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Uniformatization Theorem for Riemann Surfaces

Riemann surface: surface with a complex structure:

Topology Metric Curvature
S? = CP! spherical 1
T? = C/Z? flat 0
Y, =B!/m(%,) hyperbolic -1

Riemannian metric: g = E|dz|*> = gzzgz|dz|2 = +Ap|dz[?.

Constant Gauss/Ricci curvature equation

= 1-dimensional complex Monge-Ampére equation

Ric(w) = Aw <= —Alog Ap = Mg <= Ap = e %,
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Kahler manifolds and Kahler metrics

X: complex manifold; J: TX — TX integrable complex structure;
g: Kahler metric, g(J-, J-) = g(+,-) and dw = 0.

w=g(,J)=—— o Zwudz ANdZ, (i

ij

) > 0.
ihj=1

Kahler class [w] € H?(X,R).
Fact (00-Lemma): Set dd° = %85. Any w’ € [w] is of the form

dz' NdZ.

wy = w +ddu _w+728281
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Kahler metric as curvature forms

L — X: a C-line bundle with holomorphic transition {f,3}.
e~ % := {e~%=} Hermitian metric on L:

e % = |f,5]7e %0, (1)
Definition: L is positive (=ample) if 3 e7¥ = {e" %=} on L s.t.
w + dd®u = dd®p := dd°p, > 0. (2)
Anticanonical line bundle: —Kx = A" Tpa1 X, Kx = A" Ty X.
Fact: {smooth volume forms}={Hermitian metrics on —Kx }

caa(X) 3 Ric(w) = —dd®logw”
\/7
>

82 53 log det(w,7)dz' A dZ/.
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Kahler-Einstein metric and Monge-Ampére equation

KE equation:

Ric(w,) = Aw, <= (w+ddu)" = elw=2un (3)

<= det + —= Ou = eMw =2 det(w;7)
Vit 970z ) i)

A=—1 Solvable (Aubin, Yau) ¢;(X) <0
A=0 Solvable (Yau) a(X)=0
A=1 3 obstructions a(X)>0
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Fano manifolds

X Fano: ¢1(X) > 0 <= 3 Kéhler metric w with Ric(w) > 0.

Q dimc =1: P! = 52,

Q dimc = 2: P2, P! x P!, P24kP2, 1 < k < 8 (del Pezzo).

@ dimc = 3: 105 deformation families (Iskovskikh, Mori-Mukai)
@ Smooth hypersurface in P" of degree < n+ 1;

@ Toric Fano manifolds

Fact: there are finitely many deformation family in each dimension
(Campana, Kolldr-Miyaoka-Mori, Nadel '90).
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Obstructions and uniqueness

Q I KE = Aut(X) is reductive: Aut(X)o is the complexification of a
compact Lie group (Matsushima)

@ Futaki invariant: V holomorphic vector field £ ,
SKE = Fur(¢) = [ g(h)w" =0 (4)
X

© Energy coerciveness (Tian, Tian-Zhu, Phong-Song-Sturm-Weinkove,
Darvas-Rubinstein, Hisamoto)

Q K-stability (Tian, Donaldson)
Ding stability (Berman, Boucksom-Jonsson)
all equivalent (L.-Xu, Berman-Boucksom-Jonsson, Fujita).

Uniqueness: KE metrics are unique up to Aut(X)o (Bando-Mabuchi,
Berndtsson)
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Yau-Tian-Donaldson conjecture

Theorem (Tian, Chen-Donaldson-Sun, Berman)

A Fano manifold X admits a KE metric if and only if X is K-stable
(Aut(X) is discrete), or X K-polystable (Aut(X) is continuous).

We extend this theorem in two directions (with different proofs with
those of the above):

@ Any (singular) Q-Fano variety X (L.-Tian-Wang, L.)

@ Kahler-Ricci g-soliton (Han-L.)
Remark: In particular, we recover the above theorem with K-polystability
replaced by appropriate (G-)uniform K-stability. Conjecturally, uniform
K-stability is equivalent to K-stability, which is reduced to an algebraic
geometric problem.
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Q-Fano varieties: building blocks of algebraic varieties

Q-Fano variety X is a normal projective variety satisfying:

@ Fano: Q-line bundle —Kx is ample.
Q kit (Kawamata log terminal): Vs} ~ dz* A ...dz" € Ok, (Uy)

n2
/ (V=" 5% A 5%) < +o0. (5)
Uresg

Let 4 : Y — X be a resolution of singularities (Hironaka)

Ky = w"Kx + Z(Ax(Ei) - 1)E. (6)

The condition (5) <= mld : = min; Ax(E;) > 0.
Fact: (Birkar '16) e-klt (i.e. mld > e > 0) Fanos are bounded.
Fact: KE equation (only) makes sense on all Q-Fano varieties.
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Klt singularities: Examples

@ Smooth points, Orbifold points = (normal) Quotient singularities

Q@ X ={F(z1,...,2041) = 0} C C"*! with F homogenenous
deg(F) < n+ 1 s.t. X has an isolated singularity at 0.

© Orbifold cones over log-Fano varieties. weighted homogeneous
examples:

Z+Z+Z+22=C ((1@1 x P (1 - 2)A), H)

Z+Z+Z+22MN=C ((]P’z,(l— 2kH)D)ﬁ)

O (Q-Gorenstein) deformation of Klt singularities are also Klt
singularities.
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KE equation on Q-Fano varieties

Hermitian metric on the (Q-)line bundle —Kx: e™% = {e" %=} s.t.
e ¥ =|sy|?e7?, {s,} trivializing sections of — Kyx

Kahler-Einstein equation on Fano varieties:
(dd°p)" = e~ ¥ ::|sa|257“’<\/jlnzs:;/\§;>. (7)

w=dd% = u =@ — 1 is globally defined. Then (7)< (3).
(weak) KE potential: generalized solutions in pluripotential sense.

Fact: Obstructions/uniqueness continue to hold for Q-Fano case.
Face: Solutions are smooth on X"°&.

Fact: Aubin and Yau's theorems hold on projective varieties with Klt
singularities (Eyssidieux-Guedj-Zeriahi based on Kotodziej).
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Yau-Tian-Donaldson conjecture on Fano varieties

Theorem (L.-Tian-Wang, L. '19)

A Q-Fano variety X has a KE potential if (and only if) X is
Aut(X)o-uniformly K/Ding-stable.

@ X Smooth (Chen-Donaldson-Sun, Tian, Datar-Székelyhidi).
@ Q-Gorenstein smoothable (Spotti-Sun-Yao, L.-Wang-Xu);
@ Good (e.g. crepant) resolution of singularities (L.-Tian-Wang).

Proofs in above special cases depend on compactness/regularity theory in
metric geometry and do NOT generalize to the general singular case.

Q@ X smooth & Aut(X) discrete: Berman-Boucksom-Jonsson (BBJ) in
2015 proposed an approach using pluripotential
theory/non-Archimedean analysis. Our work greatly extends their
work by removing the two assumptions.
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Variational point of view

Consider energy functionals on a pluripotential version of Sobolev space,
denoted by £1(X, —Kx) (Cegrell, Guedj-Zeriahi)

R

(a) Proper (b) Bounded (c) Unbounded

There is a distance-like energy:

J() = N(¢) —E(p) ~ sup(p —1)—E(p) >0. (8)

E is the primitive of complex Monge-Ampére operator:
E(y) / dt / pddep), LE(p) = L / 2(dd°)". (9)
¥ Tt v XSO ®) -
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Analytic criterion for KE potentials

Energy functional with KE as critical points:
L(¢) = —log (/)(e_“D), D=-E+L. (10)
The Euler-Lagrangian equation is just the KE equation:
SD(5p) = %/X((Sgo) (—(dd°p)" + C - e™%) | (1)

Analytic criterion (generalizing Tian-Zhu, Phong-Song-Sturm-Weinkove):

Theorem (Darvas-Rubinstein, Darvas, Di-Nezza-Guedj, Hisamoto, based on the

compactness by BBEGZ and uniqueness by Berndtsson)

A Q-Fano variety X admits a KE potential if and only if
©Q Aut(X)o is reductive (with center T = (C*)")

© Moser-Trudinger type inequality: there exist v > 0 and C > 0 s.t.
Yo € EY(X, —Kx)¥,

D(p) > - im;rJ(a*ap) — C.  (Aut(X)o-coercive)
[4S

v
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Contact with algebraic geometry: Test configurations

(Tian, Donaldson)

A test configuration (TC) (X, L,n) of (X, —Kx) consists of:
Q@ 7 : X — C: a C*-equivariant family of projective varieties;
Q@ L — X: a C*-equiv. semiample holomorphic Q-line bundle;
Q n: (X, L) xcC* = (X,—Kx) x C*.

Any test configuration is generated by a one-parameter subgroup of
GL(Ny,) (with m > 1) under the Kodaira embedding

X — P(HO(X, —mKx)*) = PNn—1,

A test configuration is called special if the central fibre Xy is a Q-Fano
variety.
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Slopes along subgeodesics

Under the isomorphism 7, any smooth psh metric on £ — & induces a
family of smooth psh metrics ® = {(t)} on (X, —Kx).

Theorem (Ding-Tian, Paul-Tian, Phong-Sturm-Ross, Berman,

Boucksom-Hisamoto-Jonsson)

For any F € {E,J,L,D},

exists, and is equal to an algebraic invariant FN* (X L).

Coercivity (2) = D’°(®) > v -infeepn, I (0e(t)*P).

Ideas and Proofs



Test configurations=smooth non-Archimedean metrics

Boucksom-Jonsson: Test configuration defines a non-Archimedean
metric, represented by a function on the space of valuations:

$(v) = dra,0)(v) = —G(v)(®), veXg". (13)

G(v)(®): the generic Lelong number of ® with respect to G(v).
Non-Archimedean functionals:

7o(n+1)
B0 = oo [ et
AYA(g) = %E-pf(—Kx)'”=sgp(9n(<p)),
JNA(¢) _ ANA(¢) _ ENA(¢),

L9) = inf (Ax(v) +6(v)).

Xg" : space of divisorial valuations; G(v) : Gauss extension.

Ideas and Proofs



K-stability and Ding-stability

Definition-Theorem (Berman, Hisamoto, Boucksom-Hisamoto-Jonsson)

X KE implies that it is Aut(X)o-uniformly Ding-stable: 3y > 0 (slope)
such that for all Aut(X)o-equivariant test configurations

DY, £) 2y - inf INHX, Lin+6). (14)

When Aut(X)g is discrete: (14) can be written as
LY () = (1= 1ET(9)(+7A(9)).

Based on Minimal Model Program (MMP) devised in [L.-Xu '12]:
Q@ Equivalent to K-stability of Tian and Donaldson (BBJ, Fujita).
@ valuative criterions (Fujita, L., Boucksom-Jonsson).

© algebraically checkable for (singular) Fano surfaces, and Fano
varieties with large symmetries (e.g. all toric Fano varieties)

Ideas and Proofs



Examples: toric Fano manifolds

Toric manifolds <> lattice polytopes. Fano <« reflexive polytope.

km

(d) P2 (e) P24P2 f) P2g2p2 g) P243p2

Set B(X) = sup{t; Jw € 271 (X) s.t. Ric(w) > tw} € (0,1].

B(X) =1 «= KE "Z=" p_ = 0 «= Aut(X)o — uniformly K-stable.

Theorem (L. '09)

If P. # O, then B(Xn) = , where @ = P.O N 8A.

Example: 3(P?§P2) = 6/7(Székelyhidi), [(P22P2) = 21/25.

Ideas and Proofs



Valuative criterion

Any divisor E on Y (-5 X) defines a valuation v := ordg.

RO(X, —mu*Kx — [mx]E)

G — i
vol(#77) mLIToo m" /n!
1 +o0 1 400
S(v) = < / vol(F)dx = = / x(—dvol(F™)).
4 0 4 0

S(v) is some average vanishing order of holomorphic sections.

Theorem (Fujita, L.)

Q (X, —Kx) is uniformly Ding/K-stable if and only if 36 > 1 such that
for any v € X&i", Ax(v) > d5(v).

Q (X, —Kx) is Aut(X)o-uniformly stable if Aut(X)o is reductive,
Fut = 0 and 36 > 1 such that for any v € X§'", there exists £ € N
s.t. Ax(Vg) > 55(V§)

Ideas and Proofs



Proof of a special singular case (L.-Tian-Wang '17)

© Take a resolution of singularities i1 : Y — X:

B

—Ky = (M*(Kx) — 629,‘Ei> + Z(l — A(E,‘) + 69,‘)E,' .

@ Prove that (Y, B. =) (1 — fi.)Ei) is uniformly K-stable when
0 < e < 1, by using the valuative criterion.

@ If the cone angle 0 < 27 A(E;) < 2m, then (Y, B.) is a log Fano pair
and we can construct KE metrics w. on Y with edge cone
singularities along E;.

© Prove that as ¢ — 0, w. converges to a KE metric in
potential=metric=algebraic sense.

Techniques include: pluripotential theory, Cheeger-Colding-Tian
theory for edge cone Kihler-Einstein metrics, partial C°-estimates.

Ideas and Proofs
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Serious difficulties when cone angle is bigger than 27:
Bie = A(E;) — €8 > 1 < B, = BX — B non-effective.

Fortunately, a different strategy initiated by Berman-Boucksom-Jonsson

Key observation: the valuative/non-Archimedean side works for
in-effective pairs.

Ideas and Proofs




BBJ's proof in case X smooth and Aut(X) discrete

Proof by contradiction: Assume D (and M) not coercive.
@ construct a destabilizing geodesic ray ® in £}(—KJx) such that
0> D'®(®) = —E'°(P) + L'°(d), E'*(d)=-1.

Q 9m = (Blyme)(X x C), L = mhpi (—Kx) — ﬁmoEm). Just need
to show that the TC ®,,, m > 1 is destabilizing.

© Comparison of slopes:

Oy >0 — C= EN*(¢,) > E(d) (FAILS when X is singular!)
Jim LY (9n) = LYA(¢) = L'(®).
© Contradiction to uniform stability:
—1=E(9) 2 L'(9) = LY(¢) + LY (¢m)
>stability (1 —7)ENY(6m) > (1 —7)E>°(®) =7 — 1.

Ideas and Proofs



Perturbed variational approach (L.-Tian-Wang, L.'19)

Proof by contradiction. Assume D (and M) not G-coercive.
@ Construct a geodesic ray ¢ in £1(—Kjx) as before.
@ Prove uniform stability of (Y, B;) for 0 < ¢ < 1.

© Perturbed destabilizing geodesic sub-ray ®. = p*® + eppy. Blow-up
J(m®,) to get test configurations ¢¢ m = (Ve,m, Be,m, Le,m) Of
(Y, Bo).

© Comparison of slopes

ENA(¢pe.m) > E’°(®,) (true since Y is smooth)
IimO E'>(®.) = E'™(®) (key new convergence)
e—

Iim0 LNA (@) = LN2(¢p) (key new convergence)
e—

@ Chain of contradiction to uniform stability of (Y, B.):

1= E®(¢) > L'°(d) + LNA(p.) + LN (de,m)
ZStab. (]- - VG)ENA(QZSe,m) Z (1 - VG)EIOO(CDJ
= (1-7E>(®) =71

Ideas and Proofs



New ingredients for continuous Aut(X) (L.'19)

@ Valuative criterion for Aut(X)o-uniform stability: 36 > 1, s.t.

inf sup (Ax(ve) —0S(ve)) > 0. (15)
veXg“’ £eNr

@ Non-Archimedean metrics <— functions on X(Si".

Pe(v) = d(ve) +0(§), () = Ax(ve) — Ax(v).  (16)

© Reduce the infimum (resp. supremum) to “bounded” subsets of
X&i" (resp. Nr) (depending on Strong Openness Conjecture)

@ Delicate interplay between convexity and coerciveness of
Archimedean and non-Archimedean energy.

Ideas and Proofs



Synthesis: Chain of Contradiction in general

3-parameters approximation argument:

E~(0) > L)+ O(k )

L’°°(¢6)+ e, k1)
A(d)e m)+ O(6 m71 k™ )
A(Vie) + Ge,m(vi)

A( Vk,—fk) + ¢€,m>_£k(vk7fk)

T T

> 55[—6(‘/,(775‘() + ¢€,m»7£k(vk7£k)

Z 5ENA(671¢e,m,—§)

> (1= I bem &) + ENNbeme)

= (1= 6N (Pem—g,) + 0 EN (b m—e,)
> (L=0 YMN®(Pg,) + 0 VEX(P ¢,)

= (1=07YMI2(b g,) + E=(P¢,)

> (1—0 "y +E>(9).

Ideas and Proofs



Data for g-solitons

o T =2 (C*)" acts effectively on a Fano manifold (X, —Kx).

o t = Lie(T) = Spang{&1,.... &} @ C.

@ e ¥: smooth Hermitian metric on —KXx, with Kahler curvature
form: ddp > 0.

Hamiltonian function:

L e ¥ . v—1z
9/(#; = Zkfitp’ L&kdd » = ?89/(#;.

Moment map and moment polytope:

my = (01,4,...,0r,) : X = P=my,(X) CR".

@ g: P — R.o: a smooth positive function on the moment polytope
P

o V, = [, g(m,)(dd)" = [, g(y)(m,).(dd)".

Kabhler-Ricci g-solitons



g-Monge-Ampére equation:

MA () := g(m,)(dd*g)" = Q. (17)

Berman-Witt-Nystrom: (17) as a complex version of optimal transport
equation, which is always uniquely solvable (Calabi-Yau type results)

Kahler-Ricci g-soliton:
g(m,)(dd°p)" = e7%. (18)

Q@ g = 1: Kahler-Einstein.
Q g = ex« %% Kahler-Ricci soliton (limits of Kahler-Ricci flow)

Ric(dd®p) = ddp + Z5, ¢,¢,dd . (19)

Q g =), ckbk: Mabuchi soliton (limits of inverse Monge-Ampere
flow)

Kabhler-Ricci g-solitons



Archimedean functionals:

E () = j /0 dt /X g(m,)(dd<p)”

Nelp) = Vl /X (¢ — 90) (MA4(0) — MA4(¢))
Je(p) = Ng(v) —Eg(y)

Dg(‘P) = *L(¢)+Eg(¢)~

Non-Archimdean functionals:

1

SN0 = g [ Oulele(m)(dd )’
NAO) = supby(p) = ANA(0)
B0 = NA9) - EFN9)
Dy(9) = -LY¢)+E}A(9)

+oo
Se(v) = \Z/O volg (—Kx — xv)dx.




Set
G =Aut(X,T):={o € Aut(X);0-x=x-0 VxeT}. (20)

Theorem (Han-L. '20)
The following are equivalent:
Q (X, T) admits a Kihler-Ricci g-soliton.
@ D, is G-coercive.
@ Aut(X,T)-uniformly g-Ding/K-stable.
Q Aut(X,T)-uniformly g-Ding/K-stable among G x T-equivariant
special test configurations. |

Theorem (Han-L. '20)
(X, T) is Aut(X, T)-uniformly g-Ding/K-stable if and only if 3 > 1 s.t.

inf sup (Ax(ve) — 6 - Sg(ve)) > 0. (21)
veXZY ecNg

<
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Fibration construction

For any k = (ki,..., k), set:

S — g2+l oy Skt
(X[E], L[’:]) — (X, L) X S[E]/(Sl)r,
(XM £y = (x, £) x s/ sty

Applications to monomial g = []/,_; 6% (and to polynomial g):
@ Define MA,(yp) for p € (EHEY,
@ Prove the slope formula F;° = FY#;
© Prove the monotonicity formula for DEA along MMP.

For general smooth g, we use the Stone-Weierstrass approximation
theorem to reduce to the polynomial case.

Kabhler-Ricci g-solitons



Thanks for your attention!
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