Generalized YTD conjecture on Fano varieties

Chi Li
Department of Mathematics, Purdue University
Workshop on Geometric Analysis, September 21, 2020

(1) Backgrounds
(2) KE potentials on Fano varieties
(3) Ideas and Proofs
(4) Kähler-Ricci g-solitons

Riemann surface: surface with a complex structure:

Topology	Metric	Curvature
$\mathbb{S}^{2}=\mathbb{C P}^{1}$	spherical	1
$\mathbb{T}^{2}=\mathbb{C} / \mathbb{Z}^{2}$	flat	0
$\Sigma_{\mathfrak{g}}=\mathbb{B}^{1} / \pi_{1}\left(\Sigma_{\mathfrak{g}}\right)$	hyperbolic	-1

Riemannian metric: $\mathrm{g}=E|d z|^{2}=\frac{\partial^{2} \varphi}{\partial z \partial \bar{z}}|d z|^{2}=\frac{1}{4} \Delta \varphi|d z|^{2}$.
Constant Gauss/Ricci curvature equation
$=1$-dimensional complex Monge-Ampère equation

$$
\operatorname{Ric}(\omega)=\lambda \omega \Longleftrightarrow-\Delta \log \Delta \varphi=\lambda \Delta \varphi \Longleftrightarrow \Delta \varphi=e^{-\lambda \varphi} .
$$

X : complex manifold; J: $T X \rightarrow T X$ integrable complex structure; g: Kähler metric, $\mathrm{g}(J \cdot, J \cdot)=\mathrm{g}(\cdot, \cdot)$ and $d \omega=0$.

$$
\omega=\mathrm{g}(\cdot, J \cdot)=\frac{\sqrt{-1}}{2 \pi} \sum_{i, j=1}^{n} \omega_{i \bar{j}} d z^{i} \wedge d \bar{z}^{j}, \quad\left(\omega_{i \bar{j}}\right)>0 .
$$

Kähler class $[\omega] \in H^{2}(X, \mathbb{R})$.
Fact ($\partial \bar{\partial}$-Lemma): Set dd ${ }^{\mathrm{c}}=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial}$. Any $\omega^{\prime} \in[\omega]$ is of the form

$$
\omega_{u}:=\omega+\operatorname{dd}^{\mathrm{c}} u:=\omega+\frac{\sqrt{-1}}{2 \pi} \sum_{i, j} \frac{\partial^{2} u}{\partial z^{i} \partial \bar{z}^{j}} d z^{i} \wedge d \bar{z}^{j}
$$

$L \rightarrow X:$ a \mathbb{C}-line bundle with holomorphic transition $\left\{f_{\alpha \beta}\right\}$.
$e^{-\varphi}:=\left\{e^{-\varphi_{\alpha}}\right\}$ Hermitian metric on L :

$$
\begin{equation*}
e^{-\varphi_{\alpha}}=\left|f_{\alpha \beta}\right|^{2} e^{-\varphi_{\beta}} \tag{1}
\end{equation*}
$$

Definition: L is positive (=ample) if $\exists e^{-\varphi}=\left\{e^{-\varphi_{\alpha}}\right\}$ on L s.t.

$$
\begin{equation*}
\omega+\operatorname{dd}^{\mathrm{c}} u=\operatorname{dd}^{\mathrm{c}} \varphi:=\operatorname{dd}^{\mathrm{c}} \varphi_{\alpha}>0 . \tag{2}
\end{equation*}
$$

Anticanonical line bundle: $-K_{X}=\wedge^{n} T_{\text {hol }} X, K_{X}=\wedge^{n} T_{\text {hol }}^{*} X$.
Fact: $\{$ smooth volume forms $\}=\left\{\right.$ Hermitian metrics on $\left.-K_{X}\right\}$

$$
\begin{aligned}
c_{1}(X) \ni \operatorname{Ric}(\omega) & =-\mathrm{dd}^{\mathrm{c}} \log \omega^{n} \\
& =-\frac{\sqrt{-1}}{2 \pi} \sum_{i, j} \frac{\partial^{2}}{\partial z^{i} \partial \bar{z}^{j}} \log \operatorname{det}\left(\omega_{k \bar{l}}\right) d z^{i} \wedge d \bar{z}^{j} .
\end{aligned}
$$

KE equation:

$$
\begin{align*}
\operatorname{Ric}\left(\omega_{u}\right)=\lambda \omega_{u} & \Longleftrightarrow\left(\omega+\operatorname{dd}^{c} u\right)^{n}=e^{h_{\omega}-\lambda u} \omega^{n} \tag{3}\\
& \Longleftrightarrow \operatorname{det}\left(\omega_{i \bar{j}}+\frac{\partial^{2} u}{\partial z^{i} \partial \bar{z}^{j}}\right)=e^{h_{\omega}-\lambda u} \operatorname{det}\left(\omega_{i \bar{j}}\right) .
\end{align*}
$$

$$
\begin{array}{lll}
\lambda=-1 & \text { Solvable (Aubin, Yau) } & c_{1}(X)<0 \\
\lambda=0 & \text { Solvable (Yau) } & c_{1}(X)=0 \\
\lambda=1 & \exists \text { obstructions } & c_{1}(X)>0
\end{array}
$$

X Fano: $c_{1}(X)>0 \Longleftrightarrow \exists$ Kähler metric ω with $\operatorname{Ric}(\omega)>0$.
(1) $\operatorname{dim}_{\mathbb{C}}=1: \mathbb{P}^{1}=S^{2}$.
(2) $\operatorname{dim}_{\mathbb{C}}=2$: $\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{P}^{2} \sharp k \overline{\mathbb{P}^{2}}, 1 \leq k \leq 8$ (del Pezzo).
(3) $\operatorname{dim}_{\mathbb{C}}=3$: 105 deformation families (Iskovskikh, Mori-Mukai)

- Smooth hypersurface in \mathbb{P}^{n} of degree $<n+1$;
- Toric Fano manifolds

Fact: there are finitely many deformation family in each dimension (Campana, Kollár-Miyaoka-Mori, Nadel '90).

Obstructions and uniqueness

(1) $\exists \mathrm{KE} \Longrightarrow \operatorname{Aut}(X)$ is reductive: $\operatorname{Aut}(X)_{0}$ is the complexification of a compact Lie group (Matsushima)
(2) Futaki invariant: \forall holomorphic vector field ξ,

$$
\begin{equation*}
\exists \mathrm{KE} \quad \Longrightarrow \quad \operatorname{Fut}(\xi):=\int_{X} \xi\left(h_{\omega}\right) \omega^{n}=0 \tag{4}
\end{equation*}
$$

© Energy coerciveness (Tian, Tian-Zhu, Phong-Song-Sturm-Weinkove, Darvas-Rubinstein, Hisamoto)

- K-stability (Tian, Donaldson)

Ding stability (Berman, Boucksom-Jonsson)
all equivalent (L.-Xu, Berman-Boucksom-Jonsson, Fujita).
Uniqueness: KE metrics are unique up to $\operatorname{Aut}(X)_{0}$ (Bando-Mabuchi, Berndtsson)

Yau-Tian-Donaldson conjecture

Theorem (Tian, Chen-Donaldson-Sun, Berman)

A Fano manifold X admits a $K E$ metric if and only if X is K-stable ($\operatorname{Aut}(X)$ is discrete), or X K-polystable $(\operatorname{Aut}(X)$ is continuous).

We extend this theorem in two directions (with different proofs with those of the above):
(1) Any (singular) \mathbb{Q}-Fano variety X (L.-Tian-Wang, L.)
(2) Kähler-Ricci g-soliton (Han-L.)

Remark: In particular, we recover the above theorem with K-polystability replaced by appropriate (\mathbb{G}-)uniform K-stability. Conjecturally, uniform K-stability is equivalent to K-stability, which is reduced to an algebraic geometric problem.

Q-Fano varieties: building blocks of algebraic varieties

Definition

\mathbb{Q}-Fano variety X is a normal projective variety satisfying:
(1) Fano: \mathbb{Q}-line bundle $-K_{X}$ is ample.
(2) klt (Kawamata log terminal): $\forall s_{\alpha}^{*} \sim d z^{1} \wedge \ldots d z^{n} \in \mathcal{O}_{K_{x}}\left(U_{\alpha}\right)$

$$
\begin{equation*}
\int_{U^{\mathrm{reg}}}\left(\sqrt{-1}^{n^{2}} s_{\alpha}^{*} \wedge \bar{s}_{\alpha}^{*}\right)<+\infty . \tag{5}
\end{equation*}
$$

Let $\mu: Y \rightarrow X$ be a resolution of singularities (Hironaka)

$$
\begin{equation*}
K_{Y}=\mu^{*} K_{X}+\sum_{i}\left(A_{X}\left(E_{i}\right)-1\right) E_{i} . \tag{6}
\end{equation*}
$$

The condition (5) \Longleftrightarrow mld $:=\min _{i} A_{X}\left(E_{i}\right)>0$.
Fact: (Birkar '16) ϵ-klt (i.e. mld $\geq \epsilon>0$) Fanos are bounded.
Fact: KE equation (only) makes sense on all \mathbb{Q}-Fano varieties.

Klt singularities: Examples

(1) Smooth points, Orbifold points $=$ (normal) Quotient singularities
(2) $X=\left\{F\left(z_{1}, \ldots, z_{n+1}\right)=0\right\} \subset \mathbb{C}^{n+1}$ with F homogenenous $\operatorname{deg}(F)<n+1$ s.t. X has an isolated singularity at 0 .
(3) Orbifold cones over log-Fano varieties. weighted homogeneous examples:

$$
\begin{aligned}
& z_{1}^{2}+z_{2}^{2}+z_{2}^{2}+z_{3}^{2 k}=\mathcal{C}\left(\left(\mathbb{P}^{1} \times \mathbb{P}^{1},\left(1-\frac{1}{k}\right) \Delta\right), H\right) \\
& z_{1}^{2}+z_{2}^{2}+z_{2}^{2}+z_{3}^{2 k+1}=\mathcal{C}\left(\left(\mathbb{P}^{2},\left(1-\frac{1}{2 k+1}\right) D\right), H\right)
\end{aligned}
$$

(1) (Q-Gorenstein) deformation of KIt singularities are also KIt singularities.

KE equation on \mathbb{Q}-Fano varieties

Hermitian metric on the (\mathbb{Q}-)line bundle $-K_{X}: e^{-\varphi}=\left\{e^{-\varphi_{\alpha}}\right\}$ s.t.

$$
e^{-\varphi_{\alpha}}=\left|s_{\alpha}\right|^{2} e^{-\varphi}, \quad\left\{s_{\alpha}\right\} \text { trivializing sections of }-K_{X}
$$

Kähler-Einstein equation on Fano varieties:

$$
\begin{equation*}
\left(\mathrm{dd}^{\mathrm{c}} \varphi\right)^{n}=e^{-\varphi}:=\left|s_{\alpha}\right|^{2} e^{-\varphi}\left(\sqrt{-1^{n^{2}}} s_{\alpha}^{*} \lambda \bar{s}_{\alpha}^{*}\right) . \tag{7}
\end{equation*}
$$

$\omega=\operatorname{dd}^{\mathrm{c}} \psi \Rightarrow u=\varphi-\psi$ is globally defined. Then $(7) \Longleftrightarrow(3)$.
(weak) KE potential: generalized solutions in pluripotential sense.
Fact: Obstructions/uniqueness continue to hold for \mathbb{Q}-Fano case.
Face: Solutions are smooth on X^{reg}.
Fact: Aubin and Yau's theorems hold on projective varieties with KIt singularities (Eyssidieux-Guedj-Zeriahi based on Kołodziej).

Yau-Tian-Donaldson conjecture on Fano varieties

Theorem (L.-Tian-Wang, L. '19)
$A \mathbb{Q}$-Fano variety X has a $K E$ potential if (and only if) X is $\operatorname{Aut}(X)_{0}$-uniformly K/Ding-stable.
(1) X Smooth (Chen-Donaldson-Sun, Tian, Datar-Székelyhidi).
(2) \mathbb{Q}-Gorenstein smoothable (Spotti-Sun-Yao, L.-Wang-Xu);
© Good (e.g. crepant) resolution of singularities (L.-Tian-Wang).
Proofs in above special cases depend on compactness/regularity theory in metric geometry and do NOT generalize to the general singular case.
(X smooth \& $\operatorname{Aut}(X)$ discrete: Berman-Boucksom-Jonsson (BBJ) in 2015 proposed an approach using pluripotential theory/non-Archimedean analysis. Our work greatly extends their work by removing the two assumptions.

Consider energy functionals on a pluripotential version of Sobolev space, denoted by $\mathcal{E}^{1}\left(X,-K_{X}\right)$ (Cegrell, Guedj-Zeriahi)

There is a distance-like energy:

$$
\begin{equation*}
\mathbf{J}(\varphi)=\boldsymbol{\Lambda}(\varphi)-\mathbf{E}(\varphi) \sim \sup (\varphi-\psi)-\mathbf{E}(\varphi)>0 \tag{8}
\end{equation*}
$$

\mathbf{E} is the primitive of complex Monge-Ampère operator:

$$
\begin{equation*}
\mathbf{E}(\varphi)=\frac{1}{V} \int_{0}^{1} d t \int_{X} \dot{\varphi}\left(\operatorname{dd}^{\mathrm{c}} \varphi\right)^{n}, \quad \frac{d}{d t} \mathbf{E}(\varphi)=\frac{1}{V} \int_{X} \dot{\varphi}\left(\mathrm{dd}^{\mathrm{c}} \varphi\right)^{n} . \tag{9}
\end{equation*}
$$

Analytic criterion for KE potentials

Energy functional with KE as critical points:

$$
\begin{equation*}
\mathbf{L}(\varphi)=-\log \left(\int_{X} e^{-\varphi}\right), \quad \mathbf{D}=-\mathbf{E}+\mathbf{L} . \tag{10}
\end{equation*}
$$

The Euler-Lagrangian equation is just the KE equation:

$$
\begin{equation*}
\delta \mathbf{D}(\delta \varphi)=\frac{1}{V} \int_{X}(\delta \varphi)\left(-\left(\mathrm{dd}^{\mathrm{c}} \varphi\right)^{n}+C \cdot e^{-\varphi}\right) \tag{11}
\end{equation*}
$$

Analytic criterion (generalizing Tian-Zhu, Phong-Song-Sturm-Weinkove):
Theorem (Darvas-Rubinstein, Darvas, Di-Nezza-Guedj, Hisamoto, based on the compactness by BBEGZ and uniqueness by Berndtsson)
$A \mathbb{Q}$-Fano variety X admits a KE potential if and only if
(1) $\operatorname{Aut}(X)_{0}$ is reductive (with center $\left.\mathbb{T} \cong\left(\mathbb{C}^{*}\right)^{r}\right)$
(2) Moser-Trudinger type inequality: there exist $\gamma>0$ and $C>0$ s.t. $\forall \varphi \in \mathcal{E}^{1}\left(X,-K_{X}\right)^{\mathbb{K}}$,

$$
\mathbf{D}(\varphi) \geq \gamma \cdot \inf _{\sigma \in \mathbb{T}} \mathbf{J}\left(\sigma^{*} \varphi\right)-C . \quad\left(\operatorname{Aut}(X)_{0} \text {-coercive }\right)
$$

Contact with algebraic geometry: Test configurations (Tian, Donaldson)

A test configuration (TC) $(\mathcal{X}, \mathcal{L}, \eta)$ of $\left(X,-K_{X}\right)$ consists of:
(1) $\pi: \mathcal{X} \rightarrow \mathbb{C}:$ a \mathbb{C}^{*}-equivariant family of projective varieties;
(2) $\mathcal{L} \rightarrow \mathcal{X}$: a \mathbb{C}^{*}-equiv. semiample holomorphic \mathbb{Q}-line bundle;
(3) $\eta:(\mathcal{X}, \mathcal{L}) \times_{\mathbb{C}} \mathbb{C}^{*} \cong\left(X,-K_{X}\right) \times \mathbb{C}^{*}$.

Any test configuration is generated by a one-parameter subgroup of $G L\left(N_{m}\right)$ (with $m \gg 1$) under the Kodaira embedding

$$
X \longrightarrow \mathbb{P}\left(H^{0}\left(X,-m K_{X}\right)^{*}\right) \cong \mathbb{P}^{N_{m}-1} .
$$

A test configuration is called special if the central fibre \mathcal{X}_{0} is a \mathbb{Q}-Fano variety.

Under the isomorphism η, any smooth psh metric on $\mathcal{L} \rightarrow \mathcal{X}$ induces a family of smooth psh metrics $\Phi=\{\varphi(t)\}$ on $\left(X,-K_{X}\right)$.

Theorem (Ding-Tian, Paul-Tian, Phong-Sturm-Ross, Berman, Boucksom-Hisamoto-Jonsson)

For any $\mathbf{F} \in\{\mathbf{E}, \mathbf{J}, \mathbf{L}, \mathbf{D}\}$,

$$
\begin{equation*}
\mathbf{F}^{\prime \infty}(\Phi):=\lim _{t \rightarrow+\infty} \frac{\mathbf{F}(\varphi(t))}{-\log |t|^{2}} \tag{12}
\end{equation*}
$$

exists, and is equal to an algebraic invariant $\mathbf{F}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})$.
Coercivity $(2) \quad \Longrightarrow \quad \mathbf{D}^{\prime \infty}(\Phi) \geq \gamma \cdot \inf _{\xi \in N_{\mathbb{R}}} \mathbf{J}^{\prime \infty}\left(\sigma_{\xi}(t)^{*} \Phi\right)$.

Boucksom-Jonsson: Test configuration defines a non-Archimedean metric, represented by a function on the space of valuations:

$$
\begin{equation*}
\phi(v)=\phi_{(\mathcal{X}, \mathcal{L})}(v)=-G(v)(\Phi), \quad v \in X_{\mathbb{Q}}^{\text {div }} . \tag{13}
\end{equation*}
$$

$G(v)(\Phi)$: the generic Lelong number of Φ with respect to $G(v)$. Non-Archimedean functionals:

$$
\begin{aligned}
\mathbf{E}^{\mathrm{NA}}(\phi) & =\frac{1}{V} \frac{\overline{\mathcal{L}}^{\cdot(n+1)}}{n+1}=\int_{\mathcal{X}_{0}} \theta_{\eta}(\varphi)\left(\operatorname{dd}^{\mathrm{c}} \varphi\right)^{n}, \\
\boldsymbol{\Lambda}^{\mathrm{NA}}(\phi) & =\frac{1}{V} \overline{\mathcal{L}} \cdot p_{1}^{*}\left(-K_{X}\right)^{\cdot n}=\sup _{\mathcal{X}_{0}}\left(\theta_{\eta}(\varphi)\right), \\
\mathbf{J}^{\mathrm{NA}}(\phi) & =\boldsymbol{\Lambda}^{\mathrm{NA}}(\phi)-\mathbf{E}^{\mathrm{NA}}(\phi), \\
\mathbf{L}^{\mathrm{NA}}(\phi) & =\inf _{v \in X_{Q}^{\mathrm{div}}}\left(A_{X}(v)+\phi(v)\right) .
\end{aligned}
$$

$X_{\mathbb{Q}}^{\text {div }}$: space of divisorial valuations; $G(v)$: Gauss extension.

K-stability and Ding-stability

Definition-Theorem (Berman, Hisamoto, Boucksom-Hisamoto-Jonsson)

X KE implies that it is $\operatorname{Aut}(X)_{0}$-uniformly Ding-stable: $\exists \gamma>0$ (slope) such that for all $\operatorname{Aut}(X)_{0}$-equivariant test configurations

$$
\begin{equation*}
\mathbf{D}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) \geq \gamma \cdot \inf _{\xi \in N_{\mathbb{R}}} \mathrm{J}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}, \eta+\xi) \tag{14}
\end{equation*}
$$

When $\operatorname{Aut}(X)_{0}$ is discrete: (14) can be written as

$$
\mathbf{L}^{\mathrm{NA}}(\phi) \geq(1-\gamma) \mathbf{E}^{\mathrm{NA}}(\phi)\left(+\gamma \boldsymbol{\Lambda}^{\mathrm{NA}}(\phi)\right)
$$

Based on Minimal Model Program (MMP) devised in [L.-Xu '12]:
(1) Equivalent to K-stability of Tian and Donaldson (BBJ, Fujita).
(2) valuative criterions (Fujita, L., Boucksom-Jonsson).
(0) algebraically checkable for (singular) Fano surfaces, and Fano varieties with large symmetries (e.g. all toric Fano varieties)

Examples: toric Fano manifolds

Toric manifolds \leftrightarrow lattice polytopes. Fano \leftrightarrow reflexive polytope.
(d) \mathbb{P}^{2}
(e) $\mathbb{P}^{2} \nVdash \overline{\mathbb{P}^{2}}$
(f) $\mathbb{P}^{2} \sharp 2 \overline{\mathbb{P}^{2}}$
(g) $\mathbb{P}^{2} \sharp 3 \overline{\mathbb{P}^{2}}$

Set $\beta(X)=\sup \left\{t ; \exists \omega \in 2 \pi c_{1}(X)\right.$ s.t. $\left.\operatorname{Ric}(\omega)>t \omega\right\} \in(0,1]$.
$\beta(X)=1 \Longleftrightarrow \mathrm{KE} \stackrel{\text { Wang-Zhu }}{\Longleftrightarrow} P_{c}=O \Longleftrightarrow \operatorname{Aut}(X)_{0}$ - uniformly K-stable.

Theorem (L. '09)

If $P_{c} \neq O$, then $\beta\left(X_{\triangle}\right)=|\overline{O Q}| /\left|\overrightarrow{P_{c} Q}\right|$, where $Q=\overrightarrow{P_{c} O} \cap \partial \triangle$.
Example: $\beta\left(\mathbb{P}^{2} \sharp \overline{\mathbb{P}^{2}}\right)=6 / 7\left(\right.$ Székelyhidi),$\quad \beta\left(\mathbb{P}^{2} \sharp 2 \overline{\mathbb{P}^{2}}\right)=21 / 25$.

Any divisor E on $Y(\xrightarrow{\mu} X)$ defines a valuation $v:=\operatorname{ord}_{E}$.

$$
\begin{aligned}
\operatorname{vol}\left(\mathcal{F}_{v}^{(x)}\right) & =\lim _{m \rightarrow+\infty} \frac{h^{0}\left(X,-m \mu^{*} K_{X}-\lceil m x\rceil E\right)}{m^{n} / n!} \\
S(v) & =\frac{1}{V} \int_{0}^{+\infty} \operatorname{vol}\left(\mathcal{F}_{v}^{(x)}\right) d x=\frac{1}{V} \int_{0}^{+\infty} x\left(-d \operatorname{vol}\left(\mathcal{F}^{(x)}\right)\right) .
\end{aligned}
$$

$S(v)$ is some average vanishing order of holomorphic sections.

Theorem (Fujita, L.)

(1) $\left(X,-K_{X}\right)$ is uniformly Ding/K-stable if and only if $\exists \delta>1$ such that for any $v \in X_{\mathbb{Q}}^{\text {div }}, A_{X}(v) \geq \delta S(v)$.
(2) $\left(X,-K_{X}\right)$ is $\operatorname{Aut}(X)_{0}$-uniformly stable if $\operatorname{Aut}(X)_{0}$ is reductive, Fut $\equiv 0$ and $\exists \delta>1$ such that for any $v \in X_{\mathbb{Q}}^{\text {div }}$, there exists $\xi \in N_{\mathbb{R}}$ s.t. $A_{X}\left(v_{\xi}\right) \geq \delta S\left(v_{\xi}\right)$.
(1) Take a resolution of singularities $\mu: Y \rightarrow X$:

$$
-K_{Y}=\left(\mu^{*}\left(-K_{X}\right)-\epsilon \sum_{i} \theta_{i} E_{i}\right)+\overbrace{\sum_{i}\left(1-A\left(E_{i}\right)+\epsilon \theta_{i}\right) E_{i}}^{B_{e}} .
$$

(2) Prove that $\left(Y, B_{\epsilon}=\sum_{i}\left(1-\beta_{i, \epsilon}\right) E_{i}\right)$ is uniformly K -stable when $0<\epsilon \ll 1$, by using the valuative criterion.
(3) If the cone angle $0<2 \pi A\left(E_{i}\right) \leq 2 \pi$, then $\left(Y, B_{\epsilon}\right)$ is a log Fano pair and we can construct KE metrics ω_{ϵ} on Y with edge cone singularities along E_{i}.
(1) Prove that as $\epsilon \rightarrow 0, \omega_{\epsilon}$ converges to a KE metric in potential=metric=algebraic sense.
Techniques include: pluripotential theory, Cheeger-Colding-Tian theory for edge cone Kähler-Einstein metrics, partial C^{0}-estimates.

Serious difficulties when cone angle is bigger than 2π :

$$
\beta_{i, \epsilon}=A\left(E_{i}\right)-\epsilon \theta_{i}>1 \Longleftrightarrow B_{\epsilon}=B_{\epsilon}^{+}-B_{\epsilon}^{-} \text {non-effective. }
$$

Fortunately, a different strategy initiated by Berman-Boucksom-Jonsson. Key observation: the valuative/non-Archimedean side works for in-effective pairs.

BBJ's proof in case X smooth and $\operatorname{Aut}(X)$ discrete

Proof by contradiction: Assume D (and M) not coercive.
(1) construct a destabilizing geodesic ray Φ in $\mathcal{E}^{1}\left(-K_{X}\right)$ such that

$$
0 \geq \mathbf{D}^{\prime \infty}(\Phi)=-\mathbf{E}^{\prime \infty}(\Phi)+\mathbf{L}^{\prime \infty}(\Phi), \quad \mathbf{E}^{\prime \infty}(\Phi)=-1 .
$$

(2) $\phi_{m}:=\left(\mathrm{Bl}_{\mathcal{J}(m \Phi)}(X \times \mathbb{C}), \mathcal{L}_{m}=\pi_{m}^{*} p_{1}^{*}\left(-K_{X}\right)-\frac{1}{m+m_{0}} E_{m}\right)$. Just need to show that the TC $\Phi_{m}, m \gg 1$ is destabilizing.
(3) Comparison of slopes:

$$
\begin{aligned}
& \Phi_{m} \geq \Phi-C \Longrightarrow \mathbf{E}^{\mathrm{NA}}\left(\phi_{m}\right) \geq \mathbf{E}^{\prime \infty}(\Phi) \quad \text { (FAILS when } X \text { is singular!) } \\
& \lim _{m \rightarrow+\infty} \mathbf{L}^{\mathrm{NA}}\left(\phi_{m}\right)=\mathbf{L}^{\mathrm{NA}}(\phi)=\mathbf{L}^{\prime \infty}(\Phi) .
\end{aligned}
$$

- Contradiction to uniform stability:

$$
\begin{array}{ll}
& -1=\mathbf{E}^{\prime \infty}(\Phi) \geq \mathbf{L}^{\prime \infty}(\Phi)=\mathbf{L}^{\mathrm{NA}}(\phi) \leftarrow \mathbf{L}^{\mathrm{NA}}\left(\phi_{m}\right) \\
\geq_{\text {Stability }} & (1-\gamma) \mathbf{E}^{\mathrm{NA}}\left(\phi_{m}\right) \geq(1-\gamma) \mathbf{E}^{\prime \infty}(\Phi)=\gamma-1 .
\end{array}
$$

Perturbed variational approach (L.-Tian-Wang, L.'19)

Proof by contradiction. Assume \mathbf{D} (and \mathbf{M}) not \mathbb{G}-coercive.
(1) Construct a geodesic ray Φ in $\mathcal{E}^{1}\left(-K_{X}\right)$ as before.
(2) Prove uniform stability of $\left(Y, B_{\epsilon}\right)$ for $0<\epsilon \ll 1$.
(0) Perturbed destabilizing geodesic sub-ray $\Phi_{\epsilon}=\mu^{*} \Phi+\epsilon \varphi_{M}$. Blow-up $\mathcal{J}\left(m \Phi_{\epsilon}\right)$ to get test configurations $\phi_{\epsilon, m}:=\left(\mathcal{Y}_{\epsilon, m}, \mathcal{B}_{\epsilon, m}, \mathcal{L}_{\epsilon, m}\right)$ of $\left(Y, B_{\epsilon}\right)$.
(0) Comparison of slopes

$$
\begin{array}{ll}
\mathbf{E}^{\mathrm{NA}}\left(\phi_{\epsilon, m}\right) \geq \mathbf{E}^{\prime \infty}\left(\Phi_{\epsilon}\right) & \text { (true since } Y \text { is smooth) } \\
\lim _{\epsilon \rightarrow 0} \mathbf{E}^{\prime \infty}\left(\Phi_{\epsilon}\right)=\mathbf{E}^{\prime \infty}(\Phi) \quad \text { (key new convergence) } \\
\lim _{\epsilon \rightarrow 0} \mathbf{L}^{\mathrm{NA}}\left(\phi_{\epsilon}\right)=\mathbf{L}^{\mathrm{NA}}(\phi) \quad \text { (key new convergence) }
\end{array}
$$

(0. Chain of contradiction to uniform stability of $\left(Y, B_{\epsilon}\right)$:

$$
\begin{array}{ll}
& -1=\mathbf{E}^{\prime \infty}(\Phi) \geq \mathbf{L}^{\prime \infty}(\Phi) \leftarrow \mathbf{L}^{\mathrm{NA}}\left(\phi_{\epsilon}\right) \leftarrow \mathbf{L}^{\mathrm{NA}}\left(\phi_{\epsilon, m}\right) \\
\geq_{\text {Stab. }} & \left(1-\gamma_{\epsilon}\right) \mathbf{E}^{\mathrm{NA}}\left(\phi_{\epsilon, m}\right) \geq\left(1-\gamma_{\epsilon}\right) \mathbf{E}^{\prime \infty}\left(\Phi_{\epsilon}\right) \\
& \rightarrow(1-\gamma) \mathbf{E}^{\prime \infty}(\Phi)=\gamma-1 .
\end{array}
$$

(1) Valuative criterion for $\operatorname{Aut}(X)_{0}$-uniform stability: $\exists \delta>1$, s.t.

$$
\begin{equation*}
\inf _{v \in X_{Q}^{\text {div }}} \sup _{\xi \in N_{\mathbb{R}}}\left(A_{X}\left(v_{\xi}\right)-\delta S\left(v_{\xi}\right)\right) \geq 0 \tag{15}
\end{equation*}
$$

(2) Non-Archimedean metrics \longleftrightarrow functions on $X_{\mathbb{Q}}^{\text {div }}$.

$$
\begin{equation*}
\phi_{\xi}(v)=\phi\left(v_{\xi}\right)+\theta(\xi), \quad \theta(\xi)=A_{X}\left(v_{\xi}\right)-A_{X}(v) . \tag{16}
\end{equation*}
$$

(0) Reduce the infimum (resp. supremum) to "bounded" subsets of $X_{\mathbb{Q}}^{\text {div }}$ (resp. $N_{\mathbb{R}}$) (depending on Strong Openness Conjecture)
(- Delicate interplay between convexity and coerciveness of Archimedean and non-Archimedean energy.

3-parameters approximation argument:

$$
\begin{aligned}
\mathbf{E}^{\prime \infty}(\Phi) & \geq \mathbf{L}^{\prime \infty}(\Phi)+O\left(k^{-1}\right) \\
& \leftarrow \mathbf{L}^{\prime \infty}\left(\Phi_{\epsilon}\right)+O\left(\epsilon, k^{-1}\right) \\
& \leftarrow \mathbf{L}^{\mathrm{NA}}\left(\phi_{\epsilon, m}\right)+O\left(\epsilon, m^{-1}, k^{-1}\right) \\
& =A\left(v_{k}\right)+\phi_{\epsilon, m}\left(v_{k}\right) \\
& \left.=A\left(v_{k,-}\right) \xi_{k}\right)+\phi_{\epsilon, m,-\xi_{k}}\left(v_{k, \xi_{k}}\right) \\
& \geq \delta S_{L_{\epsilon}}\left(v_{k,-\xi_{k}}\right)+\phi_{\epsilon, m,-\xi_{k}}\left(v_{k, \xi_{k}}\right) \\
& \geq \delta \mathbf{E}^{\mathrm{NA}}\left(\delta^{-1} \phi_{\epsilon, m,-\xi}\right) \\
& \geq\left(1-\delta^{-1 / n}\right) \mathbf{J}^{\mathrm{NA}}\left(\phi_{\epsilon, m,-\xi_{k}}\right)+\mathbf{E}^{\mathrm{NA}}\left(\phi_{\epsilon, m,-\xi_{k}}\right) \\
& =\left(1-\delta^{-1 / n}\right) \boldsymbol{\Lambda}^{\mathrm{NA}}\left(\phi_{\epsilon, m,-\xi_{k}}\right)+\delta^{-1 / n} \mathbf{E}^{\mathrm{NA}}\left(\phi_{\epsilon, m,-\xi_{k}}\right) \\
& \geq\left(1-\delta^{-1 / n}\right) \boldsymbol{\Lambda}^{\prime \infty}\left(\Phi_{\epsilon,-\xi_{k}}\right)+\delta^{-1 / n} \mathbf{E}^{\prime \infty}\left(\Phi_{\epsilon,-\xi_{k}}\right) \\
& =\left(1-\delta^{-1 / n}\right) \mathbf{J}^{\prime \infty}\left(\Phi_{\epsilon,-\xi_{k}}\right)+\mathbf{E}^{\prime \infty}\left(\Phi_{\epsilon,-\xi_{k}}\right) \\
& \geq\left(1-\delta^{-1 / n}\right) \chi+\mathbf{E}^{\prime \infty}(\Phi) .
\end{aligned}
$$

- $\mathbb{T} \cong\left(\mathbb{C}^{*}\right)^{r}$ acts effectively on a Fano manifold $\left(X,-K_{X}\right)$.
- $\mathfrak{t}=\operatorname{Lie}(\mathbb{T})=\operatorname{Span}_{\mathbb{R}}\left\{\xi_{1}, \ldots, \xi_{r}\right\} \otimes \mathbb{C}$.
- $e^{-\varphi}$: smooth Hermitian metric on $-K_{X}$, with Kähler curvature form: $\mathrm{dd}^{\mathrm{c}} \varphi>0$.
Hamiltonian function:

$$
\theta_{k, \varphi}=\frac{\mathscr{L}_{\xi_{k}} e^{-\varphi}}{e^{-\varphi}}, \quad \iota \iota_{\xi_{k}} \mathrm{dd}^{\mathrm{c}} \varphi=\frac{\sqrt{-1}}{2 \pi} \bar{\partial} \theta_{k, \varphi} .
$$

Moment map and moment polytope:

$$
\mathbf{m}_{\varphi}=\left(\theta_{1, \varphi}, \ldots, \theta_{r, \varphi}\right): X \rightarrow P=\mathbf{m}_{\varphi}(X) \subset \mathbb{R}^{r}
$$

- $g: P \rightarrow \mathbb{R}_{>0}$: a smooth positive function on the moment polytope P
- $V_{g}:=\int_{X} g\left(\mathbf{m}_{\varphi}\right)\left(\mathrm{dd}^{\mathrm{c}} \varphi\right)^{n}=\int_{P} g(y)\left(\mathbf{m}_{\varphi}\right)_{*}\left(\mathrm{dd}^{\mathrm{c}} \varphi\right)^{n}$.
g-Monge-Ampére equation:

$$
\begin{equation*}
\operatorname{MA}_{g}(\varphi):=g\left(\mathbf{m}_{\varphi}\right)\left(\mathrm{dd}^{\mathrm{c}} \varphi\right)^{n}=\Omega \tag{17}
\end{equation*}
$$

Berman-Witt-Nyström: (17) as a complex version of optimal transport equation, which is always uniquely solvable (Calabi-Yau type results)

Kähler-Ricci g-soliton:

$$
\begin{equation*}
g\left(\mathbf{m}_{\varphi}\right)\left(\mathrm{dd}^{\mathrm{c}} \varphi\right)^{n}=e^{-\varphi} . \tag{18}
\end{equation*}
$$

(1) $g=1$: Kähler-Einstein.
(2) $g=e^{\sum_{k} c_{k} \theta_{k}}$: Kähler-Ricci soliton (limits of Kähler-Ricci flow)

$$
\begin{equation*}
\operatorname{Ric}\left(\operatorname{dd}^{\mathrm{c}} \varphi\right)=\operatorname{dd}^{\mathrm{c}} \varphi+\mathscr{L}_{\sum_{k} c_{k} \xi_{k}} \mathrm{dd}^{\mathrm{c}} \varphi \tag{19}
\end{equation*}
$$

(3) $g=\sum_{k} c_{k} \theta_{k}$: Mabuchi soliton (limits of inverse Monge-Ampère flow)

Archimedean functionals:

$$
\begin{aligned}
\mathbf{E}_{g}(\varphi) & =\frac{1}{V_{g}} \int_{0}^{1} d t \int_{X} \dot{\varphi} g\left(\mathbf{m}_{\varphi}\right)\left(\operatorname{dd}^{\mathrm{c}} \varphi\right)^{n} \\
\boldsymbol{\Lambda}_{g}(\varphi) & =\frac{1}{V_{g}} \int_{X}\left(\varphi-\varphi_{0}\right)\left(\operatorname{MA}_{g}\left(\varphi_{0}\right)-\operatorname{MA}_{g}(\varphi)\right) \\
\mathbf{J}_{g}(\varphi) & =\boldsymbol{\Lambda}_{g}(\varphi)-\mathbf{E}_{g}(\varphi) \\
\mathbf{D}_{g}(\varphi) & =-\mathbf{L}(\varphi)+\mathbf{E}_{g}(\phi)
\end{aligned}
$$

Non-Archimdean functionals:

$$
\begin{aligned}
\mathbf{E}_{g}^{\mathrm{NA}}(\phi) & =\frac{1}{V_{g}} \int_{\mathcal{X}_{0}} \theta_{\eta}(\varphi) g\left(\mathbf{m}_{\varphi}\right)\left(\mathrm{dd}^{\mathrm{c}} \varphi\right)^{n} \\
\boldsymbol{\Lambda}_{g}^{\mathrm{NA}}(\phi) & =\sup _{\mathcal{X}_{0}} \theta_{\eta}(\varphi)=\boldsymbol{\Lambda}^{\mathrm{NA}}(\phi) \\
\mathbf{J}_{g}^{\mathrm{NA}}(\phi) & =\boldsymbol{\Lambda}_{g}^{\mathrm{NA}}(\phi)-\mathbf{E}_{g}^{\mathrm{NA}}(\phi) \\
\mathbf{D}_{g}^{\mathrm{NA}}(\phi) & =-\mathbf{L}^{\mathrm{NA}}(\phi)+\mathbf{E}_{g}^{\mathrm{NA}}(\phi) \\
S_{g}(v) & =\frac{1}{V_{g}} \int_{0}^{+\infty} \operatorname{vol}_{g}\left(-K_{X}-x v\right) d x .
\end{aligned}
$$

Set

$$
\begin{equation*}
\mathbb{G}=\operatorname{Aut}(X, \mathbb{T}):=\{\sigma \in \operatorname{Aut}(X) ; \sigma \cdot x=x \cdot \sigma \quad \forall x \in \mathbb{T}\} \tag{20}
\end{equation*}
$$

Theorem (Han-L. '20)

The following are equivalent:
(1) (X, \mathbb{T}) admits a Kähler-Ricci g-soliton.
(2) D_{g} is \mathbb{G}-coercive.
(3) $\operatorname{Aut}(X, \mathbb{T})$-uniformly g-Ding/K-stable.
(1) $\operatorname{Aut}(X, \mathbb{T})$-uniformly g-Ding $/ K$-stable among $\mathbb{G} \times \mathbb{T}$-equivariant special test configurations.

Theorem (Han-L. '20)

(X, \mathbb{T}) is $\operatorname{Aut}(X, \mathbb{T})$-uniformly g-Ding/K-stable if and only if $\exists \delta>1$ s.t.

$$
\begin{equation*}
\inf _{v \in X_{\mathbb{Q}}^{\text {div }}} \sup _{\xi \in N_{\mathbb{R}}}\left(A_{X}\left(v_{\xi}\right)-\delta \cdot S_{g}\left(v_{\xi}\right)\right) \geq 0 \tag{21}
\end{equation*}
$$

For any $\vec{k}=\left(k_{1}, \ldots, k_{r}\right)$, set:

$$
\begin{aligned}
\mathbb{S}^{[\vec{k}]} & =S^{2 k_{1}+1} \times \cdots \times S^{2 k_{r}+1} \\
\left(X^{[\vec{k}]}, L^{[\vec{k}]}\right) & =(X, L) \times \mathbb{S}^{[\vec{k}]} /\left(S^{1}\right)^{r}, \\
\left(\mathcal{X}^{[\vec{k}]}, \mathcal{L}^{[\vec{k}]}\right) & =(\mathcal{X}, \mathcal{L}) \times \mathbb{S}^{[\vec{k}]} /\left(S^{1}\right)^{r} .
\end{aligned}
$$

Applications to monomial $g=\prod_{\alpha=1}^{r} \theta_{\alpha}^{k_{\alpha}}$ (and to polynomial g):
(1) Define $\operatorname{MA}_{g}(\varphi)$ for $\varphi \in\left(\mathcal{E}^{1}\right)^{\left(S^{1}\right)^{r}}$;
(2) Prove the slope formula $\mathbf{F}_{g}^{\prime \infty}=\mathbf{F}_{g}^{\mathrm{NA}}$;
(0) Prove the monotonicity formula for $\mathbf{D}_{g}^{\mathrm{NA}}$ along MMP.

For general smooth g, we use the Stone-Weierstrass approximation theorem to reduce to the polynomial case.

Thanks for your attention!

