⊗Fp F, following the notation of Section 1.1.

Lemma 2.29. Let M ∈ F-FL[0,p−2] be a Fontaine-Laffaille module over Fp ⊗Fp F, with
Hodge-Tate weghts (β, α, γ). Assume that

Matf (φ•) =

 0 λ1 x
λ0 0 y
0 0 λ2

(2.4.2)

in a basis f = (f0, f1, f2) which is compatible with the Hodge filtration on M . Then if we
write M ′ for the induced Breuil module Fp2⊗FpM , we have two Fontaine-Laffaille quotients

M ′ � N , M ′ � N (1) of rank two over Fp2 ⊗Fp F. Explicitly, we have N = Ne0 ⊕ Ne1

where Nei are F-linear spaces, with Hodge-Tate weights (α, γ) and (β, γ) for i = 0 and i = 1
respectively, and

Mat(Ne1
φ0→ Ne0) =

(
λ0 y
0 λ2

)
& Mat(Ne0

φ1→ Ne1) =

(
λ1 x
0 λ2

)
We have a similar description for N (1) = N (1)e0 ⊕N (1)e1:

Mat(N (1)e1
φ0→ N (1)e0) =

(
λ1 x
0 λ2

)
& Mat(N (1)e0

φ1→ N (1)e1) =

(
λ0 y
0 λ2

)
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and N (1)e0, N (1)e1 have Hodge-Tate weights (β, γ), (α, γ) respectively.

Proof. This is elementary. Let f = (f0, f1, f2) be a basis on M , compatible with the Hodge
filtration, such that the matrix of the Frobenius on M is given by (2.4.2). In particular, we
have

Fili+1M =


M if i < β

〈f1, f2〉F if β ≤ i < α
〈f2〉F if α ≤ i < γ

0 if i ≥ γ

Then, considering the change of basis we get

1⊗ f def
= (1⊗ f0, 1⊗ f1, 1⊗ f2) ·

e0 e1 0
e1 e0 0
0 0 1


we obtain

Mat1⊗f (φ•) =

λ1e0 + λ0e1 0 xe0 + ye1

0 λ0e0 + λ1e1 ye0 + xe1

0 0 λ2

 .

We define N to be the Fontaine-Laffaille quotient characterized by

ker(M ′ � N) = 〈(1⊗ f0) · e0 + (1⊗ f1) · e1〉.

This is well-defined since the kernel is a rank one submodule. Note that, by construction,
we have

Fili+1Ne0
def
=

Fili+1M ′e0 + 〈(1⊗ f0) · e0〉
〈(1⊗ f0) · e0〉

=



M ′e0
〈(1⊗f0)·e0〉 = Ne0 if i < α

〈(1⊗f2)·e0,(1⊗f0)·e0〉
〈(1⊗f0)·e0〉 if α ≤ i < γ

0 if i ≥ γ

Fili+1Ne1
def
=

Fili+1M ′e1 + 〈(1⊗ f1) · e1〉
〈(1⊗ f1) · e1〉

=



M ′e1
〈(1⊗f1)·e1〉 = Ne1 if i < β

〈(1⊗f1)·e1,(1⊗f2)·e1〉
〈(1⊗f1)·e1〉 if β ≤ i < γ

0 if i ≥ γ.

Hence, N has Hodge-Tate weights HTσ0
= {α, γ} and HTσ0◦Frobp = {β, γ}.

Similarly, one takes N (1) to be the Fontaine-Laffaille quotient of M characterized by

ker(M ′ � N (1)) = 〈(1⊗ f0) · e1 + (1⊗ f1) · e0〉.

This is well-defined by the same reason as N . �

We deduce from Lemma 2.29:

Lemma 2.30. Assume that ρ0 is as in Definition 2.4. Let M ∈ F-FL[0,p−2] be the associated
Fontaine-Laffaille module and fix a basis on it in such a way that Matf (φ•) has the form
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(2.1.3), with moreover z = 0. Let τ be the image of ρ0|GQ
p2

via the projection map

(2.4.3) Ext1
F[GQ

p2
]

(
ω

(a1+1)+p(a0+1)
2 ⊕ ω(a0+1)+p(a1+1)

2 , ω
(p+1)(a2+1)
2

)
����

Ext1
F[GQ

p2
]

(
ω

(a1+1)+p(a0+1)
2 , ω

(p+1)(a2+1)
2

)
.

Then τ has a crystalline lift with Hodge-Tate weights HTσ0
= {a2 + 1, a1 + 1}, HTσ1

=
{a2 + 1, a0 + 1}.

If moreover FL(ρ0) = [0 : 1] then τ has also a crystalline lift with Hodge-Tate weights
HTσ0 = {a2 + 1, a1}, HTσ1 = {p+ a0 + 1, a2 + 1}.

If finally ρ0 is split then τ admits further a crystalline lift with the following Hodge-Tate
weights HTσ0

= {p+ a1, a2 + 1}, HTσ1
= {p+ a0, a2 + 1}.

Proof. We can assume that a0 = −1 and set c
def
= a2 − a0 − 1, r

def
= a1 − a0 − 1.

By Lemma 2.29 we see that the Fontaine-Laffaille module N = Ne0 + Ne1 associated
to τ has Hodge-Tate weights HTσ0

(Ne0) = {r + 1, c + 1}, HTσ1
(Ne1) = {0, c + 1} and

Frobenius described by

Mat(Ne1
φ0→ Ne0) =

(
µ−1

0 y
0 µ−1

2

)
(2.4.4)

Mat(Ne0
φ1→ Ne1) =

(
µ−1

1 x
0 µ−1

2

)
(2.4.5)

We now use the explicit description of the set of modular weights for τ , given in [Bre14]
pag. 26. Following the notation in loc. cit. we deduce from (2.4.4) that the weight
(c − r − 1, c) ⊗ detr+1 (which would be written as σ(c,c),(r+1,0) in the notation of [GLS15],

Definition 4.1.1) is always modular, while the weight (c − r, p − 2 − c) ⊗ detr+p(c+1) (i.e.
σ(c,p−1),(r,c+1) in the notation of [GLS15]) is modular when x = 0. For sake of completeness,

the weight (p− 2− c+ r, p− 3− c)⊗detc+1+p(c+1) i.e. σ(p−1+r,p−2),(c+1,c+1) in the notation
of [GLS15] is modular when x = y = 0. We now can globalize τ : by [GK14], Corollary
A.3 there is a totally real field F+ such that F+

v
∼= Qp for all places v|p, and a RAESDC

automorphic representation π of GL2(AF+) such that the mod p reduction of the associated
p-adic Galois representation r̄p,ı(π) : GF+ → GL2(F) (cf. [BLGGT14] §2.1) is absolutely
irreducible (modular) and verifies r̄p,ı(π)|G

F
+
v

∼= τ for all places v|p. The conclusion follows

from [GLS15], Theorem A. �

Proof of Proposition 2.27. The existence of the crystalline lifts as in the statement of Propo-
sition 2.27 follows now from Lemma 2.30 and the diagram (2.4.1). More precisely, let

τ ⊕ τ (1) be the image of ρ0 in Ext1
F[GQ

p2
]

(
ω

(a1+1)+p(a0+1)
2 , ω

(p+1)(a2+1)
2

)
via the isomor-

phism in the bottom line of the diagram (2.4.1). By Lemma 2.30, τ admits a crystalline
lift τ̂ : GQp2 → GL2(OE) with Hodge-Tate weights HTσ0

= {α, γ}, HTσ1
= {β, γ}

where the integers α, β, γ are suitably specialized according to ρ0 (e.g. specialized at
α = a1 + 1, β = a0 + 1, γ = a2 + 1 for the first case of Proposition 2.27). By letting

τ̂ (1) : GQp2 → GL2(OE) be defined by τ̂ (1)(g)
def
= τ̂(Frob−1

p g Frobp) we see that τ̂ (1) is a
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crystalline lift of τ (1) with Hodge-Tate weights HTσ1 = {α, γ}, HTσ0 = {β, γ}. By con-

struction τ̂ ⊕ τ̂ (1) ∈ Ext1
OE [GQ

p2
],cris(ε(α,β) ⊕ ε

(1)
(α,β), ε(γ,γ)) is fixed under the G2-action on

the Ext1-space. Its inverse image via the isomorphism in the first line of the diagram (2.4.1)
provides the required crystalline lift.

Moreover, any element of Ext1
E[GQp ],cris(V(α,β) ⊗OE E, εγp) becomes ordinary when re-

stricted to GQp2 , as it can be directly checked on the associated filtered φ-module. �

Remark 2.31. The existence of the crystalline lift for ρ0 with Hodge-Tate weights {a2 + a1 +
1, a0 + 1} can be obtained in a more elementary way that avoids the integral p-adic Hodge
theory of [GLS15]. Indeed it is enough to prove that the first two vertical arrows in diagram

2.4.1 are isomorphisms, i.e. that any Galois extension of ε(γ,γ) by ε(α,β) (resp. ε
(1)
(α,β)) is

automatically crystalline. To this aim note that if (α0, . . . , αf−1), (α′0, . . . , α
′
f−1) ∈ Zf are

such that αi − α′i > 1 for all i, then we are in the setting of [Nak09], Lemma 4.2(1) and
Lemma 4.3(3), so that

dimE

(
Ext1

E[GQ
pf

],cris(ε(α0,...,αf−1), ε(α′0,...,α
′
f−1))

)
= f

(cf. also loc. cit., Definition 2.4 and Remark 2.5). On the other hand, under the previous
hypotheses on αi−α′i, we have also dimE

(
Ext1

E[GQ
pf

](ε(α0,...,αf−1), ε(α′0,...,α
′
f−1))

)
= f hence

Ext1
E[GQ

pf
],cris(ε(α0,...,αf−1), ε(α′0,...,α

′
f−1)) = Ext1

E[GQ
pf

](ε(α0,...,αf−1), ε(α′0,...,α
′
f−1))

([Nak09], Proposition 2.15).

3. Elimination of Galois types

The aim of this section is to perform elimination of Galois types for a niveau 2, generic
representation ρ0 : GQp → GL3(F) (cf. Definition 2.4), by means of integral p-adic Hodge
theory.

For K ′ ∈ {Qp,K0} we recall the category Modw.a.
E (ϕ,N,K/K ′) of weakly admissi-

ble filtered (ϕ,N,K/K ′, E)-modules (see e.g. [EGH13], Section 3.1). We have a con-

travariant equivalence of categories D∗,K
′

st : RepK-st
E (GK′) → Modw.a.

E (ϕ,N,K/K ′), where

RepK-st
E (GK′) denotes the category of finite dimensional E-representations of GK′ that be-

come semistable over K. If ρ ∈ RepK-cris
E (GK′) has Hodge-Tate weights in {−r, 0}, we define

DK′,r
st (ρ)

def
= D∗,K

′

st

(
ρ∨ ⊗ εrp

)
.

The following result will be particularly useful to us:

Proposition 3.1. Let ρ : GQp → GL3(OE) be a potentially semistable Galois representation,

becoming crystalline over K with Hodge-Tate weights in {−r, 0}. Let M̂ be a strongly divisible

OE-module in OE-Modrdd such that T
Qp,r
st (M̂)⊗OE E

∼= ρ.

Then D
Qp,r
st (ρ) ∼= M̂[ 1

p ] ⊗SQp ,s0
Qp and and M̂ has inertial type WD(ρ ⊗ ε−rp )|IQp =

WD(ρ)|IQp (where s0 : SQp → Qp is the morphism defined by “u 7→ 0”).

Proof. The isomorphism D
Qp,r
st (ρ) ∼= M̂[ 1

p ]⊗SQp ,s0
Qp is proved in [EGH13], proof of Propo-

sition 3.1.4.
As for the second part of the proposition, let us write WD(ρ)|IQp ∼= χ1 ⊕ · · · ⊕ χn for the

inertial type associated to ρ.

By definition of type on a strongly divisible lattice M̂, we have to prove that there exists
a basis (ê1, . . . , ên) of M such that ĝ · êi = 1⊗χi(g)êi for all g ∈ Gal(K/K0) and i = 1, . . . , n.
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For r = 1 this is proved in [GS11b], Proposition 5.1 (note that the functors M 7→
T

Qp,r
st (M̂), ρ 7→ D

Qp,r
st (ρ) would be written as T

Qp
st,r+1, D

Qp
st,r+1(ρ) in loc. cit.). But the

proof in loc. cit. generalizes verbatim for higher Hodge-Tate weights. See also [EGH13],
Proof of Proposition 3.3.1. �

Recall that the restriction functor ρ0 7→ ρ0|GK0
is not full. The following elementary

lemma shows that in our situation, the Fontaine-Laffaille invariant FL(ρ0) can be deduced
from ρ0|GK0

if FL(ρ0) ∈ {0,∞}.

Lemma 3.2. Let ρ0 be as in Definition 2.4 and let F ∈ GL3(F) be the matrix describing
the Frobenius action on the associated Fontaine-Laffaille module as in (2.1.3).

Assume that the Fontaine-Laffaille module M ′ associated to ρ0|GK0
has parallel Hodge-

Tate weights {0, r + 1, c+ 1} and Frobenius action described by

F ′
def
=

 0 λ1 X
λ0 0 Y
0 0 λ2

 ∈ GL3(k ⊗Fp F).

Then X = 0 if and only if x = 0, and Y = 0 if and only if y = 0.

Proof. In the given hypotheses, we have an isomorphism of Fontaine-Laffaille modules (in
parallel Hodge-Tate weights {0, r + 1, c + 1}) over k ⊗Fp F. This means that there exists a
lower triangular matrix B ∈ Bopp(k ⊗Fp F) such that

(3.0.1) B · F ′ · (ϕ⊗ 1)(gr(B)) = F ⊗Fp k,

where gr(B) ∈ T(k ⊗Fp F) is defined by (gr(B))ii = (B)ii for i = 0, 1, 2 and ϕ ⊗ 1 denotes
the induced Frobenius automorphism on k ⊗Fp F.

By an immediate computation we deduce that condition (3.0.1) forces B to be diagonal.
In particular, there exists units α, β, γ ∈ k ⊗Fp F such that 1⊗ x = ασ(γ)X and βσ(γ)Y .

As the natural morphism F→ k ⊗Fp F is injective, the result follows. �

For the reminder of this section, we assume that a0 = −1 and define c
def
= a2 − a0 + 1,

r
def
= a1 − a0 − 1 (it is always possible to reduce to this case by twisting by ω−(a0+1)).

3.1. Elimination of Galois types of niveau 1. We start this subsection by recalling
the following (cf. [MP17], Lemma 3.3): let i, j, k be integers , and let ρ be a potentially
crystalline representation with Hodge–Tate weights {−2,−1, 0} and of inertial type ω̃i ⊕
ω̃j ⊕ ω̃k such that ρss0 ' ρss. Then we have the identity

(3.1.1) ω3+i+j+k = det ρ|IQp = ω(r+1)+(c+1).

In this subsection, we fix e = p − 1 and K = Qp( e
√
−p). We also let S = F[u]/uep and

S0 = F[ue]/uep. Recall that by [m]1 for an integer m we mean the unique integer in the
interval [0, e) congruent to m mod (e).

Proposition 3.3. Let M ∈ F-BrMod2
dd be a Breuil module of type τ ∼= ωz ⊕ ωx ⊕ ωy such

that T2
st(M)ss ∼= ρss0 and ρ2 ⊂ T2

st(M), where ρ2 is the one-dimensional subrepresentation
of ρ0. Assume moreover that the submodule corresponding to ρ2 is of type ωz.

Then there exists a framed basis e = (ez, ex, ey) and a framed system of generators f for

Fil2 M such that

(3.1.2) Mate,f (Fil2 M) =

use u[x−z]1 · vy u[y−z]1 · vx
0 0 urx

0 ury 0

 ;
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(3.1.3) Mate,f (ϕ2) =

αz u[x−z]1 · ηx u[y−z]1 · ηy
0 αx 0
0 0 αy

 ,

where αx, αy, αz ∈ F× and vx, vy, ηx, ηy ∈ S0. Moreover, the tuple (x, y, z, rx, ry, s) satisfies
one of the following properties:

(a): x ≡ r + 1−m0 mod (p− 1), y ≡ 0 mod (p− 1), z ≡ c+ 1−m2 mod (p− 1), and rx = (p− 1)m0 − (r + 1−m0);
ry = r + 1−m0;
s = m2,

where m0,m2 ∈ {1, 2} satisfy m0 +m2 = 3;
(b): x ≡ r −m0 mod (p− 1), y ≡ p− 2 mod (p− 1), z ≡ c+ 1−m2 mod (p− 1), and rx = (p− 1)(m0 + 1)− (r + 1−m0);

ry = (p− 1) + (r + 1−m0);
s = m2,

where m0,m2 ∈ {0, 1} satisfy m0 +m2 = 1.

Proof. Since ρ0 is an extension of a two-dimensional irreducible representation by a character
of niveau 1, M is also an extension of a simple Breuil module of rank 2 by a Breuil module
of rank 1 by Proposition 2.22. Hence, it is immediate that the filtration and the Frobenius
map ϕ2 of M are described as in (3.1.2) and (3.1.3) respectively, by using the classification
of simple Breuil modules of rank 2 in Corollary 2.26 and the classification of simple Breuil
modules of rank 1 in [MP17], Lemma 3.1.

By Corollary 2.26 we have rx ≡ y − x mod e and ry ≡ x− y mod e, rx + ry ≡ 0 mod e.
We let rx + ry = ae for a ∈ {0, 1, 2, 3, 4}. Again by Corollary 2.26, we have

(3.1.4)

 (p+ 1)x+ prx + pa ≡ r + 1 mod (p2 − 1);
(p+ 1)y + pry + pa ≡ p(r + 1) mod (p2 − 1);
z + s ≡ c+ 1 mod (p− 1).

By the determinant condition (3.1.1), 3(p+ 1) + (r+ 1)− p(rx + a) + p(r+ 1)− p(ry + a) +
(p + 1)(c + 1 − s) ≡ (p + 1)(c + 1 + r + 1) mod (p2 − 1). Hence, we get a + s = 3, and so
a ∈ {1, 2, 3} since s ∈ {0, 1, 2}.

Via the equations (3.1.4) we now write ry in terms of a and the inertial weights z, x, y.
We have (p + 1)ry ≡ (p + 1)(x − y) ≡ (1 − p)(r + 1) − p(rx − ry) mod (p2 − 1). So
ry ≡ −(p− 1)(r + 1)− p(ae− ry) mod (p2 − 1). Solving this for ry, we get ry ≡ r + 1− a
mod (p + 1). We let ry = r + 1 − a + ε(p + 1) for ε ∈ {0, 1} (since 0 ≤ ry ≤ 2e). Then
rx = ae−(r+1−a)−ε(p+1). Moreover, by the equations (3.1.4), we also have x ≡ r+1−a+ε
mod e and y ≡ e− ε mod e. We let s = m2. Then we have a+m2 = 3.

Assume that ε = 0. If m2 = 0, then a = 3, and so rx = 3e − (r + 1 − 3) > 2e, which
contradicts rx ∈ [0, 2e]. Hence, a,m2 ∈ {1, 2} and this gives rise to the case (a), letting
m0 = a.

Assume that ε = 1. If m2 = 2, then a = 1, and so rx = (p− 1)− r − (p+ 1) < 0, which
contradicts rx ∈ [0, 2e]. Hence, m2 ∈ {0, 1} and a ∈ {2, 3}. Letting m0 = a − 2, this gives
rise to the case (b). �

Lemma 3.4. Keep the notation as in Proposition 3.3 (in particular, recall the elements vx
and vy in the matrix (3.1.2)) and let s = 1.

(i) If rx − [y − z]1 > e then there is a framed basis for which vx = 0.
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(ii) If ry − [x− z]1 > e then there is a framed basis for which vy = 0.

Proof. Since s = 1, we may assume that vx, vy ∈ F. We only give a proof for (i), but one
can prove (ii) by the same argument.

Assume that vx 6= 0. Then the matrix (3.1.2) is column-equivalent to 0 u[x−z]1 · vy u[y−z]1 · vx
urx+e−[y−z]1 0 urx

0 ury 0

 ,

which implies that

Fil2 M⊗S S/u ∼= ωx ⊕ ωx ⊕ ωy,
since rx + e − [y − z]1 > 2e. But this is impossible unless x ≡ z mod (p − 1). Note
that x 6≡ z mod (p − 1) by Proposition 3.3 since we are assuming that ρ0 is generic (cf.
Definition 2.4). �

Lemma 3.5. Keep the notation as in Proposition 3.3. If

p([y − z]1 + ry − se) > [x− z]1 and p([x− z]1 + rx − se) > [y − z]1
then there is a framed basis such that ηx = 0 = ηy in the matrix (3.1.3). Moreover, this
change of basis does not affect the vanishing of vx and vy.

Proof. We let V0 be the matrix in (3.1.2) and A0 the matrix in (3.1.3). We also let

V1 =

use u[x−z]1 · v′y u[y−z]1 · v′x
0 0 urx

0 ury 0


and

B1 =

αz u[x−z]1 · η′x u[y−z]1 · η′y
0 αy 0
0 0 αx

 .

One can easily check that the equation

(3.1.5) A0V1 = V0B1

holds if and only if the following two equalities hold:

αzu
[x−z]1v′y + u[y−z]1+ryηy = use+[x−z]1η′x + αyu

[x−z]1vy;

αzu
[y−z]1v′x + u[x−z]1+rxηx = use+[y−z]1η′y + αxu

[y−z]1vx.

Hence, the equation (3.1.5) holds true if we let v′x = αxα
−1
z vx, v′y = αyα

−1
z vy,

u[x−z]1η′x = u[y−z]1+ry−seηy ∈ S, and u[y−z]1η′y = u[x−z]1+rx−seηx ∈ S.

Note that our assumption implies that [x− z]1 + rx− se ≥ 0 and [y− z]1 + ry− se ≥ 0. Now

let us consider the new basis e′
def
= eA0. Then V1 = Mate′,f ′(Fil2 M) and A1

def
= ϕ(B1) =

Mate′,f ′(ϕ2), where f ′ is the system of generators given by the column vectors of V1. By

our hypothesis the (1, 2)-entry and (1, 3)-entry of A1 can be written as follows:

ϕ(u[x−z]1η′x) = u[x−z]1up([y−z]1+ry−se)−[x−z]1ϕ(ηy)

and

ϕ(u[y−z]1η′y) = u[y−z]1up([x−z]1+rx−se)−[y−z]1ϕ(ηx).
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As p([y−z]1+ry−se)−[x−z]1, p([x−z]1+rx−se)−[y−z]1 > 0, by iterating the previous
procedure, we end up with a basis with the required properties. For the last statement, it
is obvious that vx = 0 (resp. vy = 0) if and only if v′x = 0 (resp. v′y = 0). �

Proposition 3.6. Keep the notation as in Proposition 3.3 and assume ρ0
∼= T2

st(M).

(i) If s = 1 in the case (a) and ρ0 is non-split, then FL(ρ0) = [0 : 1].
(ii) If s = 0 in the case (b), then ρ0 splits as a sum of a two-dimensional irreducible

representation and a character.

Proof. Assume that s = 1 in the case (a), Proposition 3.3, i.e., (m2,m0) = (1, 2). Then
x ≡ r − 1 mod e, y ≡ 0 mod e, z ≡ c mod e, rx = 2e − (r − 1), ry = r − 1, and s = 1.
Clearly, [x− z]1 = e− c+ (r− 1) and [y− z]1 = e− c. Then by Lemma 3.5, we can assume
vx = 0 in the matrix (3.1.2), and by the Lemma 3.5, we can assume ηx = 0 = ηy in the
matrix (3.1.3). We can also assume that vy ∈ F as s = 1.

Let V be the matrix (3.1.2) and A the matrix (3.1.3). By Proposition 2.13, the φ-module

over F⊗Fp Fp(($)) defined by M
def
= MFp(($))(M

∗) is described by

(3.1.6) Mate(φ) = V̂ t(Â−1)t =

 α−1
z $e 0 0

α−1
z $[x−z]1 · vy 0 α−1

y $ry

0 α−1
x $rx 0


in an appropriate basis e = (ez, ex, ey). By considering the change of basis e′ = ($cez, $

r−1ex, ey)
we have:

Mate′(φ) =

 α−1
z $e(c+1) 0 0

α−1
z vy$

e(c+1) 0 α−1
y

0 α−1
x $e(r+1) 0

 .

We easily see that the φ-module M is the base change via F ⊗Fp Fp((p)) → F ⊗Fp Fp(($))
of the φ-module M0 over F⊗Fp Fp((p)) described by

Mat(φ0) =

 α−1
z p(c+1) 0 0

α−1
z vyp

(c+1) 0 α−1
y

0 α−1
x p(r+1) 0

 .

Now we can find a basis for M0 such that

Mat(φ0) = Diag(1, pr+1, pc+1)

 0 α−1
x 0

α−1
y 0 α−1

z vy
0 0 α−1

z

 ,

and so FL(ρ0) = [0 : 1] as ρ0 is non-split.
Assume that s = 0 in the case (b), Proposition 3.3, i.e., (m2,m0) = (0, 1). Since s = 0,

we can assume vx = 0 = vy. One can readily check that we can assume ηx = 0 = ηy as well,
using Lemma 3.5. By the same argument as above, it is easy to check that

Mat(φ0) = Diag(1, pr+1, pc+1)

 0 α−1
x 0

α−1
y 0 0
0 0 α−1

z


(the only difference is the base change: e′ = ($c+1ez, $

r−1ex, $
−1ey)). Hence, the corre-

sponding representation ρ0 splits as a sum of a two-dimensional irreducible representation
and a character. �
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3.2. Elimination of Galois types of niveau 2. We start this subsection by recalling the
following (cf. [MP17], Lemma 3.3): let j, k be integers with k 6≡ 0 mod (p+ 1), and let ρ be
a potentially crystalline representation with Hodge–Tate weights {−2,−1, 0} and inertial

type ω̃j ⊕ ω̃k2 ⊕ ω̃
pk
2 such that ρss0 ' ρss. Then we have the identity

(3.2.1) ω3+j+k = det ρ|IQp = ω(r+1)+(c+1).

In this section, we fix e = p2 − 1, K0 = Qp2 , and K = K0( e
√
−p). We also let S =

(Fp2 ⊗Fp F)[u]/uep and S0 = (Fp2 ⊗Fp F)[ue]/uep. Recall that by [m]2 for an integer m we
mean the unique integer in the interval [0, e) congruent to m mod (e).

Proposition 3.7. Let M ∈ F-BrMod2
dd be a Breuil module over S of type τ ' ωz$ ⊕

ωx$ ⊕ ωy$ such that T2
st(M)ss ∼= ρss0 and ρ2 ⊂ T2

st(M), where ρ2 is the one-dimensional
subrepresentation of ρ0. Assume that the submodule corresponding to ρ2 has descent data ωz2 .

Then there exists a framed basis e = (ez, ex, ey) and a framed system of generators f such
that

(3.2.2) Mate,f (Fil2 M) =

us(p−1) u[px−z]2 · vy u[py−z]2 · vx
0 0 urx

0 ury 0

 ;

(3.2.3) Mate,f (ϕ2) =

αz u[x−z]2 · ηx u[y−z]2 · ηy
0 αx 0
0 0 αy

 ,

where αx, αy, αz ∈ (Fp2⊗F)× and vx, vy ∈ S0. Moreover, the tuple (x, y, z, rx, ry, s) satisfies
the following properties:

(a): if x ≡ k mod (e), y ≡ pk mod (e), and z ≡ (p+ 1)j mod (e), then

j ≡ c+ 1−m2 mod (p− 1), k ≡ r + 1−m0 − pm1 mod (e),

and  rx = m0e;
ry = m1e;
s = m2(p+ 1),

where mi ∈ {0, 1, 2} satisfy m0 +m1 +m2 = 3.
(b): if x ≡ (p+ 1)j mod (e), y ≡ k mod (e), and z ≡ pk mod (e), then

j ≡ r + 1− ε mod (p− 1), k ≡ (δ + ε− 3) + p(c+ 1− δ) mod (e),

and  rx = (c− r − δ + ε) + p(δ + 2ε− r − 4) + εe;
ry = (r + 4− δ − 2ε) + p(r − c+ δ − ε) + (3− δ − ε)e;
s = (c+ 4− ε− δ) + pδ,

where ε ∈ {1, 2} and δ ∈ {0, 1} with ε+ δ 6= 3.
(c): if x ≡ k mod (e), y ≡ (p+ 1)j mod (e), and z ≡ pk mod (e), then

j ≡ ε+ δ − 3 mod (p− 1), k ≡ (r + 1− ε) + p(c+ 1− δ) mod (e),

and  rx = (2ε+ δ − r − 4) + p(ε+ 2δ − c− 4) + εe;
ry = (c+ 4− ε− 2δ) + p(r + 4− δ − 2ε) + (3− δ − ε)e;
s = (c− r + ε) + pδ,

where ε ∈ {1, 2} and δ ∈ {0, 1} with ε+ δ 6= 1.
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Proof. Since ρ0 is an extension of a two-dimensional irreducible representation by a character
of niveau 1, M is also an extension of a simple Breuil module of rank 2 by a Breuil module
of rank 1 by Proposition 2.22. Hence, it is immediate that the filtration and the Frobenius
map ϕ2 of M are described as in (3.2.2) and (3.2.3) respectively, by using the classification
of simple Breuil modules of rank 2 in Proposition 2.24 and the classification of simple Breuil
modules of rank 1 in [MP17], Lemma 3.1.

Recall from Proposition 2.24 that

(3.2.4) rx ≡ py − x mod (e), ry ≡ px− y mod (e), and z + ps ≡ 0 mod (p+ 1).

We also recall that 0 ≤ rx, ry ≤ 2e, 0 ≤ s ≤ 2(p+ 1), and by Lemma 3.3.2 in [EGH13] and
by Proposition 2.24 we have:

(3.2.5)

{
x+ p

prx+ry
e ≡ r + 1 mod (e);

z + ps ≡ (p+ 1)(c+ 1) mod (e).

For case (a), assume that x ≡ k mod (e), y ≡ pk mod (e), and z ≡ (p+ 1)j mod (e). We
let rx = m0e, ry = m1e, and s = (p + 1)m2 for mi ∈ {0, 1, 2}, due to the equation (3.2.4).
Then it is immediate from the equation (3.2.5) that{

k + p(pm0 +m1) ≡ r + 1 mod (e);
j + pm2 ≡ (c+ 1) mod (p− 1).

Hence, j ≡ c + 1 −m2 mod (p − 1) and k ≡ r + 1 −m0 − pm1 mod (e). The determinant
condition (3.2.1) gives rise to the condition m0 + m1 + m2 ≡ 3 mod (p − 1) and so m0 +
m1 +m2 = 3 since p > 5.

For case (b), assume that x ≡ (p + 1)j mod (e), y ≡ k mod (e), and z ≡ pk mod (e).
From equation (3.2.4) we can write prx + ry = ae for 0 ≤ a ≤ 2(p+ 1). From the equation
(3.2.5) we get {

(p+ 1)j + pa ≡ r + 1 mod (e);
pk + ps ≡ (p+ 1)(c+ 1) mod (e).

From the determinant condition (3.2.1), we have

(3.2.6) (p+ 1)(c− r + 3)− (p+ 1)s ≡ pa− (r + 1) mod (e),

and so a ≡ −(r+ 1) mod (p+ 1). We let a = ε(p+ 1)− (r+ 1) where ε ∈ {1, 2} (recall that
0 ≤ a ≤ 2(p+ 1)).

We now determine j, k, and s in terms of a = ε(p+ 1)− (r+ 1) and the inertial weights.
We have (p+ 1)j ≡ (r+ 1)− pa ≡ (r+ 1)− p[ε(p+ 1)− (r+ 1)] ≡ (p+ 1)(r+ 1− ε) mod (e)
and hence j ≡ r + 1 − ε mod (p − 1). From equation (3.2.6) we have (p + 1)s ≡ (p +
1)(c − r + 3) − p[ε(p + 1) − (r + 1)] + (r + 1) ≡ (p + 1)(c + 4 − ε) mod (e) and so we have
s ≡ c + 4 − ε mod (p − 1). We write s = c + 4 − ε + δ(p − 1) for δ ∈ {0, 1} (again, since
0 ≤ s ≤ 2(p + 1)). Finally k is immediately deduced from s: k ≡ (p + 1)(c + 1) − s ≡
(p+ 1)(c+ 1)− [c+ 4− ε+ δ(p− 1)] = (ε+ δ − 3) + p(c+ 1− δ) mod (e).

We now describe rx, ry in the filtration. From the equation (3.2.4), rx ≡ pk− (p+ 1)j ≡
(c − r + ε − δ) + p(δ + 2ε − r − 4) mod (e) and ry ≡ (p + 1)j − k ≡ (r + 4 − δ − 2ε) +
p(δ − ε+ r − c) mod (e). Hence we have rx = (c− r + ε− δ) + p(δ + 2ε− r − 4) +m0e and
ry = (r+4−δ−2ε)+p(δ− ε+r−c)+m1e for some m0,m1 ∈ {1, 2} (since 0 ≤ rx, ry ≤ 2e).

We finally determine m0, m1. We have ae = prx + ry = (δ+ 2ε− r− 4 + pm0 +m1)e and
so ε(p+1)−(r+1) = a = δ+2ε−r−4+pm0 +m1. Hence, we have δ+ε−3+m1 = p(ε−m0)
which immediately implies that m0 = ε and m1 = 3 − δ − ε. The requirement m1 ∈ {1, 2}
implies that (δ, ε) 6= (1, 2).
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For case (c), assume that x ≡ k mod (e), y ≡ (p+ 1)j mod (e), and z ≡ pk mod (e). We
write prx + ry = ae for 0 ≤ a ≤ 2(p + 1) from the equation (3.2.4). From the equation
(3.2.5) we get {

k + pa ≡ r + 1 mod (e);
pk + ps ≡ (p+ 1)(c+ 1) mod (e).

We now determine j, k, s in terms of a and the inertial weights. From the determinant
condition (3.2.1), we have j ≡ r+ c− 1−k ≡ r+ c− 1− [r+ 1− pa] ≡ c− 2 +a mod (p− 1).
We also have p(r+1−pa) ≡ pk ≡ (p+1)(c+1)−ps which gives s ≡ (p+1)(c+1)−(r+1)+pa ≡
(c − r) + p(c + 1 + a) mod (e). Hence we can write s = (c − r) + p(c + 1 + a) − εe =
(c−r+ε)+p(c+1+a−pε) where ε ∈ {1, 2} since 1 ≤ s, a ≤ 2(p+1). Define δ := c+1+a−pε.
Then δ ∈ {0, 1} (since 0 ≤ s ≤ 2(p+ 1)) and we have a = δ+ pε− (c+ 1). We finally obtain
j ≡ ε+ δ − 3 mod (p− 1) and k ≡ r + 1− pa ≡ r + 1− ε+ p(c+ 1− δ) mod (e).

We now describe rx, ry in the filtration. From the equation (3.2.4), rx ≡ (p+ 1)j − k ≡
(2ε + δ − r − 4) + p(2δ + ε − c − 4) mod (e) and ry ≡ pk − (p + 1)j ≡ (c + 4 − 2δ − ε) +
p(r + 4− δ − 2ε) mod (e). So we can write rx = (2ε+ δ − r − 4) + p(2δ + ε− c− 4) +m0e
and ry = (c + 4 − 2δ − ε) + p(r + 4 − δ − 2ε) + m1e for some m0 ∈ {1, 2} and m1 ∈ {0, 1}
(since 0 ≤ rx, ry ≤ 2e). We have ae = prx + ry = (2δ + ε − c − 4 + pm0 + m1)e so that
δ− (c+ 1) + pε = a = 2δ+ ε− c− 4 + pm0 +m1. Hence, we have δ+ ε− 3 +m1 = p(ε−m0)
which easily implies m0 = ε and m1 = 3− δ − ε. The requirement m1 ∈ {0, 1} implies that
(δ, ε) 6= (0, 1). �

Lemma 3.8. Keep the notation as in Proposition 3.7 (in particular, recall the elements vx
and vy in the matrix (3.2.2)) and assume s ≤ p+ 1.

(i) If rx + s(p− 1)− [py − z]2 > 2e then there is a basis such that vx = 0.
(ii) If ry + s(p− 1)− [px− z]2 > 2e then there is a basis such that vy = 0.

Proof. The same argument as in Lemma 3.4 works. �

Lemma 3.9. Keep the notation as in Proposition 3.7 (in particular, recall the elements ηx
and ηy in the matrix (3.2.3)).

(i) If [x− z]2 + rx − s(p− 1) + e ≥ 0 and [y − z]2 + ry − s(p− 1)− e ≥ 0 then there is
a basis such that ηx ∈ Fp2 ⊗Fp F and ηy = 0.

(ii) If [x− z]2 + rx − s(p− 1)− e ≥ 0 and [y − z]2 + ry − s(p− 1) + e ≥ 0 then there is
a basis such that ηx = 0 and ηy ∈ Fp2 ⊗Fp F.

(iii) If p([x − z]2 + rx − s(p − 1)) > [y − z]2 and p([y − z]2 + ry − s(p − 1)) > [x − z]2
then there is a basis such that ηx = 0 and ηy = 0.

Moreover, the change of basis does not affect the vanishing of vx and vy.

Proof. One can prove case (iii) by the same argument as in Lemma 3.5, and case (i) is
similar to case (ii). We only provide with a proof for case (ii).

Let V0 be the matrix (3.2.2) and A0 the matrix (3.2.3). We define η̃y ∈ ue · S0 by

ηy = η0
y + η̃y with η0

y ∈ Fp2 ⊗Fp F and let Ã0 be the matrix obtained from A0 by replacing
ηy in A0 by η̃y. We also let

B1 =

αz u[p−1(x−z)]2 · η′x u[p−1(y−z)]2 · η′y
0 αy 0
0 0 αx


for some η′x, η

′
y ∈ S0.
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One can easily check that the equation

(3.2.7) Ã0V1 = V0B1

holds true if and only if the following two equalities hold:

αzu
[px−z]2v′y + u[y−z]2+ry η̃y = us(p−1)+[p−1(x−z)]2η′x + αyu

[px−z]2vy;

αzu
[py−z]2v′x + u[x−z]2+rxηx = us(p−1)+[p−1(y−z)]2η′y + αxu

[py−z]2vx.

Hence, the equation (3.2.7) holds if we choose v′x = αxα
−1
z vx, v′y = αyα

−1
z vy,

u[p−1(x−z)]2η′x = u[y−z]2+ry−s(p−1)η̃y, and u[p−1(y−z)]2η′y = u[x−z]1+rx−s(p−1)ηx.

Here, both u[p−1(x−z)]2η′x and u[p−1(y−z)]2η′y are well-defined elements in S by our assumption
on (x, y, z) and (s, rx, ry).

Now let us consider the new basis e′
def
= eÃ0. Then V1 = Mate′,f ′(Fil2 M), where f ′ be the

system of generators given by the column vectors of V1. Note that ϕ(u[p−1(y−z)]2η′y) = 0,
again by our assumption. We compute Mate′,f ′(ϕ2) as follows:

ϕ2(e′V1) = eA0ϕ(B1)

= e

Ã0 +

0 0 η0yu
[y−z]

0 0 0
0 0 0

ϕ(αz) up[p
−1(x−z)]2ϕ(η′x) 0

0 ϕ(αy) 0
0 0 ϕ(αx)


= e

Ã0 + Ã0

0 0
η0
y

αz
u[y−z]

0 0 0
0 0 0

ϕ(αz) up[p
−1(x−z)]2ϕ(η′x) 0

0 ϕ(αy) 0
0 0 ϕ(αx)


= eÃ0

ϕ(αz) up[p
−1(x−z)]2ϕ(η′x)

η0
yϕ(αx)

αz
u[y−z]

0 ϕ(αy) 0
0 0 ϕ(αx)


= e′

ϕ(αz) ϕ(u[y−z]2+ry−s(p−1)η̃y)
η0
yϕ(αx)

αz
u[y−z]

0 ϕ(αy) 0
0 0 ϕ(αx)


︸ ︷︷ ︸

=Mate′,f′ (ϕ2)

.

Hence, for Mate′,f ′(ϕ2), we see that ηy = η0
y, i.e., η̃y = 0. Performing the above procedure

one more time, we see that ηx = 0 and ηy ∈ Fp2⊗FpF. It is obvious that the above procedure
does not affect the vanishing of vx and vy. �

Proposition 3.10. Keep the notation as in Proposition 3.7 and assume that ρ0
∼= T2

st(M).

(i) If m2 = 0 in the case (a), then ρ0 splits as a sum of a two-dimensional irreducible
representation and a character.

(ii) If (m2,m1,m0) = (1, 0, 2) in the case (a) and ρ0 is non-split, then FL(ρ0) = [0 : 1].
(iii) If (m2,m1,m0) = (1, 2, 0) in the case (a) and ρ0 is non-split, then FL(ρ0) = [1 : 0].
(iv) If (ε, δ) = (2, 0) in the case (b) and ρ0 is non-split, then FL(ρ0) = [0 : 1].
(v) If (ε, δ) = (2, 0) in the case (c) and ρ0 is non-split, then FL(ρ0) = [0 : 1].

Proof. Let V be the matrix (3.2.2) and A the matrix (3.2.3), and assume that s(p− 1) ≤ e.
Since s ≤ (p+1), we may assume that vx, vy ∈ Fp2⊗FpF. By Proposition 2.13, the φ-module



32 DANIEL LE, STEFANO MORRA, AND CHOL PARK

over F⊗Fp Fp2(($)) defined by M
def
= MFp2 (($))(M

∗) is described by

(3.2.8) Mate(φ) = V̂ t(Â−1)t =


1
αz
$s(p−1) 0 0

vy
αz
$[px−z]2 +

ηy
αzαy

$ry+[y−z]2 0 1
αy
$ry

vx
αz
$[py−z]2 + ηx

αzαx
$rx+[x−z]2 1

αx
$rx 0


in an appropriate basis e = (ez, ex, ey).

We now prove case (iii). Assume that (m2,m1,m0) = (1, 2, 0). Then we have x ≡ r+1−2p
mod e, y ≡ p(r + 1)− 2 mod e, z ≡ (p+ 1)c, s = (p+ 1), rx = 0, and ry = 2e. So we have
[x− z]2 = e+ r+ 1− 2p− (p+ 1)c and [y− z]2 = e+ p(r+ 1)− 2− (p+ 1)c. By lemma 3.9,
case (i), we may assume that ηy = 0 and ηx ∈ Fp2 ⊗Fp F, and, by Lemma 3.8, case (ii), we
may assume that vy = 0 as well. Hence, in this specific case, we have

Mate(φ) =


1
αz
$e 0 0

0 0 1
αy
$2e

vx
αz
$e+r+1−2p−(p+1)c + ηx

αzαx
$e+r+1−2p−(p+1)c 1

αx
0

 .

By considering the change of basis e′ = ($(p+1)cez, $
p(r+1)−2ex, $

r+1−2pey) we have:

Mate′(φ) =


1
αz
$e(c+1) 0 0

0 0 1
αy

vx
αz
$e(c+1) + ηx

αzαx
$e(c+1) 1

αx
$e(r+1) 0

 .

We easily see that the φ-module M is the base change via F⊗Fp Fp2((p))→ F⊗Fp Fp2(($))
of the φ-module M0 over F⊗Fp Fp2((p)) described by

Mat(φ0) =


1
αz
p(c+1) 0 0

0 0 1
αy

vx
αz
p(c+1) + ηx

αzαx
p(c+1) 1

αx
p(r+1) 0

 .

Now we can find a basis for M0 such that

Mat(φ0) = Diag(1, pr+1, pc+1)

 0 1
αx

vx
αz

+ ηx
αzαx

1
αy

0 0

0 0 1
αz

 ,

and so FL(ρ0) = [1 : 0], by Lemma 3.2, as ρ0 is non-split.
Case (ii) is very similar to the previous one. We now have vx = 0 = ηx and ηy ∈ Fp2⊗FpF.

By the same argument as above, one can check that

Mat(φ0) = Diag(1, pr+1, pc+1)

 0 1
αx

0
1
αy

0
vy
αz

+
ηy
αzαy

0 0 1
αz

 ,

and so FL(ρ0) = [0 : 1], by Lemma 3.2, as ρ0 is non-split.
Assume that s = 0, i.e., m2 = 0. Since s = 0, we may let vx = 0 = vy. One can readily

check ηx = 0 = ηy as well, using Lemma 3.9, case (iii). By the same argument as above, it
is easy to check that

Mat(φ0) = Diag(1, pr+1, pc+1)

 0 1
αx

0
1
αy

0 0

0 0 1
αz

 .
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Hence, the corresponding representation ρ0 splits as a sum of a two-dimensional irreducible
representation and a character.

Assume that (ε, δ) = (2, 0) in the case (b). By Lemma (3.8), case (i), we have vx = 0,
and, by Lemma (3.9), case (iii), ηx = ηy = 0. By the same argument as above, one can
check that

Mat(φ0) = Diag(1, pr+1, pc+1)

 0 1
αx

0
1
αy

0
vy
αz

0 0 1
αz

 ,

and so FL(ρ0) = [0 : 1], by Lemma 3.2, as ρ0 is non-split.
Assume that (ε, δ) = (2, 0) in the case (c). In this case, we may let vx = 0 since

s(p − 1) ≤ [py − z]2. By Lemma (3.9), case (iii), ηx = ηy = 0. By the same argument as
above, one can check that

Mat(φ0) = Diag(1, pr+1, pc+1)

 0 1
αx

0
1
αy

0
vy
αz

0 0 1
αz

 ,

and so FL(ρ0) = [0 : 1], by Lemma 3.2, as ρ0 is non-split. �

4. Fontaine-Laffaille parameter and crystalline Frobenius

The aim of this section is to explicitly determine the Fontaine-Laffaille module associated
to the mod-p reduction of a potentially crystalline lift of ρ0, with a carefully chosen inertial
type. The main result is Theorem 4.5, whose proof relies on some direct manipulation in
semilinear algebra (cf. Section 2.2.4, Lemmas 2.17, 2.18).

As we did in Section 3, in the reminder of this section we may and do assume a0 = −1

and define c
def
= a2 − a0 − 1, r

def
= a1 − a0 − 1.

4.1. Filtration on strongly divisible modules. We go back to the setting of section
2.1 and we let ρ0 : GQp → GL3(F) be as in (2.1.1) with the genericity condition as in
Definition 2.4.

Proposition 4.1. Let M ∈ F-BrMod2
dd be a Breuil module of type τ = ωc ⊕ ωr ⊕ ω−1 such

that T2
st(M) ∼= ρ0.

Then there exists a framed basis e = (ec, er, e−1) on M and a framed system of generators
f = (fc, fr, f−1) for Fil2 M such that

Mate,f (FilM) =

ue ue−(c−r)λ ue−(c+1)µ
0 0 ue−(r+1)

0 ue+(r+1) 0

 and Mate,f (ϕ2) =

αc 0 0
0 αr 0
0 0 α−1


where λi ∈ F× and λ, µ ∈ F.

Moreover, we have the following properties:

(i) λ = 0 = µ if and only if ρ0 splits;
(ii) if ρ0 is non-split, then FL(ρ0) = [µαr : −λ] ∈ P1(F).

Proof. From Proposition 3.3, (b) form0 = 0 andm2 = 1, it is immediate to get Mate(Fil2 M)
as above. By Lemma 3.5, it is also easy to check that ηx = 0 = ηy in the matrix (3.1.3),
and so we get Mate,f (ϕ2) as above.
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By the same argument as in Proposition 3.6, one can readily compute the following
φ-module over F⊗Fp Fp((p)) from the Breuil module structure as above:

Mat(φ0) = Diag(1, pr+1, pc+1)

 0 1
αr

µ
αc

1
α−1

0 λ
αc

0 0 1
αc

 .

The second part is immediate from this matrix. �

From now on in this section, we restrict our attention to ρ0 that is non-split. We easily
deduce the following:

Lemma 4.2. Let M ∈ F-BrMod2
dd and λ, µ ∈ F as in the statement of Proposition 4.1.

Assume that ρ0 is non-split, i.e., not both λ and µ are zero.
Then the elementary divisors for M/Fil2 M are described by one of the following possi-

bilities:

(i) if λµ 6= 0, by (ue−(c+1), ue, ue+(c+1));
(ii) if λ = 0, by (ue−(c+1), ue+(c−r), ue+(r+1));

(iii) if µ = 0, by (ue−(c−r), ue−(r+1), ue+(c+1)).

In particular, one has:

(a)
(

Fil2 M
)
ω−1 ⊆ ue−(c+1)M; moreover,

(
Fil2 M

)
ω−1 ⊆ ue−(r+1)M holds true if and

only if µ = 0;
(b)

(
Fil2 M ∩ ueM

)
ω−1 ⊆ u2e−(c+1)M;

(c)
(

Fil2 M
)
ωc
⊆ ueM.

Proof. The elementary divisors are immediately deduced from the Smith normal forms of
Mate(Fil2 M) in Proposition 4.1.

It is easy to check the following computation:

(Fil2 M)ωc =
〈
ueec, u

eλec + ue+(c−1)e−1, u
eµec + ue+(c−r)e−1

〉
;

(Fil2 M)ωr =
〈
ue+rec, u

e−(c−r)λec + ue+(r+1)e−1, u
e−(c−r)µec + uee−1

〉
;

(Fil2 M)ω−1 =
〈
u2e−(c+1)ec, u

2e−(c+1)λec + u2ee−1, u
e−(c+1)µec + ue−(r+1)e−1

〉
.

The second part is also immediate from the computation above. �

Proposition 4.3. Let ρ : GQp → GL3(OE) be a p-adic Galois representation becoming

crystalline over K, with inertial type τ = ω̃c⊕ ω̃r⊕ ω̃−1 and Hodge-Tate weights {−2,−1, 0}
such that ρ ∼= ρ0. Let M̂ ∈ OE-Mod2

dd be a strongly divisible lattice such that T
Qp,2
st (M̂) = ρ.

Then there exists a framed basis (êc, êr, ê−1) for M̂ and a framed system of generators

(f̂c, f̂r, f̂−1) for Fil2 M̂/Fil2 S · M̂ whose coordinates are described as follows:
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A : if FL(ρ0) ∈ P1(F) \ {[0 : 1], [1 : 0]} then

f̂c =

 −p
2

α
0

puc+1

+ E(u)

 0
0

uc+1


f̂r =E(u)

 0
1
0


f̂−1 =

 ue−(c+1)

0
α


where 0 < vp(α) < 2.

B : if FL(ρ0) = [1 : 0] then

f̂c =

 −pβα
0

βuc+1

+ E(u)

 0
uc−r

0


f̂r = E(u)

 0
− p
β

ur+1


f̂−1 =

 ue−(c+1)

0
α


where 0 < vp(β) and 0 < vp(α) < vp(β) + 1 < 2.

C : if FL(ρ0) = [0 : 1] then

f̂c =

 −p
2α
β

−p
2

β u
c−r

puc+1

+ E(u)

 0
0

uc+1


f̂r =

 ue−(c−r)

− p
α

β
αu

r+1

+ E(u)

 0
0

γur+1


f̂−1 =

 αue−(c+1)

ue−(r+1)

β


where 0 < vp(α) < 1, 0 < vp(γ), and 0 < vp(α) < vp(β) < 2.

Proof. Let e
def
= (ec, er, e−1) be a framed basis for M̂. We write the elements of M̂ in terms of

coordinates with respect to e. Moreover, we let M
def
= M̂⊗S S/($E ,Filp S) denote the Breuil

module associated to M̂, define D
def
= M̂⊗OESE and, if χ : Fp× → OE is a tame character, we

write Xχ
def
=
(
Fil2 D/Fil2 S ·D

)
χ
, which is a E[E(u)]/(E(u)2)-module explicitly described

in [HLM17], Lemma 2.4.9.
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By [HLM17], Proposition 2.4.10 we have an element f−1 ∈ Xω̃−1 ∩ M̂ of the form

f−1 :

 xue−(c+1)

yue−(r+1)

z

+ E(u)

 x′ue−(c+1)

y′ue−(r+1)

z′


where x, y, z, x′, y′, z′ ∈ OE and (x, y, z) 6= (0, 0, 0). By Lemma 4.2-(iv) we necessarily have
z ≡ 0 modulo $E .

Case A : Assume that FL(ρ0) 6= [1 : 0], [0 : 1], or equivalently, by Proposition 4.1, that
λµ 6= 0. Then vp(x) = 0 as ue−(c+1) is an elementary divisor for M/Fil2 M and vp (y) > 0

by Lemma 4.2-(iv). We define e′c ∈ M̂ as follows:

e′c :

 x+ x′E(u)
uc−r(y + y′E(u))

uc+1z′

 .

As vp(x) = 0, e′
def
= (e′c, er, e−1) is again a framed basis for M̂. By letting α

def
= z + pz′ we

therefore have the following coordinates for f−1 in the basis e′:

f−1 :

 ue−(c+1)

0
α


where vp(α) > 0. From now onwards we use the basis e′ to write the coordinates of the

elements in M̂.
By [HLM17], Proposition 2.4.10 we easily deduce:(

Fil2 M̂

Fil2 SM̂

)
ω̃−1

=

〈 ue−(c+1)

0
α

 , E(u)

 ue−(c+1)

0
α

 , E(u)

 0
γue−(r+1)

β

〉
OE

where β, γ ∈ OE . Moreover, by Lemma 4.2-(v) we necessarily have vp(β) > 0 so that,
without loss of generality, we can assume γ = 1.

By [HLM17], Proposition 2.4.10 we have

Xω̃r =

〈 ue−(c−r)

0
αur+1

 , E(u)

 ue−(c−r)

0
αur+1

 , E(u)

 0
p

βur+1

〉
E

.

If 0 < vp(β) < 1, then one can easily check that it violates Lemma 4.2-(i). Assume that
vp(β) ≥ 1. Then the element e′r defined by

e′r :

 0
1

−βpu
r+1


is in

(
Fil2 M̂

Fil2 SM̂

)
ω̃r

and the family e′′
def
= (e′c, e

′
r, e−1) is again a framed basis for M̂. Until the

end of case A we use the basis e′′ to write the coordinates of the elements in M̂.

Hence,
(

Fil2 M̂

Fil2 SM̂

)
ω̃−1

is generated by ue−(c+1)

0
α

 , E(u)

 ue−(c+1)

0
α

 , E(u)

 0
ue−(r+1)

0


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over OE , and
(

Fil2 M̂

Fil2 SM̂

)
ω̃r

by ue−(c−r)

0
αur+1

 , E(u)

 ue−(c−r)

0
αur+1

 , E(u)

 0
1
0


over OE . Again by [HLM17], Proposition 2.4.10 we further deduce

Xω̃c =

〈 −p
0

αuc+1

+ E(u)

 1
0
0

 , E(u)

 −p
0

αuc+1

 , E(u)

 0
uc−r

0

〉
E

,

and an immediate manipulation provides us with: −p
2

α
0

puc+1

+ E(u)

 0
0

uc+1

 ∈ Xω̃c .

By Lemma 4.2-(vi) we necessarily have vp(p
2

α ) > 0, in particular −p
2

α
0

puc+1

+ E(u)

 0
0

uc+1

 ∈ ( Fil2 M̂

Fil2 SM̂

)
ω̃c

.

Hence, we obtain the following inclusion:〈 ue−(c+1)

0
α

 , E(u)

 0
1
0

 ,

 −p
2

α
0

puc+1

+ E(u)

 0
0

uc+1

〉
OE

⊆ Fil2 M̂

Fil2 SM̂
.

By Nakayama’s lemma and noticing that the elementary divisors of M/Fil2 M are described
by Lemma 4.2-(i) we conclude that the inclusion is indeed an equality.

Case B : Assume that FL(ρ0) = [1 : 0], or equivalently, by Proposition 4.1, that λ = 0
and µ 6= 0. By exactly the same argument as in the proof of case A, we get the same(

Fil2 M̂

Fil2 SM̂

)
ω̃−1

as well as Xω̃r as in case A. If vp(β) ≥ 1, then one can easily check that it

violates Lemma 4.2-(ii). Assume 0 < vp(β) < 1.
As in case A we easily deduce

E(u)

 0
− p
β

ur+1

 ∈ ( Fil2 M̂

Fil2 SM̂

)
ω̃r

and

Xω̃c =

〈 −p
0

αuc+1

+ E(u)

 1
0
0

 , E(u)

 −p
0

αuc+1

 , E(u)

 0
− p
βu

c−r

uc+1

〉
E

.

In particular,  −pβα
0

βuc+1

+ E(u)

 0
uc−r

0

 ∈ ( Fil2 M̂

Fil2 SM̂

)
ω̃c

and, by Lemma 4.2-(vi) we necessarily have vp(β) > 0 and vp(β) + 1 > vp(α).
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Hence, we obtain the following inclusion:〈 ue−(c+1)

0
α

 , E(u)

 0
− p
β

ur+1

 ,

 −pβα
0

βuc+1

+ E(u)

 0
uc−r

0

〉
OE

⊆ Fil2 M̂

Fil2 SM̂
.

which implies that the elementary divisors for M/Fil2 M are necessarily of the form de-
scribed by Lemma 4.2-(ii). It follows, as for case A, that the inclusion is actually an
equality and the case B claimed in the statement of the proposition follows.

Case C :Assume that FL(ρ0) = [0 : 1], or equivalently, by Proposition 4.1, that λ 6= 0
and µ = 0. We may assume that y = 1 as ue−(r+1) is an elementary divisor for M/Fil2 M

and vp (x),vp (y) > 0 by Lemma 4.2-(iv). We define e′r ∈ M̂ as follows:

e′r :

 x′ue−(c−r)

1 + y′E(u)
z′ur+1

 .

Then e′
def
= (ec, e

′
r, e−1) is again a framed basis for M̂. By letting α

def
= x+px′ and β

def
= z+pz′

we therefore have the following coordinates for f−1 in the basis e′:

f−1 :

 αue−(c+1)

ue−(r+1)

β


where vp(α) > 0 and vp(β) > 0. From now onwards we use the basis e′ to write the

coordinates of the elements in M̂.
By [HLM17], Proposition 2.4.10 we easily deduce:(

Fil2 M̂

Fil2 SM̂

)
ω̃−1

=

〈 αue−(c+1)

ue−(r+1)

β

 , E(u)

 αue−(c+1)

ue−(r+1)

β

 , E(u)

 δue−(c+1)

0
γ

〉
OE

where γ, δ ∈ OE . Moreover, by Lemma 4.2-(v) we necessarily have vp(γ) > 0 so that,
without loss of generality, we can assume δ = 1.

By [HLM17], Proposition 2.4.10 we have

Xω̃r =

〈 αue−(c−r)

−p
βur+1

+ E(u)

 0
1
0

 , E(u)

 αue−(c−r)

−p
βur+1

 , E(u)

 ue−(c−r)

0
γur+1

〉
E

.

If min{1,vp(β)} ≤ vp(α), then one can easily check that it violates Lemma 4.2-(iii). Assume
that 0 < vp(α) < min{1,vp(β)}. Then easy manipulations provide us with

E(u)

 0
1

−β−αγp ur+1

 ,

 ue−(c−r)

− p
α

β
αu

r+1

+ E(u)

 0
0

β−αγ
pα ur+1

 ∈ Xω̃r .

Again by [HLM17], Proposition 2.4.10 we further deduce

Xω̃c =

〈 −p
− p
αu

c−r

β
αu

c+1

+ E(u)

 1
0

β−αγ
pα uc+1

 , E(u)

 0
uc−r

−β−αγp uc+1

 , E(u)

 −p
0

γuc+1

〉
E

,
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and an immediate manipulation provides us with: −p
2α
β

−p
2

β u
c−r

puc+1

+ E(u)

 0
0

uc+1

 ∈ Xω̃c .

By Lemma 4.2-(vi) we necessarily have vp(p
2

β ) > 0, in particular −p
2α
β

−p
2

β u
c−r

puc+1

+ E(u)

 0
0

uc+1

 ∈ ( Fil2 M̂

Fil2 SM̂

)
ω̃c

.

Hence, we obtain that Fil2 M̂

Fil2 SM̂
contains −p

2α
β

−p
2

β u
c−r

puc+1

+E(u)

 0
0

uc+1

 ,

 ue−(c−r)

− p
α

β
αu

r+1

+E(u)

 0
0

β−αγ
pα ur+1

 , E(u)

 αue−(c+1)

ue−(r+1)

β

 .

By Nakayama’s lemma and noticing that the elementary divisors of M/Fil2 M are described
by Lemma 4.2-(iii) we conclude that the inclusion is indeed an equality. Note that vp(β −
αγ) > 1 + vp(α) by Lemma 4.2-(iii). �

Corollary 4.4. Let ρ and M̂ be respectively a Galois representation and a strongly divis-
ible lattice as in Proposition 4.3. Write (λc, λr, λ−1) for the Frobenius eigenvalue on the

(ω̃c, ω̃r, ω̃−1)-isotypic component of the filtered (ϕ,N)-module D
Qp,2
st (ρ).

Then the valuation of the Frobenius eigenvalues on D
Qp,2
st (ρ) is described as follows:

A : if FL(ρ0) ∈ P1(F) \ {[0 : 1], [1 : 0]} then

(vp(λc),vp(λr),vp(λ−1)) = (vp(α), 1, 2− vp(α))

where 0 < vp(α) < 2.
B : if FL(ρ0) = [1 : 0] then

(vp(λc),vp(λr),vp(λ−1)) = (1 + vp(α)− vp(β),vp(β), 2− vp(α))

where 0 < vp(β) and 0 < vp(α) < vp(β) + 1 < 2.
C : if FL(ρ0) = [0 : 1] then

(vp(λc),vp(λr),vp(λ−1)) = (vp(β)− vp(α), 1 + vp(α), 2− vp(β))

where 0 < vp(α) < 1 and 0 < vp(α) < vp(β) < 2.

Proof. Let us write s0 : SQp → E to denote the morphism defined by u 7→ 0. Then one

has D
Qp,2
st (ρ) ∼= M̂[ 1

p ] ⊗SQp ,s0
E. Moreover, the Frobenius ϕ on M̂[ 1

p ] ⊗SQp ,s0
E is uniquely

determined by the condition

ϕ(êi ⊗s0 1) = p2(ϕ2 ⊗s0 1)(f̂i ⊗s0 κi)

for i ∈ {c, r,−1}, where the elements êi, f̂i can be chosen to be as in Proposition 4.3 and

the κi ∈ E are such that f̂i ⊗s0 κi = êi ⊗s0 1.

The result is therefore immediate from the explicit description of the elements f̂i given
in Proposition 4.3. �
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4.2. From Frobenius eigenvalues to Fontaine–Laffaille parameters. We are now
ready to state the main local results on the Galois side. Let red : P1(OE) → P1(F) be
the natural reduction map on the rational points of the projective line over OE . Namely,
red([x : y]) is defined as [(x/y) : 1] if vp (x) ≥ vp (y) and [1 : (y/x)] if vp (x) ≤ vp (y). We
fix a coordinate on P1(OE) (hence on P1(F)).

Theorem 4.5. Let ρ : GQp → GL3(OE) be a potentially crystalline Galois representation

with parallel Hodge-Tate weights {−2,−1, 0} and inertial type WD(ρ)|IQp ∼= τ
def
= ω̃c ⊕ ω̃r ⊕

ω̃−1 such that ρ ∼= ρ0. We also let (λc, λr, λ−1) ∈ (OE)3 be the Frobenius eigenvalues on the

(ω̃c, ω̃r, ω̃−1)-isotypic component of D
Qp,2
st (ρ).

Then the Fontaine-Laffaille parameter associated to ρ0 is computed by:

FL(ρ0) = red
(
[λr : p]

)
.

The rest of this subsection is devoted to the proof of Theorem 4.5. In the case where
FL(ρ0) = [0 : 1] or FL(ρ0) = [1 : 0], it is straightforward to prove it from the results in the
previous subsection (see the end of this subsection) and in what follows we will be firstly
interested in the case where FL(ρ0) /∈ {[1 : 0], [0 : 1]}.

Lemma 4.6. Keep the notation of Proposition 4.3. Define α• ∈ F× by the condition

α•ê• = λ•
p2 f̂• modulo ($E , u) for all • ∈ {c, r,−1} (note that the αi here is not necessarily

the same as the ones in Proposition 4.1), and assume that FL(ρ0) /∈ {[1 : 0], [0 : 1]}.
If M ∈ F-BrMod2

dd denotes the associated Breuil module to M̂, then there exists a framed
basis e = (ec, er, e−1) on M and a framed system of generators f = (fc, fr, f−1) for Fil2 M
such that Mate,f (ϕ2) = Diag(αc, αr, α−1) and

Mate,f (FilM) =

 0 0 ue−(c+1)

0 ue ue−(r+1)y
ue+(c+1) ue+(r+1)x uez


for some x, y, z ∈ F.

Proof. The proof follows closely the argument of [HLM17], Proposition 2.5.2, which we
outline here for the comfort of the reader.

Let M̂ ∈ OE-Mod2
dd be a strongly divisible lattice as in the statement of Proposition

4.3. In particular we have a framed basis ê on M̂ and a framed family f̂ of generators for

Fil2 M̂/Fil2 S · M̂ which is explicitly described in terms of ê-coordinates according to the
value of FL(ρ0).

Write e0, f
0

for the base change of ê, f̂ via S � S and set

V0
def
= Mate0,f0

(Fil2 M), A0
def
= Mate0,f0

(ϕ2).

Note that, by construction, we have (A0)00 êc ≡ αcêc ≡ λc
p2 f̂c modulo (u, $E), and, simi-

larly, (A0)11 êr ≡ αr êr ≡ λr
p2 f̂r, (A0)22 ê−1 ≡ α−1ê−1 ≡ λ−1

p2 f̂−1. Moreover, by the height

condition, we can write V adj0 = ueW0 where W0 ∈M�
3 (S) is well defined modulo ue(p−1).

We deduce from Proposition 4.3-Case A that the matrix of the filtration for Fil2 M has
the form

V0 =

 0 0 ue−(c+1)

0 ue 0
ue+(c+1) 0 0

 .
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Then there exists b12, b21, b22 ∈ F such that

−W0 ·A0 ·

 0 0 ue−(c+1)

0 ue ue−(r+1)b12

ue+(c+1) ue+(r+1)b21 ueb22


︸ ︷︷ ︸

def
= V1

= u2eB0(4.2.1)

where B0 ∈ GL�
3 (S) verifies moreover

B0 ≡

 α−1 ue−(c−r)β01 ue−(c+1)β02

0 αr ue−(r+1)β12

0 0 αc

 modue

for some βij ∈ F. Indeed, an elementary computation shows that it suffices to take b12 ≡
−α−1

r a10, b21 ≡ −α−1a21 and b22 ≡ −α−1
−1 (a21b12 + a20) modulo ue, where the aij ’s denote

the corresponding entries of A0.
By Lemma 2.19 we deduce that V1 describes the coordinates of a framed system of gener-

ators f
1

for Fil2 M with respect to the basis e1
def
= e0 ·A0 and moreover A1

def
= Mate1,f1

(ϕ2) =

ϕ(B0) is the matrix for the associated Frobenius action.
We now iterate the previous procedure: as A1 ∈ Diag(α−1, αr, αc) + u3M�

3 (S) (by the
genericity assumption (2.1.2)), we easily find V2 ∈ M�

3 (S) as in the statement, and B1 ∈
Diag(αc, αr, α−1) + uM�

3 (S) verifying:

A1V2 ≡ B1V1 mod u3e.

By virtue of Lemma 2.19, this completes the proof. �

Lemma 4.7. Keep the notation of Lemma 4.6 and assume that FL(ρ0) /∈ {[1 : 0], [0 : 1]}.
Let M ∈ F-FL[0,p−2] be the contravariant Fontaine-Laffaille module associated to ρ0.

Then there exists a basis f on M , compatible with its Hodge filtration, such that the
Frobenius action on M is described by

Matf (φ•) =


0 yα−1

r α−1
c

α−1
−1x 0 −α−1

c
y

0 0 α−1
c
xy


for some x, y ∈ F×.

Proof. By Lemma 4.6 and Lemma 2.17, the Frobenius action on the (φ,F(($)))-module

M
def
= MFp(($))(M

∗) is described by

Mate(φ) =

 0 0 $e+(c+1)α−1
−1

0 $eα−1
r $e+(r+1)xα−1

−1

$e−(c+1)α−1
c $e−(r+1)yα−1

r $ezα−1
−1


where e = (e−c, e−r, e1) is a framed basis for the dual type τ∨ and x, y, z ∈ F.

By performing the change of basis e′
def
= ($cec, $

rer, $
−1e1), it can be easily checked that

M = M0 ⊗F((p)) F(($)) where the (φ,F((p)))-module M0 is described by

Mat(φ0) =

 0 0 α−1
−1

0 α−1
r xα−1

−1

α−1
c yα−1

r zα−1
−1

 ·Diag(pc+1, pr+1, 1)
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i.e., by an evident change of basis over F,

Mat(φ0) = Diag(1, pr+1, pc+1) · F

where

F
def
=

zα−1
−1 yα−1

r α−1
c

xα−1
−1 α−1

r 0
α−1
−1 0 0

 .

By Lemma 2.14 we deduce that M0
∼= F(M) for a rank 3 Fontaine-Laffaille module

M ∈ F-FL[0,p−2] with Hodge-Tate weights {0, r + 1, c+ 1} and Matf (φ•) = F for a basis f

on M compatible with the Hodge filtration.
On the other hand the condition T∗cris(M) = ρ0 implies, by Lemma 2.5, the existence of

another basis f ′ on M such that Matf ′(φ•) is the one described in (2.1.3). Equivalently,

there exists of a change of basis A ∈ GL3(F) from f to f ′, compatible with the Hodge
filtration (i.e. A = (aij)i,j is lower unipotent) and such that

A · F =

 0 η−1
1 γ

η−1
0 0 δ
0 0 η−1

2

(4.2.2)

for some γ, δ ∈ F, ηi ∈ F×.
It is easy to check that the equation in (4.2.2) holds true if and only if one has the

following identities

z = 0, 1 + ya10 = 0, 1 + xa21 = 0, a21 + ya20 = 0,

η−1
0 = xα−1

−1, η
−1
1 = yα−1

r , η−1
2 = a20α

−1
c , γ = α−1

c , and δ = a10α
−1
c .

Solving these equations for η−1
0 , η−1

1 , η−1
2 , γ, and δ completes the proof. �

Proof of Theorem 4.5. First of all, note that Proposition 4.3 and its corollary apply in our
context. If FL(ρ0) = [1 : 0], then it is immediate that

FL(ρ0) = [1 : 0] = red([λr : p]),

since vp(λr) < 1 by Corollary 4.4, Case B. Similarly, one can prove the case FL(ρ0) = [0 : 1]
by Corollary 4.4, Case C.

For the case that FL(ρ0) /∈ {[1 : 0], [0 : 1]} it is also easy to check that

FL(ρ0) = [αr : 1] = red([λr : p]),

by Lemma 4.7 and by Definition 2.8. �

5. The local automorphic side

We now need to recall certain group algebra operators for OE [GL3(Fp)], F[GL3(Fp)]
which are needed to obtain local-global compatibility in terms of Hecke action. In order
to introduce such operators, we need some notation. In what follows, we have [Jan03] as a
main reference for the notation and terminology.
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5.1. Basic set up. We let G
def
= GL3/Zp , T be the maximal split torus consisting of diagonal

matrices and B ⊃ T the Borel subgroup of upper triangular matrices. The character and
cocharacter groups X∗(T ), X∗(T ) are identified with Z3 in the usual way. In particular the
positive simple roots {α1, α2} for the pair (B, T ) become α1 = (1,−1, 0), α2 = (0, 1,−1).
Finally, we let G, B, . . . denote the base change of G, B, . . . via Zp � Fp.

The Weyl group WG of G is canonically isomorphic to the Weyl group of G. We write
w0 ∈WG for the longest element and define

ṡ1
def
=

 1
1

1

, ṡ2
def
=

 1
1

1


which are lifts in G(Zp) of the simple reflections s1, s2 ∈ WG corresponding to α1, α2. In

particular ẇ0
def
= ṡ1ṡ2ṡ1 is a lift of w0 ∈WG.

For any dominant character λ ∈ X∗(T ) we let

H0(λ)
def
=
(

IndG
B
w0λ

)alg

⊗Fp F

be the associated dual Weyl module. It is an algebraic representation of G (or more precisely

of G/F) and we write F (λ)
def
= socG

(
H0(λ)

)
for its irreducible socle. If the weight λ is

p-restricted, i.e. if 0 ≤ 〈λ, α∨i 〉 ≤ p − 1 for i = 1, 2, then F (λ) is irreducible as a G(Fp)-
representation (see for example [Her09], Corollary 3.17).

As in [HLM17] we let I be the Iwahori subgroup of G(Zp) (preimage of B(Fp) under

the reduction map G(Zp) � G(Fp)) and I1 ≤ I for its maximal pro-p subgroup. If V is

a smooth representation of G(Zp) over OE and ai ∈ Z we write V I,(a2,a1,a0) to denote the
ω̃a2 ⊗ ω̃a1 ⊗ ω̃a0 -isotypic component for the I-action on V I1 .

5.2. Group algebra operators and the automorphic parameter. Let (a, b, c) ∈ Z3 be
a triple satisfying condition (2.1.2) (when specialized at (a2, a1, a0) = (a, b, c)). In this case
the weight (a, b, c) is in particular restricted. In [HLM17] the following elements of F[Ḡ(Fp)]
are defined:

S
def
=

∑
x,y,z∈Fp

xp−(a−c)zp−(b−c)
(

1 x y
0 1 z
0 0 1

)
ẇ0

S′
def
=

∑
x,y,z∈Fp

xp−(a−b)zp−(a−c)
(

1 x y
0 1 z
0 0 1

)
ẇ0

as well as their characteristic zero counterparts

Ŝ
def
=

∑
x,y,z∈Fp

x̃p−(a−c)z̃p−(b−c)
(

1 x̃ ỹ
0 1 z̃
0 0 1

)
ẇ0

Ŝ′
def
=

∑
x,y,z∈Fp

x̃p−(a−b)z̃p−(a−c)
(

1 x̃ ỹ
0 1 z̃
0 0 1

)
ẇ0.

The behavior of such operators is described in [HLM17], §3 and we include here the
statements for the convenience of the reader.

Proposition 5.1. Let (a, b, c) ∈ Z3 be a triple satisfying (2.1.2)) (when specialized at
(a2, a1, a0) = (a, b, c)) and consider the associated operators S, S′ ∈ F[Ḡ(Fp)].
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(i) There is a unique non-split extension of irreducible Ḡ(Fp)-representations

0→ F (a− 1, b, c+ 1)→ V → F (b+ (p− 1), a, c)→ 0

and S induces an isomorphism S : V I,(b,a,c)
∼−→ V I,(a−1,b,c+1) of one-dimensional

vector spaces.
(ii) There is a unique non-split extension of irreducible Ḡ(Fp)-representations

0→ F (a− 1, b, c+ 1)→ V ′ → F (a, c, b− (p− 1))→ 0

and S′ induces an isomorphism S′ : (V ′)
I,(a,c,b) ∼−→ (V ′)

I,(a−1,b,c+1)
of one-

dimensional vector spaces.

In characteristic zero, we have:

Proposition 5.2. Let (a, b, c) ∈ Z3 be a triple satisfying (2.1.2)) (when specialized at

(a2, a1, a0) = (a, b, c)). Let πp
def
= Ind

G(Qp)

B(Qp)

(
χb⊗χa⊗χc

)
be a principal series representation,

where the smooth characters χ• : Q×p → E× verify χ•|Z×p = ω̃• for • ∈ {a, b, c}.
On the one-dimensional isotypic component π

I,(b,a,c)
p we have

(5.2.1) Ŝ′ ◦

 1
1

p

 = pχb(p)η Ŝ,

where the element η ∈ Z×p verifies η ≡ (−1)b−c · a−bb−c mod p.

Recall that if σ is a smooth representation of G(Qp) we can define certain Up-operators

on isotypic components of σI1 . Concretely, by letting t1
def
=

p 0 0
0 1 0
0 0 1

 and t2
def
=

p 0 0
0 p 0
0 0 1

,

the Ui operator is defined as the double coset operator [I1tiI1], i.e.

Ui(v) =
∑

x∈I1/(tiI1t−1
i ∩I1)

xtiv.

Lemma 5.3 ([HLM17] Lemma 3.1.11). Let (a, b, c) ∈ Z3 be a triple with a−b > 0, b−c > 0,

a− c < p− 1 and define τ
def
= IndKI

(
ωb⊗ωa⊗ωc

)
. Let σ be a representation of G(Qp) over

F. Then

HomK(τ , σ)[Ui] = HomK(τ/Mi, σ)

for i ∈ {1, 2}, where M1 (resp. M2) is the minimal subrepresentation of τ containing
F (a, c, b− p+ 1) (resp. F (c+ p− 1, b, a− p+ 1)) as subquotient.

In characteristic zero, we have:

Lemma 5.4 ([HLM17] Lemma 3.2.8). Let πp
def
= Ind

G(Qp)

B(Qp)

(
χb ⊗ χa ⊗ χc

)
be a principal

series representation, where the smooth characters χ• : Q×p → E× verify χ•|Z×p = ω̃• for

• ∈ {a, b, c} and where a, b, c are distinct modulo p− 1.

(i) On the one-dimensional isotypic component π
I,(b,a,c)
p we have U1 = χb(p)

−1 and
U2 = χb(p)

−1χa(p)−1.

(ii) On the one-dimensional isotypic component π
I,(a,c,b)
p we have U1 = pχa(p)−1 and

U2 = p2χa(p)−1χc(p)
−1.



ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GL3(Qp) 45

6. Local-global compatibility

This section contains the main global application of the local results obtained in Section 4.
We follow closely the setup of [HLM17], which we reproduce in Sections 6.1 and 6.2 for the
convenience of the reader.

6.1. Automorphic forms on unitary groups. Let F/Q be a CM field, F+ 6= Q its
maximal totally real subfield. We write c for the generator of Gal(F/F+) and assume that
all places v of F+ above p further decompose as v = wwc in F . We let S+

p (resp. Sp) the

set of places of F+ (resp. F ) above p. For v (resp. w) a finite place of F+ (resp. F ) we
write kv (resp. kw) for the residue field of F+

v (resp. Fw).
We let G/F+ be a reductive group, which is an outer form for GL3, and which splits

over F . We assume that G(F+
v ) ' U3(R) for all v|∞. By [CHT08], Section 3.3, G admits

an integral model G such that G× OF+
v

is reductive if v is a finite place of F+ which splits

in F . If v is such a place and w|v is a place of F , we obtain and fix an isomorphism

(6.1.1) ιw : G(OF+
v

)
∼→ G(OFw)

∼→ GL3(OFw).

Define F+
p

def
= F+ ⊗Q Qp and OF+,p

def
= OF+ ⊗Z Zp.

If W is a OE-module endowed with an action of G(OF+,p) and U ≤ G(A∞,pF+ )× G(OF+,p)
is a compact open subgroup, the space of algebraic automorphic forms on G of level U and
coefficients in W is the following OE-module:

(6.1.2) S(U,W )
def
=
{
f : G(F+)\G(A∞F+)→W | f(gu) = u−1

p f(g) ∀ g ∈ G(A∞F+), u ∈ U
}

(with the usual notation u = upup for the elements in U).
Recall that the level U is sufficiently small if t−1G(F+)t ∩ U has order prime to p for

all t ∈ G(A∞F+). For a finite place v of F+ we say that U is unramified at v if one has a
decomposition U = G(OF+

v
)Uv for some compact open Uv ≤ G(A∞,vF+ ). If w is a finite place

of F we say, with an abuse, that w is an unramified place for U if its restriction w|F+ is
unramified for U .

Let PU denote the set consisting of finite places w of F such that v
def
= w|F+ is split in F ,

v /∈ S+
p and U is unramified at v. For a subset P ⊆ PU of finite complement and closed

with respect to complex conjugation we write TP = OE [T
(i)
w , w ∈ P, i ∈ {0, 1, 2, 3}] for the

universal Hecke algebra on P, where the Hecke operator T
(i)
w acts on S(U,W ) as the usual

double coset operator

ι−1
w

[
GL3(OFw)

(
$wIdi 0

0 Id3−i

)
GL3(OFw)

]
.

Remark 6.1. It important to note that for places v which split as v = wwc in F the composite
c◦ ιw is conjugate by an element of GL3(OFwc ) to the transpose inverse of ιwc (cf. [EGH13],
Section 7.1.1).

We briefly recall the relation between the space A of classical automorphic forms and
the previous spaces of algebraic automorphic forms, in the particular case which is relevant
to us.

Let S
def
= Hom(F,Qp) and, for any place w|p, let Sw

def
= Hom(Fw,Qp), Sw

def
= Hom(kw,Fp).

Following [EGH13], Section 7.3 we consider the subset (Z3
+)S0 of dominant weights λ = (λσ)σ

verifying the condition

(6.1.3) λ1,σc + λ3,σ = 0, λ2,σ + λ2,σc = 0, λ3,σc + λ1,σ = 0
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for all triples λσ = (λ1,σ, λ2,σ, λ3,σ) and all σ ∈ S. If w|p and λ ∈ (Z3
+)S0 we write λw for

the projection of λ on (Z3
+)Sw0 and Wλw

for the OFw -specialization of the dual Weyl module
associated to λw (cf. [EGH13], Section 4.1.1); by condition (6.1.3) and Remark 6.1 one
deduces an isomorphism of G(OF+

v
)-representations Wλw

◦ ιw ∼= Wλwc
◦ ιwc . Therefore, by

letting Wλv

def
= Wλw

◦ ιw for any place w|v, the G(OF+,p)-representation

Wλ
def
=
⊗
v|p

Wλv

is well defined.
For a weight λ ∈ (Z3

+)S0 and an irreducible smooth G(OF+,p)-representation τ over Qp,
let us write Sλ,τ (Qp) to denote the inductive limit of the spaces S(U,Wλ ⊗OE τ) over the
compact open subgroups U ≤ G(A∞,pF+ ) × G(OF+,p) (note that the latter is an inductive
system in a natural way, with injective transition maps induced from the inclusions between
levels). Then Sλ,τ (Qp) has a natural left action of G(A∞F+) induced by right translation of
functions.

Fix an isomorphism ı : Qp
∼→ C. As we did for the OFw -specialization of the dual Weyl

modules, we define a smooth G(F+ ⊗Q R)-representation σλ ∼=
⊕
v|∞

σλv with C-coefficients,

where σλv depends only on λw for a place w|v (we invite the reader to refer to [EGH13],
Section 7.1.4 for the precise definition of σλ).

Lemma 6.2. The isomorphism ı : Qp
∼→ C induces an injective morphism of smooth

G(A∞F+)-representations

Sλ,τ (Qp)⊗Qp,ı C
ı−→ HomG(F+⊗QR)(σ

∨
λ ,A).

If Π is an irreducible automorphic representation of G(AF+), then Πp contains τ ⊗Qp,ı C if

and only if the isotypic space HomG(F+⊗QR)(σ
∨
λ ,Π) is in the image of ı.

6.2. Serre weights. We recall the notion of Serre weights of r̄ : GF → GL3(F) and relate
constituents of GL3(OFw)-types and potentially crystalline lifts of r̄|GFw .

Definition 6.3. A Serre weight for G (or just Serre weight if G is clear from the context)
is an isomorphism class of a smooth, absolutely irreducible representation V of G(OF+,p).
If v|p is a place of F+, a Serre weight at v is an isomorphism class of a smooth, absolutely
irreducible representation Vv of G(OF+

v
). Finally, if w|p is a place of F , a Serre weight at w

is an isomorphism class of a smooth, absolutely irreducible representation Vw of GL3(OFw).
In particular, if Vv is a Serre weight at v, the Serre weights at wc defined by Vv ◦ ι−1

w ◦ c,
Vv ◦ ι−1

wc are dual to each other by Remark 6.1.

As explained in [EGH13], Section 7.3, a Serre weight V admits an explicit description
in terms of GL3(kw)-representations. More precisely, let w be a place of F above p and

write v
def
= w|F+ . The element c ∈ Gal(F/F+) induces an involution Sw

∼→ Swc and we

define the set ⊕w|p(Z3
+)Sw0 as the set of tuples (aw, bw, cw)w (where each triple (aw, bw, cw)

is dominant) verifying:

aw,σ + cwc,σc = 0, bw,σ + bwc,σc = 0, cw,σ + awc,σc = 0(6.2.1)

for all σ ∈ Sw. If the triple aw
def
= (aw, bw, cw) ∈ Z3

+ is restricted (i.e. 0 ≤ aw,σ−bw,σ, bw,σ−
cw,σ ≤ p − 1 for all w|p, σ ∈ Sw) we consider the Serre weight Faw = F (aw, bw, cw) as
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defined in [EGH13], Section 4.1.2. It is an irreducible representation of GL3(kw), hence of
G(kv) and (by inflation) of G(OF+

v
) via the morphism ιw.

As above, condition (6.2.1) implies that F (aw, bw, cw)∨ ◦ ιwc ∼= F (aw, bw, cw) ◦ ιw as
G(kv)-representations (i.e. F (awc , bwc , cwc) ◦ ιwc ∼= F (aw, bw, cw) ◦ ιw) and the smooth

G(OF+
v

)-representation Fav
def
= Faw ◦ ιw is well defined.

We set
Fa

def
=
⊗
v|p

Fav

which is a Serre weight for G(OF+,p). From [EGH13], Lemma 7.3.4 if V is a Serre weight

for G, there exists a tuple a = (aw, bw, cw)w ∈
⊕

w|p(Z3
+)Sw0 and a decomposition V ∼=

⊗
v|p
Vv

where the Vv are Serre weights at v verifying Vv ◦ ι−1
w
∼= F (aw, bw, cw). Again, thanks to

condition (6.2.1) and Remark 6.1 we deduce that Vv is well defined.

Definition 6.4. Let r : GF → GL3(F) be a continuous, absolutely irreducible Galois
representation and let V be a Serre weight for G. We say that r is automorphic of weight V (or
that V is a Serre weight of r) if there exists a compact open subset U in G(A∞,pF )×G(OF+,p)
unramified above p and a cofinite subset P ⊆ PU such that r̄ is unramified at each place of
P and

S(U, V )mr̄ 6= 0

where mr̄ is the kernel of the system of Hecke eigenvalues α : TP → F associated to r, i.e.

det (1− r∨(Frobw)X) =

3∑
j=0

(−1)j(NFw/Qp(w))(
j
2)α(T (j)

w )Xj

for all w ∈ P.

In what follows (sections 6.3, 6.4) we will be needing the notion of Serre weight above a
specific place w|p. That is the reason for the following:

Definition 6.5. Let r : GF → GL3(F) be a continuous Galois representation and let w0|v0

be places of F , F+ respectively, above p.
If Vw0

is a Serre weight at w0, we say that r̄ is automorphic of weight Vw0
at w0 (or that

Vw0
is a Serre weight of r̄ at w0) if for all v|p, v 6= v0 there exist Serre weights Vv such that

by letting V v0
def
=

⊗
v|p, v 6=v0

Vv, the smooth G(OF+
p

) representation V v0 ⊗Vv0
is a Serre weight

of r̄ as in Definition 6.4, where Vv0
= Vw0

◦ ιw0
.

As above, we write Ww(r̄) for the set of all Serre weights of r̄ at a place w|p. Note that
condition 6.2.1 implies that Ww(r̄) and Wwc(r̄) are in natural bijection via the involution
c ∈ Gal(F/F+): Vw ∈Ww(r̄) if and only if (Vw)∨ ◦ c ∈Wwc(r̄).

We recall some formalism related to Deligne-Lusztig representations and potentially crys-
talline lifts for r̄|GFw0

. We refer the reader to [Her09], Section 4 for a precise reference.

Let w|p be a place of F , n ∈ {1, 2, 3} and let kw,n/kw be an extension verifying [kw,n :
kw] = n. Let T be a maximal torus in GL3/kw . Following [Her09], Lemma 4.7 we have an
identification

(6.2.2) T (kw)
∼−→
∏
j

k×w,nj

where 3 ≥ nj > 0 and
∑
j nj = 3; the isomorphism is unique up to

∏
j Gal(kw,nj/kw)-

conjugacy. In particular, any character θ : T (kw)→ Q×p can be written as θ = ⊗jθj where
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θj : k×w,nj → Q×p . We say that θ is primitive if θj is primitive as in [Her09], Section 4.2 for
all j.

Given a maximal torus T and a primitive character θ we consider the Deligne-Lusztig
representation RθT of GL3(kw). By letting Θ(θj) be the cuspidal representation of GLnj (kw)
associated to the primitive character θj via [Her09], Lemma 4.7, we have

RθT
∼= (−1)n−r Ind

GL3(kw)
Pn(kw) (⊗jΘ(θj))

where Pn is the standard parabolic subgroup containing the Levi
∏
j GLnj and r denotes

the number of its Levi factors.
Let Fw,n

def
= W (kw,n)[ 1

p ]; we consider θj as a character on O×Fw,nj
by inflation and we

define the following character rec(θ):

(i) rec(θ)
def
=
⊕3

j=1 θj ◦Art−1
Fw

if θj : kw → Q×p are niveau one characters;

(ii) rec(θ)
def
= θ1 ◦ Art−1

Fw
⊕

⊕
σ∈Gal(kw,2/kw)

σ
(
θ2 ◦Art−1

Fw,2

)
if θ1 is a niveau one character

and θ2 is a niveau 2, primitive character on k×w,2;

(iii) rec(θ)
def
=

⊕
σ∈Gal(kw,3/kw)

σ
(
θ1 ◦Art−1

Fw,3

)
if θ1 is a niveau three, primitive character.

From now on we assume that p is unramified in F+. In particular, the set of embeddings
Sw, Sw are in natural bijection.

Theorem 6.6. Assume that p is unramified in F+ and let w be a place of F above p. Let Vw
be a Serre weight at w for the Galois representation r̄ : GF → GL3(F) and assume that Vw
is a Jordan-Hölder constituent in the mod-p reduction of a Deligne-Lusztig representation

RθT of GL3(kw), where T is a maximal torus in GL3/kw and θ : T (kw)→ Q×p is a primitive
character. If rec(θ) is as in item (i) above, we assume the characters θj are pairwise distinct.

Then r|GFw has a potentially crystalline lift with parallel Hodge–Tate weights {−2,−1, 0}
and Galois type rec(θ).

Proof. This is the statement of [MP17], Theorem 5.5. Note that in loc. cit. one assumes
further that p splits completely in F , but this condition is unnecessary as long as p is
unramified in F+ (the statement of loc. cit., Proposition 5.2 holds true for p unramified
in F+). �

6.3. Weight elimination. Let w0|v0 be places above p of F and F+ respectively with
Fw0

∼= Qp. We define a predicted set of Serre weights W ?
w0

(r̄) for r̄ at w0. Assume that
r̄|GFw0

is of the form (2.1.1). We write ρ0 for r̄|GFw0
in this subsection. Recall that we defined

in Section 2.1 the Fontaine-Laffaille parameter FL(ρ0) ∈ P1(F). From now onwards, we fix
an affine coordinate in P1(F) ∼= A1(F) ∪ {∞} via [x0 : x1] 7→ x1

x0
if x0 6= 0 and [0 : 1] 7→ ∞.

If ρ0 is split, then we let

W ?
w0

(r̄) = WL ∪ WU ∪ WS

where

WL
def
= {F (a1 − 1, a0, a2 + 2− p), F ((p− 1) + a0, a2, a1), F (a2 − 1, a1, a0 + 1)};

WU
def
= {F ((p−1)+a0, a1−1, a2+2−p), F ((p−1)+a1, a2, a0), F (a2−1, a0+1, a1−(p−1))};

WS
def
= {F (a2, a0, a1 − (p− 1)), F (p− 2 + a1, a2, a0 + 1), F (p− 1 + a0, a1, a2 − (p− 1))}.
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If ρ0 is non-split, then

W ?
w0

(r̄) =

{
F (a2 − 1, a1, a0 + 1), F ((p− 1) + a0, a1, a2 − (p− 1)),

F (a2 − 1, a0 + 1, a1 − (p− 1))

} ⋃
W

where

W
def
=



{
F (p− 1 + a0, a2, a1), F (p− 2 + a1, a2, a0 + 1),

F (a2, a0, a1 − (p− 1))

}
if FL(ρ0) =∞;

{
F ((p− 1) + a1, a2, a0)

}
if FL(ρ0) = 0;

∅ otherwise.

Moreover, we define the set of obvious weights at w0 as

W ?,obv
w0

(r̄)
def
= W ?

w0
(r̄) ∩ (WL ∪ WU ) .

Theorem 6.7. Let w0|v0 be a place above p on F and F+ respectively with Fw0
∼= Qp, and

assume that r̄|GFw0
is of the form (2.1.1) with the generic condition (2.1.2). If Vw0 is a

modular weight for r̄ at w0, then Vw0
∈W ?

w0
(r̄).

In what follows, we prove the inclusion Ww0
(r̄) ⊆W ?

w0
(r̄) under the assumption a0 = −1,

c = a2 − a0 − 1, and r = a1 − a0 − 1. This assumption is harmless since Ww0
(r̄ ⊗ ωa) =

Ww0
(r̄)⊗ ωa.

The proof is performed case by case, by a series of lemmas. The main strategy to prove

Theorem 6.7 is the following: if a Serre weight V is a constituent of R
θ

T for some θ and if
r̄GFw0

does not have a potentially crystalline lifts with Hodge–Tate weights {−2,−1, 0} and

Galois type rec(θ), then V is not a modular Serre weight of r̄ at w0, by Theorem 6.6.

Lemma 6.8. Keep the assumption as in Theorem 6.7. If Vw0
is a Serre weight of r̄ at w0

and ρ0 is semi-simple, then Vw0 ∈W ?
w0

(r̄).

Proof. Proposition 3.3 tells us that there are only 4 possible Galois types of niveau 1 for
the potentially crystalline lifts with Hodge–Tate weights {−2,−1, 0} of ρ0. Hence, by the
strategy discussed right before Lemma 6.8, the modular Serre weights of ρ0 must be con-

stituents of R
θ

T for θ determined in Proposition 3.3. Moreover, we can restrict our attention

to the obvious weights in JH
(
R
θ

T

)
since a shadow weight is either non-modular or an ob-

vious weight of R
θ

T for another θ. For each θ determined in Proposition 3.3, there are 9

constituents of R
θ

T and 6 of them are obvious weights. Thus, there are 24 weights we need
to consider.



50 DANIEL LE, STEFANO MORRA, AND CHOL PARK

The following 7 weights are some of those 24 weights we need to consider, and it is easy
to check the following:

F (p− 1, c, r − 1) ∈ JH
(
R
θ

T

)
for θ = ω̃c ⊗ ω̃r−2 ⊗ ω̃1;

F ((p− 1) + r, p− 1, c− 1) ∈ JH
(
R
θ

T

)
for θ = ω̃c−2 ⊗ ω̃r+1 ⊗ ω̃0;

F (p− 1, c− 1, r) ∈ JH
(
R
θ

T

)
for θ = ω̃c−1 ⊗ ω̃r−1 ⊗ ω̃1;

F (p− 2, c+ 1, r − 1) ∈ JH
(
R
θ

T

)
for θ = ω̃c+1 ⊗ ω̃r−2 ⊗ ω̃0;

F (c+ 1, r − 1,−1) ∈ JH
(
R
θ

T

)
for θ = ω̃c+2 ⊗ ω̃r−1 ⊗ ω̃−2;

F (c, r,−1) ∈ JH
(
R
θ

T

)
for θ = ω̃c+1 ⊗ ω̃r ⊗ ω̃−2;

F ((p− 1) + r, p− 2, c) ∈ JH
(
R
θ

T

)
for θ = ω̃c−1 ⊗ ω̃r+1 ⊗ ω̃−1.

None of the Galois types θ of niveau 1 above appears in Proposition 3.3. Hence, by The-
orem 6.6, we can eliminate all of the weights listed above so that we now have 17 weights
survived.

Simiarly, Proposition 3.7 tells us the possible Galois types of niveau 2 for the potentially
crystalline lifts with Hodge–Tate weights {−2,−1, 0} of ρ0. The following 8 weights are
some of those 17 weights that are survived after the niveau 1 elimination, and it is also easy
to check the following:

F (c, r − 1, 0) ∈ JH
(
R
θ

T

)
for θ = ω̃r−1 ⊗ ω̃−2+p(c+2)

2 ;

F ((p− 1) + r − 1, p− 1, c) ∈ JH
(
R
θ

T

)
for θ = ω̃r−1 ⊗ ω̃pc2 ;

F ((p− 1), r − 1, c− (p− 1)) ∈ JH
(
R
θ

T

)
for θ = ω̃r−1 ⊗ ω̃pc2 ;

F ((p− 1) + c, p− 1, r − 1) ∈ JH
(
R
θ

T

)
for θ = ω̃p−1 ⊗ ω̃c+1+p(r−2)

2 ;

F ((p− 1), r, c− 1− (p− 1)) ∈ JH
(
R
θ

T

)
for θ = ω̃r ⊗ ω̃p(c−1)

2 ;

F ((p− 1) + r, c− 1, 0) ∈ JH
(
R
θ

T

)
for θ = ω̃p−1 ⊗ ω̃c−1+pr

2 ;

F ((p− 1) + r − 1, c+ 1,−1) ∈ JH
(
R
θ

T

)
for θ = ω̃r−1 ⊗ ω̃−2+p(c+2)

2 ;

F (c+ 1,−1, r − 1− (p− 1)) ∈ JH
(
R
θ

T

)
for θ = ω̃p−2 ⊗ ω̃c+2+p(r−2)

2 .

None of the Galois types θ of niveau 2 above appears in Proposition 3.7. Hence, by The-
orem 6.6, we can further eliminate the weights listed above so that there are 9 weights
survived, which are exactly the same as the set W ?

w0
(r̄) for ρ0 split. This completes the

proof. �

Lemma 6.9. Keep the assumption as in Theorem 6.7 and assume that ρ0 is non-split with
FL(ρ0) 6= 0. If Vw0

is a Serre weight of r̄ at w0, then Vw0
is isomorphic to one of the weights

in the following list:

F (c− 1, r, 0), F (p− 2, r, c− (p− 1)), F (c− 1, 0, r − (p− 1)),

F (p− 2, c, r), F (p− 2 + r, c, 0), F ((p− 1) + c, p− 2, r).
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Proof. It is enough to consider the set of Serre weights listed in Lemma 6.8. Proposi-
tion 3.6, (ii) tells us that we can further eliminate the Galois type ω̃c+1 ⊕ ω̃r−1 ⊕ ω̃−1. It is
easy to check the following:

F ((p− 1) + (r − 1), p− 2, c+ 1) ∈ JH
(
R
θ

T

)
for θ = ω̃c+1 ⊗ ω̃r−1 ⊗ ω̃−1;

F ((p− 2), r − 1, c+ 1− (p− 1)) ∈ JH
(
R
θ

T

)
for θ = ω̃c+1 ⊗ ω̃r−1 ⊗ ω̃−1.

Hence, we can eliminate the two weights above by Theorem 6.6.
Proposition 3.10 tells us that we can further eliminate the Galois type ω̃c ⊕ ω̃r+1−2p

2 ⊕
ω̃
p(r+1)−2
2 . It is easy to check the following:

F ((p− 1) + r, c,−1) ∈ JH
(
R
θ

T

)
for θ = ω̃c ⊗ ω̃r+1−2p

2 .

Hence, by Theorem 6.6 we can further eliminate this weight, so that there are only the six
weights in the statement of this lemma remaining. �

Lemma 6.10. Keep the assumption as in Theorem 6.7 and assume that ρ0 is non-split
with FL(ρ0) 6=∞. If Vw0 is a Serre weight of r̄ at w0, then Vw0 is isomorphic to one of the
weights in the following list:

F (c− 1, r, 0), F (p− 2, r, c− (p− 1)), F (c− 1, 0, r − (p− 1)),

F ((p− 1) + r, c,−1).

Proof. It is, again, enough to consider in the set of Serre weights listed in Lemma 6.8.
Proposition 3.6 tells us that we can further eliminate the Galois types ω̃c+1 ⊕ ω̃r−1 ⊕ ω̃−1

and ω̃c ⊕ ω̃r−1 ⊕ ω̃0. It is easy to check the following:

F ((p− 1) + (r − 1), p− 2, c+ 1) ∈ JH
(
R
θ

T

)
for θ = ω̃c+1 ⊗ ω̃r−1 ⊗ ω̃−1;

F ((p− 2), r − 1, c+ 1− (p− 1)) ∈ JH
(
R
θ

T

)
for θ = ω̃c+1 ⊗ ω̃r−1 ⊗ ω̃−1;

F ((p− 1) + (r − 1), c, 0) ∈ JH
(
R
θ

T

)
for θ = ω̃c ⊗ ω̃r−1 ⊗ ω̃0;

F ((p− 2), c, r) ∈ JH
(
R
θ

T

)
for θ = ω̃c ⊗ ω̃r−1 ⊗ ω̃0.

Hence, by Theorem 6.6 we can eliminate the four weights above.
Proposition 3.10, (v) tells us that we can further eliminate the Galois type ω̃p−2 ⊕

ω̃
c+1+p(r−1)
2 ⊕ ω̃r−1+p(c+1)

2 . It is easy to check the following:

F ((p− 1) + c, p− 2, r) ∈ JH
(
R
θ

T

)
for θ = ω̃p−2 ⊗ ω̃c+1+p(r−1)

2 .

Hence, by Theorem 6.6 we can further eliminate this weight, so that there are only the four
weights in the statement of this lemma remaining. �

Proof of Theorem 6.7. The lemma 6.8 provides a complete proof for the case ρ0 split. If
FL(ρ0) = ∞ then it holds by Lemma 6.9, and if FL(ρ0) = 0 then it holds by Lemma 6.10.
Finally, if FL(ρ0) 6∈ {0,∞} then, by Lemmas 6.9 and 6.10, the Serre weights must be
isomorphic to a weight that is listed in both lemmas. �
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6.4. Local-global compatibility. From now on we assume that p is totally split in the

CM field F . We fix a place w0 of F above p and let v0
def
= w0|F+ . The aim of this section is to

prove that under suitable local hypotheses, the Fontaine-Laffaille invariant FL(ρ0) defined
in Section 2.1 can be recovered from a refined Hecke action when ρ0 : GQp → GL3(F) is
realized as a local parameter in an automorphic Galois representation r̄ : GF → GL3(F).

From now on we assume that the Galois representation r̄ : GF → GL3(F) is automorphic

of weight Vw0 = F (a2,w0 , a1,w0 , a0,w0) at w0 (cf. Definition 6.5) Let Ṽ v0
def
=
⊗

v|p, v 6=v0
Wλv

where Wλv
def
= W(a2,w,a1,w,a0,w) ◦ ιw for any w|v (cf. Section 6.1).

We fix a sufficiently small subgroup U of G(A∞,pF ) × G(OF+,p), unramified at all places
dividing p, and such that

Ww0(r̄) = {Serre weights V at w0 such that S(U, (V ◦ ιw0)⊗F V
v0)mr̄ 6= 0}

where mr̄ is the system of Hecke eigenvalues associated to r̄ in the Hecke algebra TP as in
Section 6.1 (such a subgroup exists, cf. [EGH13], Remark 7.3.6.). Note that we can write
U = Uv0 × G(OF+

v0
) where Uv0 ≤ G(A∞,v0) is compact open.

We first prove the modularity of certain Serre weights, which will be needed to prove
Theorem 6.13. We introduce the following useful notation. If W (resp. V ) is a GL3(OFw0

)-

representation over OE (resp. over F), we write

S(W )
def
= S(U,W ◦ ιw0

⊗OE Ṽ
v0)

(
resp. S(V )

def
= S(U, V ◦ ιw0

⊗OE V
v0)
)
.

Lemma 6.11. Assume that r̄ : GF → GL3(F) is absolutely irreducible and automorphic,

and that ρ0
def
= r̄|GFw0

is of the form (2.1.1) with the generic condition (2.1.2). Assume

further that ρ0 is non-semisimple. Then

{F (a2 − 1, a1, a0 + 1), F (a2 − 1, a0 + 1, a1 − (p− 1))} ⊆Ww0(r̄).

Proof. The argument is the “weight cycling” technique for GL3, first used in [EGH13],
Theorem 6.2.3 for a niveau three Galois representation, and recently adapted in the niveau
two semisimple case in upcoming work by Hui Gao [Gao]. We give a summary of the
argument in our context.

We first claim that the commuting operators T 1, T 2 (acting on S(V )mr̄ for any V ∈Ww(r̄)
and defined as in [EGH13], Section 4.2) act nilpotently on S(V )mr̄ whenever V /∈ {F (a2 −
1, a1, a0+1), F (a2−1, a0+1, a1−p+1)}. For instance if V = F (p−1+a0, a2, a1) and T 1 (resp.
T 2) does not act nilpotently on S(V )mr̄ then we deduce exactly as in the proof of [EGH13]
corollary 4.5.4 that ρ0 admits a crystalline lift over E having a 1-dimensional quotient of
Hodge-Tate weight {−(a1)} (resp. a 1-dimensional subrepresentation having Hodge-Tate
weight {−(p + 1 + a0)}); this implies that ρ0 admits a 1-dimensional quotient isomorphic
to ωa1 (resp. a 1-dimensional subrepresentation isomorphic to ωa0+2), contradicting our
assumptions on ρ0. Similarly, if V ∈ {F (a2 − 1, a1, a0 + 1), F (a2 − 1, a0 + 1, a1 − p + 1)}
then T 1 still acts nilpotently (but T 2 need not).

As T 1 acts nilpotently on both S(F (a2−1, a0 + 1, a1−p+ 1))mr̄ and S(F (a2−1, a1, a0 +
1))mr̄ we deduce from [EGH13], Proposition 6.1.3 and the upper bound on Ww0

(r̄) (Theorem
6.7) that F (a2− 1, a0 + 1, a1− p+ 1) ∈Ww0

(r̄) if and only if F (a2− 1, a1, a0 + 1) ∈Ww0
(r̄)

i.e. that these two weights cycle to each other (this is independent on the value of FL(ρ0)).
Assume that FL(ρ0) /∈ {0,∞} and that F (p − 1 + a0, a1, a2 − p + 1) ∈ Ww0(r̄). As T i

acts nilpotently on S(F (p− 1 + a0, a1, a2 − p+ 1))mr̄ for i = 1, 2 we conclude by [EGH13],
Proposition 6.1.3 and the weight elimination above that F (a2 − 1, a1, a0 + 1) ∈Ww0

(r̄).
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Assume that FL(ρ0) = 0 and that one of F (p−1 +a0, a1, a2−p+ 1), F (a1 +p−1, a2, a0)
is modular. By Theorem 6.7 (and again [EGH13] Proposition 6.1.3(ii)) we deduce that
F (a1 + p− 1, a2, a0) can be cycled to F (a2 − 1, a1, a0 + 1) via T 2 (cf. Remark 6.12 (iv) and
(v)). Similarly, F (p− 1 + a0, a1, a2 − p+ 1) can be cycled to F (a2 − 1, a1, a0 + 1) via T 1.

Finally, consider the case FL(ρ0) =∞. As above, the weight F (a2, a0, a1 − p+ 1) (resp.
F (p − 1 + a0, a1, a2 − p + 1)) cycles to F (a2 − 1, a1, a0 + 1) via T 2 (resp. T 1). Similarly,
F (a0 +p−1, a2, a1) cycles to F (a2, a0, a1−p+1) via T 2 (resp. to F (p−1+a0, a1, a2−p+1)
via T 1). Finally, F (a1 + p − 2, a1, a0 + 1) cycles to F (a0 + p − 1, a2, a1) via both T 1 and
T 2. �

Remark 6.12. In the semisimple case it is easy to prove, along the argument of Lemma 6.11,
that either {F (a2 − 1, a1, a0 + 1), F (a2 − 1, a0 + 1, a1 − p + 1)} ⊆ Ww0

(r̄) or {F (a0 + p −
1, a1 − 1, a2 + 2− p), F (a1 − 1, a0, a2 + 2− p)} ⊆Ww0

(r̄).
Indeed, the only weights where T 1, T 2 need not both act by zero are F (a2 − 1, a1, a0 +

1), F (a2−1, a0 +1, a1−p+1) (where T 1 may be non-zero, according to the normalizations)
and F (a0 + p− 1, a1 − 1, a2 + 2− p), F (a1 − 1, a0, a2 + 2− p) (where T 2 may be non-zero).

By weight cycling an easy but tedious check, using [EGH13] Proposition 6.1.3 and The-
orem 6.7 shows that:

(i) F (a2 − 1, a1, a0 + 1), F (a2 − 1, a0 + 1, a1 − p+ 1) (resp. F (a0 + p− 1, a1 − 1, a2 +
2− p), F (a1 − 1, a0, a2 + 2− p)) cycle to each other via T 1 (resp. via T 2);

(ii) F (a1 − 2 + p, a2, a0 + 1) cycles to F (a0 + p− 1, a2, a1) (via both T 1 and T 2);
(iii) F (a0 + p − 1, a2, a1) can be cycled to either F (a0 + p − 1, a1, a2 − p + 1) (via T 1)

and F (a2, a0, a1 − p+ 1) (via T 2);
(iv) both F (a2, a0, a1 − p + 1) and F (a0 + p − 1, a1, a2 − p + 1)) can be cycled to one

of the weights in {F (a1 − 1, a0, a2 − p + 2), F (a2 − 1, a1, a0 + 1)}, via T 2 and T 1

respectively.
(v) F (a1 + p− 1, a2, a0) can be cycled to one of the weights in {F (a1 − 1, a0, a2 − p+

2), F (a2 − 1, a1, a0 + 1), F (a0 + p− 1, a1, a2 − p+ 1)} via T 1 (resp. to one of the
weights in {F (a1 − 1, a0, a2 − p + 2), F (a2 − 1, a1, a0 + 1), F (a2, a0, a1 − p + 1)}
via T 2).

In the following picture, we draw the Hasse diagram of the cosocle filtration in the

principal series π0
def
= Ind

GL3(Fp)

B(Fp) ωa2 ⊗ ωa1 ⊗ ωa0 : letting e
def
= p− 1 for brevity,

F (a2, a1, a0)

F (a1 + e, a2, a0) F (a2, a0, a1 − e)

F (a1, a0, a2 − e) F (a0 − 1 + e, a2, a1 + 1) F (a2 − 1, a1, a0 + 1) F (a1 − 1, a0, a2 + 1− e) F (a0 + e, a2, a1)

F (a0 + e, a1, a2 − e)

Provided that ρ0 is non-semisimple as in the statement of Theorem 6.7,

W ?
w0

(r̄) ∩ JH(π0) = {F (a2 − 1, a1, a0 + 1), F (a0 + e, a1, a2 − e)}
⋃

W ′
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where

W ′
def
=

 {F (a0 + e, a2, a1), F (a2, a0, a1 − e)} if FL(ρ0) =∞;{
F (a1 + e, a2, a0)

}
if FL(ρ0) = 0;

∅ otherwise.

Using the notation and convention of Section 6.2 we define

S(Uv0 , V v0)
def
=
{
f : G(F+)\G(A∞F+)→ V v0 | f(gu) = u−1

p f(g) ∀ g ∈ G(A∞F+), u ∈ Uv0
}

which is G(F+
v ) representation by right translation of functions. We write S

sm

(Uv0 , V v0)
to denote the submodule of S(Uv0 , V v0) consisting of locally constant functions (i.e. the
submodule of smooth vectors for the G(F+

v0
) action on S(Uv0 , V v0)).

Theorem 6.13. Let F be a CM field in which p splits completely and let r̄ : GF → GL3(F)
be an absolutely irreducible and automorphic Galois representation. Let w0|p be a place of

F with v0
def
= w0|F+ and fix a sufficiently small compact open U = Uv0

× Uv0 ≤ G(A∞,pF )×
G(OF+,p) where Uv0 ⊂ G(A∞,v0

F+ ). We make the following two assumptions:

(i) r̄|GFw0
is indecomposable of the form (2.1.1) with the strongly generic condition (2.1.2);

(ii) FL(r̄|GFw0
) /∈ {0,∞};

(iii) The OE-dual of S
sm

(Uv0 , Ṽ v0)
I,(−a1,−a0,−a2)
mr̄ is free over T, where T denotes the

OE-subalgebra of End
(
S

sm

(Uv0 , Ṽ v0)
I,(−a1,−a0,−a2)
mr̄

)
generated by TP, U1 and U2.

Let S, S′ be the operators defined in Section 5 specialised to (a, b, c) = (−a0,−a1,−a2).
Then

S′ ◦

 0 1 0
0 0 1
p 0 0

 = (−1)a2−a1 · a1 − a0

a2 − a1
· FL(r̄|GFw0

) · S(6.4.1)

on S
sm

(Uv0 , V v0)[mr̄]
I,(−a1,−a0,−a2)[U1, U2]. Moreover, S

sm

(Uv0 , V v0)[mr̄]
I,(−a1,−a0,−a2)[U1, U2]

is embedded into S
sm

(Uv0 , V v0)[mr̄]
I,(−a0−1,−a1,−a2+1) under the map S.

Proof. The proof follows closely the proof of the local-global compatibility statement of
[HLM17] (Theorem 4.5.2 in loc. cit.). We sketch here the argument.

We identify G(F+
v0

) with GL3(Qp) via ιw0 without further comment. Let θ : T (Fp)→ O×E
be the character ω̃a1 ⊗ ω̃a0 ⊗ ω̃a2 , (where T is the maximal split torus in GL3) and consider
the Deligne-Lusztig representation RθT (which will be considered as a smooth GL3(Zp)-
representation by inflation).

Recall that we have fixed at the beginning of Section 6.4 the weights λw = (aw,2, aw,1, aw,0)

for places w|v above p with v 6= v0. By letting λw0

def
= (0, 0, 0) we define the tuple

λ
def
=
(
(λw)v|p,v 6=v0

, λw0) ∈ ⊕v|p(Z3) and set

M
def
= S

sm

(Uv, Ṽ v0)
I,(−a1,−a0,−a2)
mr̄ .

We write ME , MF, TE etc. to denote the extension of scalars of M , T to E, F etc.
By Lemma 6.11 we have that S(U,F (a2−1, a1, a0+1))mr̄ 6= 0. As F (a2−1, a1, a0+1)⊗FF

is a constituent of R
θ

T we can lift the system of Hecke eigenvalues associated to mr̄ to deduce
the following:

(i) ME =
⊕
p
ME [pE ] where the direct sum runs over the minimal primes of T;

(ii) For each minimal prime p of T we have ME [pE ] =
⊕
π
m(π)π

I,(−a1,−a0,−a2)
v0 ⊗(

π∞,v0
)Uv0

, where π ⊗E C runs among the cuspidal automorphic representations
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such that the representation π∞⊗EC is algebraic, of weight determined by (Ṽ v0)∨,
r∨π lifts r̄, and the Satake parameters of the base change of πv to G(Fw) (for
v = w|F+ with w ∈ P) are determined by pE ;

(iii) there are smooth, E-valued characters ψai : Q×p → Q×p such that ψai |Z×p = ω̃−i for

i ∈ {0, 1, 2} and such that for any π as in item (ii) we have

πv0
∼= Ind

GL3(Qp)

B(Qp) ψa1
| · |2 ⊗ ψa2

| · | ⊗ ψa0
;

(iv) for π as in item (ii), r∨π |GFw0
is potentially crystalline with Hodge-Tate weights

{−2,−1, 0} lifting r̄, and moreover WD(rπ|GFw0
)F-ss ∼= ψa1

⊕ ψa2
⊕ ψa0

.

From (iii)-(iv) above and Corollary 4.4 we deduce (cf. Lemma 5.4) that the eigenvalues of the
Up-operators have positive valuation. In particular T is a finite reduced, local OE-algebra,
with maximal ideal m generated by the image of mr̄, U1, and U2.

Moreover, from (iii)-(iv) above and Corollary 4.4 the ϕ-eigenvalue on D
Qp,2
st (r∨π )IFw0

=ω̃a1

is given by p2ψa1
(p)−1 and hence

FL(r̄|GFw0
) = red(

ψa1
(p)

p
).

By Proposition 5.2 specialized at (a, b, c) = (−a0,−a1,−a2) we have

(6.4.2) Ŝ′ ◦Πṽ =
ψa1

(p)

p
ηŜṽ

on ME [pE ].
Assume now that HomOE (M,OE) is free of rank d ≥ 1 over T. The argument of [HLM17],

Theorem 4.5.2 shows that M [p] is free of rank d and we have an isomorphism

MF[p]
∼−→MF[m]

which implies the desired relation (6.4.1) onMF[m] = (S
sm

(Uv0 , V v0)[mr̄])
I,(−a1,−a0,−a2)[U1, U2].

Let N
def
= S

sm

(Uv, Ṽ v0)
I,(−a0,−a2,−a1)
mr̄ , T′ the OE-subalgebra of End(N) generated by TP,

U1, U2, m′ the maximal ideal of T′ generated by mr̄, U1, U2. Then one sees that Π induces
an injective morphism MF[m] ↪→ NF[m′].

Let v ∈MF[m] be non-zero. Then by the upper bound of Theorem 6.7 we see by Lemma
5.3 and [Le], Proposition 2.2.2 that 〈K · v〉 is uniserial, of shape F (−a0 − 1,−a1,−a2 +
1)—F (−a1 + p − 1,−a0,−a2) and 〈K · Πv〉 is uniserial, of shape F (−a0 − 1,−a1,−a2 +
1)—F (−a0,−a2,−a1 − p+ 1). Hence Sv, S′ ◦ Πv are non-zero by Proposition 5.1 and the
result follows. �

Remark 6.14. There is a symmetry under the involution w0 7→ wc0. Indeed, if w0 is

a place where ρw0

def
= r̄|GFw0

admits a Fontaine-Laffaille parameter (in particular, it is

non-semisimple, and maximally non-split if its niveau is moreover one) then FL(ρw0
) =

ι
(

FL(ρwc0)
)

where ι : P1(F)→ P1(F) denotes the standard involution on the projective line.

Similarly, the role of the group algebra operators is exchanged: one has Sw0 = S′wc0 and

Swc0 = S′w0
(in the obvious notation).

From the proof of Theorem 6.13, we deduce the following modularity result:

Corollary 6.15. Assume that r̄ satisfies the assumption (i) in Theorem 6.13. Then

{F (a2 − 1, a1, a0 + 1), F (a2 − 1, a0 + 1, a1 − (p− 1))} ⊆Ww0
(r̄).
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Furthermore, {
F ((p− 1) + a1, a2, a0) ∈Ww0(r̄), if FL(r̄|GFw0

) = 0;

F (a2, a0, a1 − (p− 1)) ∈Ww0
(r̄), if FL(r̄|GFw0

) =∞.

Assume moreover that F is unramified at all finite places of F+ and that there is a
RACSDC automorphic representation Π of GL3(AF ) of level prime to p such that

◦ r̄ ' r̄p,i(Π);
◦ For each place w|p of F , rp,i(Π)|GFw is potentially diagonalizable;
◦ r̄(GF (ζp)) is adequate.

Then W ?,obv
w0

(r̄) ⊆Ww0
(r̄).

Proof. The first part is immediate from Lemma 6.11. Assume now that FL(r̄|GFw0
) = ∞.

The argument is now similar to [HLM17], Proposition 4.5.10.
We claim that F (a2, a0, a1 − p+ 1) ∈ Ww0

(r̄). Suppose that 〈K · v〉 contains the weight
F (−a1,−a2,−a0 − p+ 1). Then an easy check (as in the proof of Lemma 6.11) shows that
both Hecke operators T 1 and T 2 act by zero on F (a0 + p − 1, a2, a1), which implies, by
weight cycling and Theorem 6.7 above, that F (a2, a0, a1 − p+ 1) is in Ww0(r̄).

We now suppose that 〈K ·v〉 does not contain the weight F (−a1,−a2,−a0−p+1). Then
both 〈K ·v〉 and 〈K ·Πv〉 are quotients of the uniserial representations F (−a0−1,−a1,−a2 +
1)—F (−a1 + p − 1,−a0,−a2) and F (−a0 − 1,−a1,−a2 + 1)—F (−a0,−a2,−a1 − p + 1),

respectively (by [HLM17], Lemma 3.1.11 and Theorem 6.7 above). As
ψa1 (p)

p = − 1
α where

0 < vp(α) < 1, the equality (6.4.2) on ME [pE ] implies that Sv = 0 for some non-zero v ∈
MF[m′]. By Proposition 5.1 (cf. [HLM17] Proposition 3.1.2) and the previous observation
on 〈K · v〉 this forces 〈K · v〉 to have length one, i.e. F (a2, a0, a1 − p + 1) is modular. The
case FL(r̄|GFw0

) = 0 is easier and treated similarly.

As for the last statement (which needs to be proved only if FL(ρ0) = ∞), it is enough
to remark that for FL(ρ0) = ∞, the representation ρ0 admits a potentially diagonalizable
lift with Hodge-Tate weights {p+ 1 +a0, a2 + 1, a1} by Proposition 2.27, and the conclusion
follows from [BLGG18], Theorem 4.1.9 and Lemma 5.1.1. �

6.5. Freeness over the Hecke algebra. In this section, we prove Theorem 6.16, which
states that the dual

HomOE (S(Uv, Ṽ v0)
I,(−a1,−a0,−a2)
m ,OE)

of the space of automorphic forms is free over a Hecke algebra for certain choices of compact

open subgroup Uv0 (Ṽ v0 and mr̄ are as defined in Section 6.2).
We keep the notation of Section 6.4. Hence F/Q is a CM field in which p splits, F+

its maximal totally real field, with F/F+ unramified at all finite places and [F : F+] ≡ 0

mod 4. Fix a place w|p of F , and let v
def
= w|F+ . Let r̄ : GF → GL3(F) be a Galois

representation with r̄|GFw niveau two non-split as in Theorem 6.13 (i) satisfying the following
additional properties.

(i) r̄ is unramified at places away from p.
(ii) r̄ is Fontaine-Laffaille and regular at all places dividing p.

(iii) r̄ has image containing GL3(k) for some k ⊂ F with #k > 9.

(iv) F
ker adr̄

does not contain F (ζp).

By condition (iii) (stronger than the usual condition of adequacy (see Definition 2.3 of
[Tho12])) we can choose a place v1 of F+ which is prime to p satisfying the following
properties (see Section 2.3 of [CEG+16]).
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◦ v1 splits in F as v1 = w1w
c
1.

◦ v1 does not split completely in F (ζp).
◦ ρ(Frobw1

) has distinct F-rational eigenvalues, no two of which have ratio (Nv1)±1.

We now fix an unitary group G\F+ and a model G over OF+ as in Section 6.1. We require
moreover that G is quasi-split at all finite places (which is possible by the choice of F ). Let
Uv0 ≤ G(A∞,v0

F+ ) be a compact open subgroup satisfying the following properties.

(v) Uv0
= G(Ov0

) for all places v which split in F other than v1 and those dividing p;
(vi) Uv1 is the preimage of the upper triangular matrices under the map

G(Ov1
)→ G(kv1

)
∼−→
ιw1

GL3(kw1
);

(vii) Uv is a hyperspecial maximal compact open subgroup of G(Fv) if v is inert in F .

The choice of the compact open set Uv1
implies that Uv0Uv0

is sufficiently small in the sense
of Section 6.1 for any compact open subgroup Uv0

of G(Fv0
).

Let P denote the set consisting of finite places w′ of F such that v′
def
= w′|F+ is split in F

and w′ does not divide p or v1. We define the maximal ideal mr̄ of TP as in 6.4. Recall the

space of automorphic forms S
sm

(Uv0 , Ṽ v0)
I,(−a1,−a0,−a2)
mr̄ defined in Section 6.1, which carries

a natural action of the algebra TP and the operators U1, U2. From now on, we assume that

the highest weights λw ∈ (Z3
+)
Sp
0 appearing in the constituents of Ṽ v0 ∼=

⊗
v|p, v 6=v0

Wλv all

lie in the lowest alcove (i.e. for all w|v, v ∈ S+
p \ {v0} we have a2,w − a0,w < p− 2).

We make finally the following assumption:

(viii) S
sm

(Uv, V ′)mr̄ is nonzero.

Let Ta (resp. T, resp. Ti) denote the OE-subalgebra of

End(S
sm

(Uv0 , Ṽ v0)
I,(−a1,−a0,−a2)
mr̄ )

generated by TP (resp. TP, U1, and U2, resp. Ui). Here the subscript a stands for the
“anemic” Hecke algebra. See Section 5.2 of [HLM17] for the definitions of M∞ and R∞. As
in [HLM17], we let Ri be the R∞-subalgebra of EndR∞(M∞(τ)) generated by Ui.

Theorem 6.16. Let r̄ be as in Theorem 6.13 (i).Assume (i)-(viii) in the setup above. If
FL(r̄|GFw ) 6=∞ (resp. FL(r̄|GFw ) 6= 0) then the space

(S
sm

(Uv0 , Ṽ v0)
I,(−a1,−a0,−a2)
mr̄ )d (resp. (S

sm

(Uv0 , Ṽ v0)
I,(−a0,−a2,−a1)
mr̄ )d)

is free over T, where the superscript “d” stands for Schikhof duality (see Section 1.8 of
[CEG+16]). Moreover, if FL(r̄|GFw ) /∈ {0,∞} then Ri = R∞, Ti = T and

S
sm

(Uv0 , V v0)[mr̄]
I,(−a1,−a0,−a2)[U2] = S

sm

(Uv0 , V v0)[mr̄]
I,(−a1,−a0,−a2)[U1, U2]

= S
sm

(Uv0 , V v0)[mr̄]
I,(−a0,−a2,−a1)[U1].

Proof. The proof is exactly as in Section 5 of [HLM17]. The key point is that Lemma 5.3.3
of [HLM17] still holds using Theorem 6.7 in place of Theorem 4.3.1 of [HLM17]. �

Note that by combining Proposition 2.27, Theorems 6.13, 6.16 and [EG14] Corollary A.7
we can infer the following:

Theorem 6.17. Let ρ0 be as in Definition 2.4.Then there is a CM field F , an automorphic
Galois representation r̄ : GF → GL3(F), verifying r̄|Fw ∼= ρ0 for all w|p, such that all the
hypotheses in the setup of Section 6.5 are satisfied.
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In particular Theorem 6.13 applies to r̄: if FL(r̄|GFw ) 6= ∞ (resp. FL(r̄|GFw ) 6= 0) then

S
sm

(Uv0 , V v0)[mr̄]
I,(−a1,−a0,−a2)[U2] (resp. S

sm

(Uv0 , V v0)[mr̄]
I,(−a0,−a2,−a1)[U1]) is free over

T and if moreover FL(r̄|GFw ) /∈ {0,∞} then the equality (6.4.1) of refined Hecke operators

on S
sm

(Uv0 , V v0)[mr̄]
I,(−a1,−a0,−a2)[U1, U2] holds true.
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Sug Woo Shin, Patching and the p-adic local Langlands correspondence, Camb. J. Math. 4

(2016), no. 2, 197–287. MR 3529394
[CHT08] Laurent Clozel, Michael Harris, and Richard Taylor, Automorphy for some l-adic lifts of auto-

morphic mod l Galois representations, Publ. Math. Inst. Hautes Études Sci. (2008), no. 108,
1–181, With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by
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