The main result of this paper is

Theorem 1 (Theorem A). Let X" < PN be a smooth, linearly normal, complex algebraic variety
of degree > 2. Let Rx denote the X-resultant (the Cayley-Chow form of X ). Let A\ x ypn—1 denote
the X-hyperdiscriminant of f format (n-1) (the defining polynomial for the dual of X x P"~!
in the Segre embedding). Then there are norms such that the Mabuchi-energy restricted to the
Bergman metrics is given as follows:

o+ Ay o Rxcll?
V(o) = deg(Rx)log —"——— — deg(A n-1)log ——7—
(o) = deglfix)los Tpa e~ deBlB e ) 8 T
The proof of this theorem consists of 3 steps.
1 Step 1
1.1 Jet bundle from Gauss map
F:X — Gr(nPY)
r +— T,.X
Under any local complex coordinate {z1,---, z,}, X C PV is given by
(Zlv e ,Zn) = [1; Zl(z)v e aZN(Z)]
F'is given by
Vo = (17 gé(z)a ) Z]\({;gZ))
O 1 N
(21,...,2n) — Spang v = (0, '3.2'1 ’ ’ dz1 )
vy = (0, 25;7 e %i:r)

Lemma 1.
F*WGT = (TL + 1)(.«)}75 — Ric(wpg)

Definition 1 (Jet bundle).
(J(O(M)Y, hyoay) = F*U, hev+r)

By the above Lemma, the first Chern class of jet bundle gives the first Chern class of T'X. This
gives some motivation for considering the jet bundle.

1.2 Incidence diagram

From the incidence diagram, one sees that the dual of X is closely related to the jet bundle.
Ix = {(z,H) € Xx(PY)V;T,X C H} = zero locus of a section of 750(1)@7}J(O(1)) C X x(PV)V

In ={(T,H) € GT(n,]P’N)x(]P’N)V;']T C H} = zero locus of a section of m3O(1)@7* U C Gr(n,PN)x(PN)V

X n Iy 2 (PV)Y
Fl indl ||l
Gr(n,PV) «— I —"2 (PN)V



Definition 2.
XV =m(Ix)={HeP";3z e X,st.T, X Cc H} c PV

Assumption 1. w7, : Ix — XV is birational, XV = {Ax =0} C (PN)V is a hypersurface.

Lemma 2.

deg(X") = [ c(3(Ox(1) o
X
Lemma 3. Via Poincaré Duality and G-invariance.

/ * N \%
T Towps = Cnt1 (U, henr)

1.3 Bott-Chern form and complex Hessian formula

Using incidence diagram and properties of Bott-Chern form, we can transform the integration of
Bott-Chern form on XV to integration of Bott-Chern form on X up to a 09 closed function.

For any compactly supported smooth (m-1,m-1)-form 7, m = dim G. In the following calcula-
tion, [, is the bridge connecting [, . and [,

N/ nAaa/ dt/ ,,WFS(PV)_/GaénA [ OO (). f'sh.h(o)

= / n A9 BC(Opv(1),cY;h, h(o)) :/ nAcY(Opv (1), h(o))
GXV GXV

= [ name O (1), hio)
Glx

= [ namme @ 1).he) = [ un (GF) el O (1), ()
GX GX

= / 77/\Cn+1((GF)*Uvah(U))=/ N A cnt1(J(O(1)), hyoy)(9)))
GX GX

- / 77/\8530(J((’)(1)),cn+1;h,h(o)):/n/\&é/ BC(I(OO)), ensrs by h(0)
GX G X

Soon G = SL(N +1,C),

N@@/ dt/ ngS(PV) —88/ dt/ BC(J ), Cnt1; hy h(0))
X\/

Remark 1 (Tian’s argument). If we have Log Polynomial growth for the integral on the write
hand side, we will get

N/ dt/ d,wh ;v)_/01dt/XBC(J(O(1)),cn+1;h,h(a)) (2)

This should be true in general. For the K-energy case considered in this paper, one can verify
this directly in Step 3. See (11).

2 Step 2

The goal of this step is to express the Bott-Chern form on jet bundle in terms of Bott-Chern form
on T'X. For this, we need the exact sequence for jet bundle and Griffith’s formula for the curvature
of vector bundle in exact sequence. Then one also needs to prove a metric splitting theorem for
the exact sequence.



2.1 Exact sequence for Jet bundle

0-T"X®0(1) = Jx(O(1)) — O(1) =0

Equivalently,
0 —0(-1) L Jx0)Y L o-1)eTX —0
| | | (3)
S & Q
2.2 Griffith Formula and calculation of 2nd fundamental form
Split orthogonal frames of J(O(1))"
€0 = Vo = (17Z17"' 7Z’n.)
o viyeq)
€ = Uy |€0|2 €0
glei) = g(vi) =eo ® 7%,
Under {eg,e1, - ,en}, there is a differentiable isomorphism
E=Sas 2L saQ
Under the split orthogonal frames, one writes
DS 3
£ _
(% )
The 2nd fundamental form o € C* (T*°X @ Hom(S, Q)) is of (1,0) type.
g \" 9
Al = ((3Zz eo> ) Sl = 0z;
So 5

In particular, « is holomorphic.
B=—a*eC™(T*OY @ Hom(Q,S)).

0 o\ /0 €o . )
/(55) (w0 5s) = (e izm ) o = ~torshoe

5(60@)

0
821‘) = —wi;dz; ® eo

Proposition 1. Griffith’s Formula:

FE = (DE)? — FS4+foa  DSof+f30D°
o “\ Doa+aoD® Fe+aof



In the jet bundle case

0
) = —dz; ® (~w;5dZ; @ eg) = w R eg

Boaleg) = Pldz; ®eg® 7

ao feo @

aZi

Sk .= (aopB)f = —w;zdzy ® dz; = —dz @ dz;

Proposition 2.

FS _ 0 0 L0 — ( 0 Q )
0 —wF5|X ®IT)1(’0 + Fuis + S 0 F

2.3 Bott-Chern form of Jet bundle

Theorem 2. .
BC(J(O(1))", cnt13h, 1)) = —docn(J(O(1))Y, h(0))

Proof. By formula (5)

BC(J(O(1))Y, cni1; h, h(a)) 4 det (F’f + bH—1H)

db
_ % (—b(jﬁg det(F + bH‘lﬁ))
— _(Zga det(ﬁ) = _(lgacn(J(O(l))v’h(o))

Corollary 1. .
BC(J(O)), eny15h, h(0)) = ¢ocn(J(O(1), k(o))

2.4 Metric splitting of exact sequence (3)

Theorem 3.
c(J(O1))Y, henvir) = o(TX @ O(=1),wps ® hipg) - c(O(=1), hg)

Proof.

—Wrs|x 0
FSGBQ _ T)l(,()
0 —wF5|X ®IT)1(’0 + Fuis

To show the Chern forms split, one only needs to show
Tr((F€)*) = Tr((F°®9)")

for 1 < k < n. This is because Tr(A*) generates all invariant polynomials.
By Lemma 4, it’s easy to show both sides of (7) equal to

k
21kt + > (k) (=R iR (Y

- (2
i=1

0 0 0
) = —a(w;dz; ® eg) = w;;dZ; ANdzg @ R ®eq = —w;5dz ®dz; ® <eo ® —



Lemma 4.
Tr((F + S)*) = Tr(F*) — vk

Combining Theorem 3 and Corollary 1, one achieves the goal of expressing the Bott-Chern
form on jet bundle in terms of Bott-Chern form on TX and O(1).

3 Step 3

The step is to replace X by X x P*"~!. This has two uses. One is to make sure the dual of X x P*~!
is of codimension one. The other use is to eliminate the extra curvature terms so that only Ricci
curvature is preserved.

3.1 Pass to Hyper-discriminant: X ~» X x P71
Claim 1. For X x P"~!', The Assumption 1 is always satisfied. This is called Cayley’s trick.

0 — Opn-1 — Opn1(1)®" = TPt -0

0 Opn-1(1) «— OF", «— T*P" ' @ Opn-1(1) < 0 (8)

Lemma 5. Metric splitting for the exact sequence (8):
C(Opnfl (1), hFS) . C(T]Pm71 R Opn-1 (1), g}:—‘s (039 hps) =1
By the above Lemma and Theorem 3,

c(J(O(1,1),h1) = (TX @O(1,1),ha) - (TP '@ O(1,1), h3) - ¢(O(1,1), hy)
C(TX & 0(1, 1), h2)(1 + WFS(pN)|X)n

Modulo unitary transformation, let

V-
S RTXEOXW = diag(a1 +y, -+ an +y)
v—1
S B W = wpspey = 2
Then
(TX ©O0(1,1),he) = (L+ai+y+2)-(I+ap+y+2)=2"""(n+z+ -+, +ny)
W;Ez]pn) (n — Ric(w) 4+ nw)
Theorem 4.
c2n-1(J(O(1,1)),h1) = {z"7(n — Ric(w) +nw)(1 +w)" }on-1)

2" Hn — Ric(w) + nw)(nw™ ™ +w™)

= 2" (n(n+1)w" — nRic(w) Aw™™ 1)



3.2 Log Polynomial Growth of K-energy

This extra discussion is to make sure one can drop the 99 in formula (2).

Lemma 6. For any o € SL(N +1,C), the holomorphic bisectional curvature Siy; of we satisfies:

hIRR S sy < 2 (9)

3
h = g5 is the metric associated with Kdhler form w,.

Proof. For any point P € X, choose coordinate such that h;; = d;;. By Gauss’ formula:

R(aiugia 8]76_]) = S5 + |II(8176])|2

(]

where R is the curvature of Fubini-Study metric of ambient PV. R satisfies:

R = §(0i,0)3(0k, ) + §(05,01)3(Ok, ;) = hijhys + hathy;
So under normal coordinate of w,,

Siij; < R(0;,0;,05,0;) = 6ii0;; + & <2

O

Let f = tryw, and A be the complex Laplacian associated with Kahler metric w, Ry; be the
Ricci curvature of reference metric w and S;;,; be the curvature of Kédhler metric w,. Let V be

the gradient operator associated with g, then

2
Alogf = % — |VfJ;|‘”
o 9" Ryhg 979" S5
B f f
_ 2 /%'_QRZE B Z” H;lﬂflsiijﬁ
a 2o .Ui_l > ,Ui_l
> —C1—-2) pt=-C1-Caf (10)

where —CY is the lower bound of Ric(w). In the 3rd equality in (10), for any fixed point P € X,
we chose a coordinate near P such that h;; = d;5, Oxh;; = 0. We can assume g is also diagonalized
so that

9i5 = Mibij
For the last inequality in (10), we used the inequality (9).
So

Alog f + A\py) > —C1 — Cof + Mry(we —w) = (A= Ca)f — (C1 +nX\) =Csf — Cy

for some constants Cs5 > 0, Cy > 0, if we choose A to be sufficiently large. So at the maximum
point P of the function log f + \¢,, we have

0> A(log f + Ado)(P) = Csf(P) — Cy

So



So for any point x € X, we have
trows(z) < Cse” Ao (z)=¢o(P)) <O o 0SC(65)

So
wy < Cse 05¢(#0)

Since Osc(¢,) has log polynomial growth,

log w—'; < nlogCs + n osc(¢y)
w

has log polynomial upper growth. The lower bound of K-energy follows from convexity of Loga-
rithmic function. So by Claim 1, one gets

Proposition 3. The functional

1 n
—/ dt/ n¢e(Ric(ws) — Ric(wo)) Awl ™t = / log w—‘;w;’
0 X x W

has log polynomial growth as a function on SL(N +1,C).
Substitute this into (6) and (2), one gets

Theorem 5 (Hyper-discriminant part in the K-energy).

1 1
N/ dt/ i gwgs(%w) = / dt/ bo(n(n +1)w? — nRic(ws) Aw? 1) (11)
0 (X xPr=1)v 0 X

3.3 Other Ingredient and Main Formula

lo - Rx|l? L
log T — 1) [ dou
[RxI? o Jx

HO"AXXPn—lHQ /1 / . N-1
log———————5—=N [ dt BNt
||AX><]P"’1||2 0 (X xPr—1)Vv FSEY)

Lemma 7 (Tian).

Lemma 8.
deg(D xxpn 1) = deg((X x P'~1)Y) = /X e (O 1) = (nn + 1) ~mp)V

while
deg(Rx) = (n+1)d

Theorem 6 (Main Formula).

_/Ol/Xéa(S(w)—ﬁ)w":—/Xq'sa(nRic(w)_nu)/\wn1

= () =mp) [ K [ o+ | L [ detntn-+ 1) = nRic(e)) nw

( (n +1)—np) / / / /
= dt 1)és dt N‘bg
7’L + 1 nt (b W * XV wFSV

_ _deg(AXxIP’"*l) log o - Rx|? +log lo - A xxpn—1]|®

deg(RX) HRXH2 ||AX><IP’"*1||2

This is just Theorem 1.
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