32

Absolute Value and the Real Line Section 2.2

From the Trichotomy Property 2.1.5(iii), we are assured that if $a \in \mathbb{R}$ and $a \neq 0$, then exactly one of the numbers a and -a is positive. The absolute value of $a \neq 0$ is defined to be the positive one of these two numbers. The absolute value of 0 is defined to be 0.

2.2.1 Definition The absolute value of a real number a, denoted by |a|, is defined by

$$|a| := \begin{cases} a & \text{if } a > 0, \\ 0 & \text{if } a = 0, \\ -a & \text{if } a < 0. \end{cases}$$

For example, |5| = 5 and |-8| = 8. We see from the definition that $|a| \ge 0$ for all $a \in \mathbb{R}$, and that |a| = 0 if and only if a = 0. Also |-a| = |a| for all $a \in \mathbb{R}$. Some additional properties are as follows.

2.2.2 Theorem (a) |ab| = |a||b| for all $a, b \in \mathbb{R}$.

- **(b)** $|a|^2 = a^2$ for all $a \in \mathbb{R}$.
- (c) If $c \ge 0$, then $|a| \le c$ if and only if $-c \le a \le c$.
- (d) $-|a| \le a \le |a|$ for all $a \in \mathbb{R}$.

Proof. (a) If either a or b is 0, then both sides are equal to 0. There are four other cases to consider. If a > 0, b > 0, then ab > 0, so that |ab| = ab = |a||b|. If a > 0, b < 0, then ab < 0, so that |ab| = -ab = a(-b) = |a||b|. The remaining cases are treated similarly.

- (b) Since $a^2 \ge 0$, we have $a^2 = |a^2| = |aa| = |a||a| = |a|^2$.
- (c) If $|a| \le c$, then we have both $a \le c$ and $-a \le c$ (why?), which is equivalent to $-c \le a \le c$. Conversely, if $-c \le a \le c$, then we have both $a \le c$ and $-a \le c$ (why?), so that $|a| \le c$.
- Q.E.D. (d) Take c = |a| in part (c).

The following important inequality will be used frequently.

2.2.3 Triangle Inequality If $a, b \in \mathbb{R}$, then $|a+b| \le |a| + |b|$.

Proof. From 2.2.2(d), we have $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. On adding these inequalities, we obtain

$$-(|a|+|b|) \le a+b \le |a|+|b|.$$

Hence, by 2.2.2(c) we have $|a + b| \le |a| + |b|$.

Q.E.D.

It can be shown that equality occurs in the Triangle Inequality if and only if ab > 0, which is equivalent to saying that a and b have the same sign. (See Exercise 2.)

There are many useful variations of the Triangle Inequality. Here are two.

2.2.4 Corollary If $a, b \in \mathbb{R}$, then

- (a) $||a| |b|| \le |a b|$,
- **(b)** $|a-b| \le |a| + |b|$.

Proof. (a) We write a = a - b + b and then apply the Triangle Inequality to get $|a|=|(a-b)+b|\leq |a-b|+|b|$. Now subtract $|\hat{b}|$ to get $|a|-|b|\leq |a-b|$. Similarly, from |b|: combine (b) Repla |b| we ob

A sti equality t

2.2.5 Co.

The:

2.2.6 Ex: Fron and only: 2, we cor

(b) Dete One Here we

(Why die which is s set B. In cthis case becomes value of 2 conclude

Ther only if a^2 x is equi can expai again finc advantage

A gr y = |x - y||x-1| lie and $a \neq 0$, then $\neq 0$ is defined to be 0.

al, is defined by

at $|a| \ge 0$ for all $a \in \mathbb{R}$. Some

our other cases to 0, b < 0, then treated similarly.

ent to $-\varepsilon \le a \le c$. so that $|a| \le c$.

U.L.D.

On adding these

Q.E.D.

and only if ab > 0, Exercise 2.)
e are two.

Inequality to get $\leq |a-b|$. Similarly,

from $|b| = |b - a + a| \le |b - a| + |a|$, we obtain $-|a - b| = -|b - a| \le |a| - |b|$. If we combine these two inequalities, using 2.2.2(c), we get the inequality in (a).

(b) Replace b in the Triangle Inequality by -b to get $|a-b| \le |a| + |-b|$. Since |-b| = |b| we obtain the inequality in (b).

A straightforward application of Mathematical Induction extends the Triangle Inequality to any finite number of elements of \mathbb{R} .

2.2.5 Corollary If a_1, a_2, \ldots, a_n are any real numbers, then

$$|a_1 + a_2 + \cdots + a_n| \le |a_1| + |a_2| + \cdots + |a_n|$$
.

The following examples illustrate how the properties of absolute value can be used.

2.2.6 Examples (a) Determine the set A of $x \in \mathbb{R}$ such that |2x+3| < 7.

From a modification of 2.2.2(c) for the case of strict inequality, we see that $x \in A$ if and only if -7 < 2x + 3 < 7, which is satisfied if and only if -10 < 2x < 4. Dividing by 2, we conclude that $A = \{x \in \mathbb{R} : -5 < x < 2\}$.

(b) Determine the set $B := \{x \in \mathbb{R} : |x-1| < |x|\}.$

One method is to consider cases so that the absolute value symbols can be removed. Here we take the cases

(i)
$$x \ge 1$$
, (ii) $0 \le x < 1$, (iii) $x < 0$.

(Why did we choose these three cases?) In case (i) the inequality becomes x-1 < x, which is satisfied without further restriction. Therefore all x such that $x \ge 1$ belong to the set B. In case (ii), the inequality becomes -(x-1) < x, which requires that $x > \frac{1}{2}$. Thus, this case contributes all x such that $\frac{1}{2} < x < 1$ to the set B. In case (iii), the inequality becomes -(x-1) < -x, which is equivalent to 1 < 0. Since this statement is false, no value of x from case (iii) satisfies the inequality. Forming the union of the three cases, we conclude that $B = \{x \in \mathbb{R} : x > \frac{1}{2}\}$.

There is a second method of determining the set B based on the fact that a < b if and only if $a^2 < b^2$ when both $a \ge 0$ and $b \ge 0$. (See 2.1.13(a).) Thus, the inequality |x-1| < |x| is equivalent to the inequality $|x-1|^2 < |x|^2$. Since $|a|^2 = a^2$ for any a by 2.2.2(b), we can expand the square to obtain $x^2 - 2x + 1 < x^2$, which simplifies to $x > \frac{1}{2}$. Thus, we again find that $B = \{x \in \mathbb{R} : x > \frac{1}{2}\}$. This method of squaring can sometimes be used to advantage, but often a case analysis cannot be avoided when dealing with absolute values.

A graphical view of the inequality is obtained by sketching the graphs of y = |x| and y = |x - 1|, and interpreting the inequality |x - 1| < |x| to mean that the graph of y = |x - 1| lies underneath the graph of y = |x|. See Figure 2.2.1.

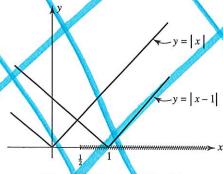


Figure 2.2.1 |x-1| < |x|