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Uniformatization Theorem for Riemann Surfaces

Riemann surface: surface with a complex structure

Classification of closed Riemann surfaces :

Topology Metric Curvature
S? = CP* spherical 1
T2 = C/A flat 0
Y, =B!/m(Z;) hyperbolic -1

Notation: ¥, closed oriented surface of genus g > 2.
B! ={ze€C;|z| < 1}.

Generalization for higher dimensional complex manifolds?

We will restrict to the class of Kahler manifolds, in particular
projective manifolds.
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Kahler manifolds and Kahler metrics

X: complex manifold (transition functions are holomorphic);
J: TX — TX complex structure;

g: Riemannian metric s.t. g(J-,J:) = g(-,-).

Kihler form: w = g(-, J-). Using holomorphic coordinates {z'}:

w=v-1 Z g,-fdzi AdZ, (g5) > 0.

ij=1
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Kahler manifolds and Kahler metrics

X: complex manifold (transition functions are holomorphic);
J: TX — TX complex structure;
g: Riemannian metric s.t. g(J-,J-) = g(-, ).

Kihler form: w = g(-, J-). Using holomorphic coordinates {z'}:

n
w=+v-1 Z g,-fdzi AdZ, (g5) > 0.
ij=1
Kahler condition: dw = 0. Consequences:

o w determines the Kihler class [w] € HY1(X,R) C H?(X,R).
o Locally, w = /=190y = /-1 Y70 N dF.

ij 0z0zZJ
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Basic examples and curvature

Notation: B" = {z € C"; |z| < 1}.

Pr = (Cmt —{o})/Cr =C"

upr-1

B" | wpn = —v/—100log(1 — |z|?) | B"/T; T < PSU(n,1)
C" | wen = V/—100)2)? C"/N; A= 72"
P" | wps = vV/—100log(1 + |z?) | P"

Kahler manifolds with constant holomorphic sectional curvatures:

Risi = 18587 + 8i78k;):

= —1,0,1.
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Basic examples and curvature

Notation: B" = {z € C"; |z| < 1}.
P = (C"1 — {0})/C* =C"uP" L.

B" | wpn = —v/—100log(1 — |z|?) | B"/T; T < PSU(n,1)

C" | wen = /—100|2|? C"/N; A= 72"

P" | wps = vV/—100log(1 + |z?) | P"

Kahler manifolds with constant holomorphic sectional curvatures:
Rijur = 1(gis8xr + &i18kj)> 1= —1,0,1.

_Paq | 508k 081
62,'82]' 0z; 821

Curvature tensor: R,-jk,- =
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Ricci curvature

Ricci curvature: Ri = &Ry = g"Rir.
82
Compact expression: Rz = ~ 52755 log det(g,7)-
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Ricci curvature

Ricci curvature: Rz = gk'_R,-,—kf = gk’_R,jk,—.
82
Compact expression: Rz = ~ 52755 log det(g,7)-

Ricci form is a (1,1)-form:

Ric(w) =V~1)  Rjdz' AdZ = —/~100 logw"
ij=1

Ric(w) represents the first Chern class of the complex manifold:

Ric(w) € 2mey(X) € HM(X, Z).
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Kahler potentials

Lemma (00-Lemma)
Smooth w; € [w],i=1,2 = wy = w1 + /—19dp with ¢ € C>®(X).

wy = w + V—190¢p = \/jz <gif+ SOif) dz' \dZ.
i

82
where (90,']) = <6z":9pff) is the complex Hessian matrix.
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Kahler potentials

Lemma (00-Lemma)
Smooth w; € [w],i=1,2 = wy = w1 + /—19dp with ¢ € C>®(X).

wy = w + V—190¢p = \/jz <gif+ SOif) dz' \dZ.
i

02 : . .
where (90,']) = <6z":9pff) is the complex Hessian matrix.

w, positive definite  +— w+ V=109 > 0
< (g5+w;) >0
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Kahler potentials

Lemma (00-Lemma)
Smooth w; € [w],i=1,2 = wy = w1 + /—19dp with ¢ € C>®(X).

wy = w + V—190¢p = \/jz <gif+ SOif) dz' \dZ.
i

02 . .
where (90,']) = <6z":9pff) is the complex Hessian matrix.

w, positive definite  +— w+ V=109 > 0
< (g5+w;) >0

Compare to conformal case: g» = efgy for f € C>(X).
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Kahler-Einstein metric and Monge-Ampére equation

Normalize the Einstein constant to 4 = —1,0, or 1. KE equation:

Ric(wy) = 1wy
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Kahler-Einstein metric and Monge-Ampére equation

Normalize the Einstein constant to ;1 = —1,0, or 1. KE equation:
Ric(wy) = pwy, <= (w+V—190p)" = e Hew"

2
= det <g,-f—|— i ) = ehw—ne det(g,-j).

0z'0z

<hw satisfies: Ric(w) — puw = v/—180h,,, and / ey = / w”.>
X X

Backgrounds



Kahler-Einstein metric and Monge-Ampére equation

Normalize the Einstein constant to p = —1,0, or 1. KE equation:
Ric(wy) = pwy, <= (w+V—190p)" = e Hew"

2
= det <g,-f—|— i ) = ehw—ne det(g,-j).

0z'0z

<hw satisfies: Ric(w) — puw = v/—180h,,, and / ey = / w”.>
X

X

p=—1 Solvable (Aubin, Yau) ¢i(X)
=0 Solvable (Yau) c1(X)
w=1 in general not solvable ¢;(X) >

A
o o o

Compare: Yamabe invariant in a given conformal class.
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Warm up: a Dirichlet problem

U plurisubharmonic i.e. (U,-Jv) >0, B ={zeC";|z| <1}.

e~ tU

):WOH B, U=0on0B;. (1)
B !

Solution U would produce Kahler-Einstein metrics (if (U;;) > 0):

w=vV=IY Usdr ndF L Ric(w) = tw.

i7.j

Theorem (L. '13)

Jt* = t*(n) > 0 s.t. (1) has a regular nonpositive solution iff t < t*.

Analytic Part A local Dirichlet problem



Rotationally symmetric solutions

Reduction to ODE ~~ Solutions:

g |1+

nl 1/n
Ol - 1)]

(n+1)m

Range of t: —oo<t<W—

Analytic Part A local Dirichlet problem



Rotationally symmetric solutions

Reduction to ODE ~~ Solutions:
(nY/¢
(n+ )7

(n+1)m
(nhi/n

g |1+

(2P - 1)]

Range of t: —oc0o<t<

1
° t*<0:w:%5*w3n. 0:z—6-2,0<6 < 1.

t™ = t7(8) = — e € (—00,0).

Analytic Part A local Dirichlet problem



Rotationally symmetric solutions

Reduction to ODE ~~ Solutions:

(n+1) (e,
U(t) = . log |1+ (n+ 1)7r(|z| 1)
_ (n+1)m
Range of t: —oo<t<W—
1
ot <O w:%d*wgn. 0:z—6-2,0<6 < 1.
t™ = t7(8) = — e € (—00,0).
1\1/n
0o t=0 w= (1) wen.
T

Analytic Part A local Dirichlet problem



Rotationally symmetric solutions

Reduction to ODE ~~ Solutions:

(n+1) (Y7t
U(t) = . log |1+ (n+ 1)7r(|z| 1)
_ (n+1)m
Range of t: —oo<t<W—
1
ot <O w:%d*wgn. 0:z—6-2,0<6 < 1.
t™ = t7(8) = — e € (—00,0).
1\1/n
0o t=0 w= (1) wen.
T
1
o tt >0 w= (n:; )e*wps. €:z—e-z,0<e< +oo0.
th = tt(e) = _ () (0, t*).

T (A)/n(14€-2)
Analytic Part A local Dirichlet problem



Deformation with positive curvature

(a) Potential (b) Geometry
Curvature Potential Geometry
0 Lz -1) flat disk
t 2log [1+ o£(|z[2 = 1)] | spherical cap
27 Llog|zf? sphere

Analytic Part A local Dirichlet problem



A nonexistence result

Theorem (L. '13)

3 nonpositive solution to (1) in C2(By) N C*(By) when t > t*.

Proof: e PohoZaev identity (compare (3)):

et 1

2n(n+1) | ——F—— = t/ 2~ (|7 y|"de  (2)
0By

Analytic Part A local Dirichlet problem



A nonexistence result

Theorem (L. '13)

3 nonpositive solution to (1) in C2(By) N C*(By) when t > t*.

Proof: e PohoZaev identity (compare (3)):
eftu

2n(n+1) = t/ 2~ (|7 y|"de  (2)
0By

o [og, 27"V Vu|™ o > (27 () pm /Vol(§27 1)) (Holder)
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A nonexistence result

Theorem (L. '13)
3 nonpositive solution to (1) in C2(By) N C*(By) when t > t*.

Proof: e PohoZaev identity (compare (3)):
e -1

B; fBl e tudVv

o [og, 27"V Vu|™ o > (27 () pm /Vol(§27 1)) (Holder)

2n(n+1) = t/ 2~ (|7 y|"de  (2)
0By

Conjecture (Berman-Berndtsson)

All solutions to (1) are a priori radially symmetric.

A priori radially symmetric property holds for real Monge-Ampére
equations (Gidas-Ni-Nirenberg, Delanog).

Analytic Part A local Dirichlet problem



Fano manifolds

X Fano: ¢i1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.

Analytic Part Kahler-Einstein on Fano manifolds



Fano manifolds

X Fano: ¢i1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.

Q@ dimc =1: PL.

Analytic Part Kabhler-Einstein on Fano manifolds



Fano manifolds

X Fano: ¢i1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.

Q@ dimc = 1: PL.
Q dimc = 2: P2, P! x P!, P24kP? for 1 < k < 8.
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Fano manifolds

X Fano: ¢i1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.
Q@ dimc =1: PL.
Q dimc = 2: P2, P! x P!, P24kP2 for 1 < k < 8.

© dimg = 3: 105 deformation families
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Fano manifolds

X Fano: ¢i1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.
Q@ dimc =1: PL.
Q dimc = 2: P2, P! x P!, P24kP2 for 1 < k < 8.
© dimg = 3: 105 deformation families

Q Hypersurface in P™t1 of degree < n+1;
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Fano manifolds

X Fano: ¢i1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.

Q@ dimc =1: PL.
Q dimc = 2: P2, P! x P!, P24kP? for 1 < k < 8.
© dimg = 3: 105 deformation families

Q Hypersurface in P™t1 of degree < n+1;

@ Toric Fano manifolds
0 dimc = 2: P2, P! x P!, P24kP?,1 < k < 3;
® dim¢ = 3: 18 toric Fano threefolds.

Analytic Part Kabhler-Einstein on Fano manifolds



Obstructions of KE on Fano manifolds

First obstruction: KE = Aut(X) is reductive (Matsushima).
Example: rule out P2 blown-up one or two points:

o Aut(P?fP2) = {( 8 - ) € PGL(3,(C)}.
o Aut(P242P2?) = {< 8 Z . ) € PGL(3,(C)}.

Analytic Part Kabhler-Einstein on Fano manifolds



Obstructions of KE on Fano manifolds

First obstruction: KE = Aut(X) is reductive (Matsushima).
Example: rule out P2 blown-up one or two points:

o Aut(P?fP2) = {( 8 - ) € PGL(3,(C)}.

0
*

*

o Aut(P242P?) = {< 8

In dimcX = 2, this is the only obstruction (Tian '90).

. ) € PGL(3,<C)}.

In higher dimensions, there are other obstructions, using

Futaki invariant, energy functionals and K-stability .

Analytic Part Kabhler-Einstein on Fano manifolds



Twisted KE metrics and continuity methods

Choose a closed positive (1,1)-current n € 2mcy(X).
Twisted KE metrics:

Ric(wp) = twp, + (1 )y
0 (%)
(w + \/jlagcpt)” = eHw,(l—t)n*tKthn

Analytic Part Kahler-Einstein on Fano manifolds



Twisted KE metrics and continuity methods

Choose a closed positive (1,1)-current n € 2mcy(X).
Twisted KE metrics:

Ric(p,) = twp, + (1 — )y
II (*)t
(w + \/jlag(pt)” = eHw,(l—t)n*tKthn
Two basic questions:

@ Determine set S = {t; (*); can be solved }.

@ Blow-up phenomenon as t — 9857

Analytic Part Kahler-Einstein on Fano manifolds



Twisted KE metrics and continuity methods

Choose a closed positive (1,1)-current n € 2mwci(X).
Twisted KE metrics:
Ric(y.) = twp. + (1 1)1
0 (%)t
(w+V/—100p;)" = oMo, (-t —tee yn

Two basic questions:
@ Determine set S = {t; (*); can be solved }.
@ Blow-up phenomenon as t — 9857
Two basic twistings:
& (Aubin) n = w.
& (Donaldson) n = {D} +— conical KE
D ~g —Kx: smooth codim¢c = 1 complex submanifold.

Analytic Part Kahler-Einstein on Fano manifolds



Aubin’s continuity method

Ric(wwr) = tw@t + (1 - t)w (> tw%t)
) ()¢
(w4 V=100p¢)" = eho=teryn

Theorem (Tian)

(%)t is solvable for 0 < t < 1, 3 obstructions when t is near 1.

Define R(X) = sup{t; (**); is solvable}. It is independent of w:

Theorem (Székelyhidi)

R(X) = sup{t; 3 n € 2mc1(X) s.t. Ric(n) > tn} (Greatest Ricci).

Question: How to determine R(X)? What happens as t — R(X)?

Analytic Part Aubin’s continuity method



Aubin’s continuity method on toric Fano manifolds

Toric manifolds: (C*)" action with dense orbits; determined by
lattice polytopes. Fano < reflexive polytope ~ O € A.

(e) P*42P2 (f) P?t3P2

Analytic Part Aubin’s continuity method



Aubin’s continuity method on toric Fano manifolds

Toric manifolds: (C*)" action with dense orbits; determined by
lattice polytopes. Fano < reflexive polytope ~ O € A.

W

i) P?f2P2 (j) P43P2

Theorem (L. '09)

, where Q = T NoA.

If Pc # O, then R(Xa) =

Example: R(P?4P2) = 6/7 (Székelyhidi); R(P?42IP2) = 21/25.

Analytic Part Aubin’s continuity method



Revisit of the proof of Wang-Zhu's result: P. = O = dKE.
Torus symmetry: Xa \ D = C" = R"” x (S')" reduces (*x); to

Real Monge-Ampere:  det(u;) = e" (1780t o R,

Analytic Part Aubin’s continuity method



Revisit of the proof of Wang-Zhu's result: P. = O = dKE.
Torus symmetry: Xa \ D = C" = R"” x (S')" reduces (*x); to
Real Monge-Ampere:  det(u;) = e" (1780t o R,

Key Relation: (Compare with PohoZaev identity (2))

Vol fRn (D)e~ (10Tt — —1¢Pe
! ! (3)
R(XA)
QR = 1= R(?(AP

Analytic Part Aubin’s continuity method



Limit behavior of solutions on toric Fano manifolds

Theorem (L. '10)

As t — R(Xn),
Q Jo;, € (C*)" s.t. 0wy — Woo =W + V=100V ;
Q Yoo € LZ(XA) N C®(XA\Bs(LF));
© w satisfies a twisted KE equation (0 < b, < 1):

Ric(woo) = R(Xa)woo + (1 = R(XA))V=10010g(> _ balsal?)-

pr
. «
Notations:

e F: the minimal face containing Q;
o {pl}: vertex lattice points of F;
e Lr: the sub-linear system of | — K ;Al| determined by {p’ }

@ Bs(Lr): base locus of £r.

Analytic Part Aubin’s continuity method



Example and Proof

107

7.

21 p

/ iic
427
25

Analytic Part Aubin’s continuity method



Example and Proof

107
o) T

@ Construct o; using Wang-Zhu's C-estimate;

@ Apply o; to get regularized equation and the limit equation;
© C(P-estimate for regularized equation, Harnack inequality;

Q Partial C%-estimate (Chern-Lu’s inequality);

O Partial C>®-estimate (Evans-Krylov's estimate).

Analytic Part Aubin’s continuity method



Conical Kahler metrics: complex 1-dimensional case

273 R
—
R IR
_ 1218
|dz* =5 2 | 42,2 192
m —_— dr +B r de

.. oA dZ/\ df o = _2 2:8
Kahler form: & = v—lm =v—100 (6 |z| >

Analytic Part Conical continuity method



Higher dimensional conical Kahler metrics

D: a smooth complex submanifold codimgD = 1 (a smooth divisor).

Locally D = {z! = 0} ~ local conical model metric:

. dz* Ndz
0 = V- 1<|1|215 Zdz/\d).

Ric(&) = v/—10dlog |212=A) = (1 — 6)2775{21:0}dxl A dy?t.

Analytic Part Conical continuity method



Higher dimensional conical Kahler metrics

D: a smooth complex submanifold codimgD = 1 (a smooth divisor).

Locally D = {z! = 0} ~ local conical model metric:
. dz* Ndz
w = V- 1<|1|215+Zdz/\d )

Ric(&) = v/—10dlog |212=A) = (1 — 6)27r5{21:0}dx1 A dy?t.

Definition (Conical KE on (X, (1 — 3)D) with cone angle 27/3)

Ric(w) = pw+ (1 — B)2n{D}.

Cone angle= 27(.

Analytic Part Conical continuity method



Conical continuity method

Fix a smooth divisor D ~ —AKx with 0 < A € Q.

Ric(wy) = t(B)w, + (1 — B)27{D}
1} (**)5

n

(w + \/j185¢)n = ehw_t(ﬁ)so H5||;‘2176)

Analytic Part Conical continuity method



Conical continuity method

Fix a smooth divisor D ~ —AKx with 0 < A € Q.

Ric(wy) = t(B)w, + (1 — B)27{D}
1} (**)5
(w + \/j185¢)n = ehw—t(ﬁ)@ HSHZ‘E;LB)
(i

(& + /=100¢)" = eMo.a-np=t(B)égn,

Notations:
e t(f) =1—(1— B)A. (cohomological condition)
0 O =w+ey/—190||s||*? (0 < e < 1).

Analytic Part Conical continuity method



Existence and obstruction of conical KE

Existence:
o Linear theory by Donaldson: C2*#(X, D) space and openness
o (log-K-energy is proper) Apriori estimates and closedness
o (C%estimate: Berman, Jeffres-Mazzeo-Rubinstein (JMR)
o C%estimate: JMR-L. ('11), CDS
o C%>*B_estimate: JMR-Tian, CDS.
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Existence and obstruction of conical KE

Existence:
o Linear theory by Donaldson: C2*#(X, D) space and openness

o (log-K-energy is proper) Apriori estimates and closedness
o (C%estimate: Berman, Jeffres-Mazzeo-Rubinstein (JMR)

o C%estimate: JMR-L. ('11), CDS
o C%>*B_estimate: JMR-Tian, CDS.
Obstruction:
© log-Futaki invariant vanishes: Donaldson
@ log-K-stability: Berman, L. ('11), L.-Sun ('12)
© Aut(X, D) is reductive: CDS (Berndtsson and BBEGZ)

Analytic Part Conical continuity method



An example

X=P D={Z+2Z2+27Z; =0}.

Theorem (L.-Sun, '12)

3 a conical KE on (P2, (1 — B)D) if and only if 23 € (12, 27].

= (A . (P(1,1, n ars)
'—.l’ .
(P2\ D, 1 H/Z,)

Analytic Part Conical continuity method



An example

X=P D={Z+2Z2+27Z; =0}.

Theorem (L.-Sun, '12)
3 a conical KE on (P2, (1 — B)D) if and only if 23 € (12, 27].

= (A . (P(1,1, n ars)
—JI
/. S (p? \n 1 H/Z,)

Corollary (Question by Gauntlett-Martelli-Sparks-Yau, § = 1/3)

d complete conical Calabi-Yau metric on 3-dimensional Ay
singularity: {z3 + z2 + z3 + z3 = 0} C C*.

Ai_y singularity: {22 + 22+ 22 +zk =0} +— B=1/k
So 3 such metric on 3-dim A, 1 if k >4 <+— B3<1/4.

Analytic Part Conical continuity method



Visualization: (P2, (1 — 8)D) — P(1,1,4) + EH/Z,

2

= cos’()

4 i sin®(21)

ym S
16

05 10 15

(@) (&, f = ab) b (t,a/b) (@) (¢,¢%)

Fig. § Convergence of data

i Tf
10000 _= a2 b

—1000

8000

—2000

) —3000

e —(¢")? = —cosh(r) i

2000 —5000

e -r —6000

(a) (r,7f) (b) (r,7fr)

Fig. 6 Bubbling

Analytic P: Conical continuity method



Proof |: Variational point of view

Existence of conical Kahler-Einstein metric

)
log-Ding-energy is proper
(strong Moser-Trudinger-Onofri inequality)

(k) Proper (1) Bounded > —C (m) Unbounded

Figure : Stability from functionals

Conformal case: Normalized Einstein-Hilbert (Sobolev inequality)

Analytic Part Conical continuity method



Proof Il: Interpolation

log-Ding-energy (recall that t(8) =1 — (1 — B)\):

1 eho—t(B)pyyn
._ 0 _ il _
Fg(wyp) := F(¢p) — log (V /X ||5]]2(1=5)

Analytic Part Conical continuity method



Proof Il: Interpolation

log-Ding-energy (recall that t(8) =1 — (1 — B)\):

1 eho—t(B)pyyn
._ 0 _ il _
Fg(wyp) := F(¢p) — log (V /X ||5]]2(1=5)

Monge-Ampere energy:  6FO(p) = — / (8p)wg-
X
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Proof Il: Interpolation

log-Ding-energy (recall that t(8) =1 — (1 — B)\):

1 eho—t(B)pyyn
. 0 _ — -
Fg(wyp) := F(¢p) — log (V /X ||5]]2(1=5) )
Monge-Ampere energy:  6FO(p) = — / (8p)wg-
X

Observation: Concave in 5 (by Holder's inequality):

f = tf1 + (1 — t)ﬁz — Fﬁt > tFﬁl + (1 — t)F/32
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Proof Il: Interpolation

log-Ding-energy (recall that t(8) =1 — (1 — B)\):

1 eho—t(B)pyyn
._ 0 _ il _
Fg(wyp) := F(¢p) — log (V /X ||5]]2(1=5)

Monge-Ampere energy:  6FO(p) = — / (8p)wg-
X
Observation: Concave in 5 (by Holder's inequality):

By = tf1 + (1 — t)ﬁz — Fﬁt > tFﬁl + (1 — t)F/32

Consequence: “Fg proper at 31 = 27"+ "bounded at (> = 27/4"
= proper for 273 € (7/2,27].

Analytic Part Conical continuity method



Proof |ll: Degeneration

Theorem (L.-Sun '12, L. '13)

(C*
X, D) ~» (X, D B1(0
o )~ (X0, Do) over B1(0) = Fg bounded from below
o (Xo, (1 — B)Dy) conical KE

Analytic Part Conical continuity method



Proof |ll: Degeneration

Theorem (L.-Sun '12, L. '13)

o (X,D) S (Xo, Do) over By1(0)
e (Xo, (1 — B)Dy) conical KE

= Fg bounded from below

@ Embed into PN & use Fubini-Study as reference metrics
@ Construct geodesic ray starting ¢ from ¢ inside Cy,(X).
© Subharmonicity of Fg(t(wt) as function of t € B;(0)

e Subharmonicity away from 0 (Berndtsson)

o Continuity of energy under degeneration ([Li '13])
© Boundedness on the central fibre (Ding-Tian, BBEGZ)

Analytic Part Conical continuity method



Completion of proof and generalization

Nonexistence when § < 1/4: Two ways:
@ Lichnerowicz obstruction (Gauntlett-Martelli-Sparks-Yau)
@ log-slope-stability (Ross-Thomas, L.-Sun ('12))
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Completion of proof and generalization

Nonexistence when § < 1/4: Two ways:
@ Lichnerowicz obstruction (Gauntlett-Martelli-Sparks-Yau)
@ log-slope-stability (Ross-Thomas, L.-Sun ('12))

Generalization: X Fano manifold, D ~ )\K)?l with 0 < A < 1.
Adjunction : Kp' = (1 — \)Ky'|p = D is also Fano.

Denote Biyr = )‘_:71 (example Bins = % =1/4).

Proposition (L. '13)

Assume D and X both KE. (X, (1 — 8)D) conical KE iff 8 € (Bint, 1].

Analytic Part Conical continuity method



Convergence and bubbling

B%Bin J—
(X, (1 - B)D) — % C(D, Np) + {Tian-Yau metric on X \ D}.
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Convergence and bubbling

B%Bin J—
(X, (1 - B)D) — % C(D, Np) + {Tian-Yau metric on X \ D}.

Figure : Asymptotically conical Kahler manifold and compactification

Tian-Yau metric <> Asymptotically Conical Calabi-Yau
e Asymptotical rate (Cheeger-Tian, Conlon-Hein, L. '14)
e Compactification (L. 14)
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Algebraic structure on Gromov-Hausdorff limit

{(Xi,w;)}: Fano Kahler manifolds. Ric(w;) > tw; (t > 0). Then:
e Diam(Xj,w;) < D = D(n, t) (Myers Theorem)
e Vol(B,(x))/Vol(B,(0)) N\, as r / (Bishop-Gromov)

Gromov compactness = (X, wj) SR (Xoos Woo)-
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Algebraic structure on Gromov-Hausdorff limit

{(Xi,w;)}: Fano Kahler manifolds. Ric(w;) > tw; (t > 0). Then:
e Diam(Xj,w;) < D = D(n, t) (Myers Theorem)
e Vol(B,(x))/Vol(B,(0)) N\, as r / (Bishop-Gromov)

Gromov compactness = (X, wj) SR (Xoos Woo)-

Proposition (L. '12)

Tian's Partial C%-estimate = ring of holomorphic sections with
uniform L%-norms is effectively finitely generated.

Proof: Skoda's theorem on finite generation and Siu's global version.

Corollary (L. '12)

Tian's Partial C°-estimate = X, has an algebraic structure.

There are applications of partial C%-estimate to moduli problem.
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Yau-Tian-Donaldson conjecture

Conjecture (Yau-Tian-Donaldson)

Fano manifold X has KE <= (X, —Kx) is K-polystable.

Recently completed by Chen-Donaldson-Sun, Tian independently.
Idea of Proof:

@ Introduce the divisor D ~ —mKx. Consider conical KE on
(X,(1-B)D).

@ Varying 3 to show &g changes continuously. 3*: critical angle

@ Proving log version of partial C-estimates to show that the
limit X5 (as 8 — (%) is a Q-Fano variety.

o If X # X, then construct some special degeneration to
contradict K-polystability.

Analytic Part Gromov-Hausdorff limit



Q-Fano degenerations

(X, L) — C: flat family of polarized projective varieties.
(X*, L*) = (X, K);i/c*) — C*: family of smooth Fano manifolds.
The special fiber Ay can be very bad.

Algebraic Part Algebraic version of metric limits



Q-Fano degenerations

(X, L) — C: flat family of polarized projective varieties.
(X*, L*) = (X, K);i/c*) — C*: family of smooth Fano manifolds.
The special fiber Ay can be very bad.

Theorem (L.-Xu, '12)
There exists a Q-Fano filling after base change:
X——> X xc (' —= X <—0x*

R

C/ e C/ ¢(:Zm) C )C*
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Q-Fano degenerations

(X, L) — C: flat family of polarized projective varieties.
(X, L*) = (X7, K);E/C*) — C*: family of smooth Fano manifolds.
The special fiber Ay can be very bad.

Theorem (L.-Xu, '12)

There exists a Q-Fano filling after base change:
X——> X xc (' —= X <—0x*

R

C/ e C/ ¢(:Zm) C )C*
Moreover, CM(X*/C’, —Kxs) < deg(¢) - CM(X/C, L).

@ Use Minimal Model Program to simplify the family
@ Keep track of the CM-degree in the process

Application: Confirmation of Tian's conjecture on the test of
K-polystability.

Algebraic Part Algebraic version of metric limits



Uniqueness of Filling

Compare 2 flat families of (Q-Fano with isomorphic generic fibres:

—

B T (—

C<—C=0C——=C

Question of separatednes: X = X' ?
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Uniqueness of Filling

Compare 2 flat families of (Q-Fano with isomorphic generic fibres:

—

X</—)X* — X/*(—\i X/

R

C<—C=0C——=C

Question of separatednes: X = X’ ? Answer: In general fails:
@ Smooth dim¢ = 3: Mukai-Umemura's example.

@ Singular dim¢ = 2: infinitely many singular del-Pezzo
degenerations of P? (Hacking-Prokhorov).

Algebraic Part Moduli space of K-polystable Fano varieties



Uniqueness of Filling

Compare 2 flat families of (Q-Fano with isomorphic generic fibres:

—

X</—)X* — X/*(—\i X/

R

C<—C=0C——=C

Question of separatednes: X = X’ ? Answer: In general fails:
@ Smooth dim¢ = 3: Mukai-Umemura's example.

@ Singular dim¢ = 2: infinitely many singular del-Pezzo
degenerations of P? (Hacking-Prokhorov).

Theorem (L.-Wang-Xu, '14)

Separatedness holds for families of smoothable K-polystable
Q-Fano varieties

Algebraic Part Moduli space of K-polystable Fano varieties



Proper algebraic moduli space

M: moduli space of K-polystable smooth Fano manifolds.
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Proper algebraic moduli space

M: moduli space of K-polystable smooth Fano manifolds.
M: “parametrize” all smoothable Kahler-Einstein Fano varieties.
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Proper algebraic moduli space

M: moduli space of K-polystable smooth Fano manifolds.
M: “parametrize” all smoothable Kahler-Einstein Fano varieties.

Nice algebraic structure of M <— Moduli problem:
@ Properness/Boundedness: Donaldson-Sun, Tian
@ Openness: L.-Wang-Xu ('14)

@ Separatedness: L.-Wang-Xu ('14)
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Proper algebraic moduli space

M: moduli space of K-polystable smooth Fano manifolds.
M: “parametrize” all smoothable Kahler-Einstein Fano varieties.

Nice algebraic structure of M <— Moduli problem:
@ Properness/Boundedness: Donaldson-Sun, Tian
@ Openness: L.-Wang-Xu ('14)

@ Separatedness: L.-Wang-Xu ('14)

Theorem (L.-Wang-Xu, '14)

3 proper algebraic moduli space M of K-polystable, smoothable,
Fano varieties.

@ Locally K-polystable slice = GIT moduli
o Gluing: M =U_, Uy, / G.).

Algebraic Part Moduli space of K-polystable Fano varieties



Projectivity of M

Theorem (L.-Wang-Xu, '15)

M is quasi-projective.

o Existence (extension) of Weil-Petersson positive (1,1)-current
with continuous potentials (partial C° & explicit calculations).

. . . . Tk
e Existence of continuous metric on CM-line bundle over U,

@ Descend CM line bundle and metrics to U, / G, and glue

@ Quasi-projective criterion («— Schumacher-Tsuji).
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Projectivity of M

Theorem (L.-Wang-Xu, '15)

M is quasi-projective.

o Existence (extension) of Weil-Petersson positive (1,1)-current
with continuous potentials (partial C° & explicit calculations).

. . . . Tk
e Existence of continuous metric on CM-line bundle over U,

@ Descend CM line bundle and metrics to U, / G, and glue

@ Quasi-projective criterion («— Schumacher-Tsuji).

Still open: Projectivity of M
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Projectivity of M

Theorem (L.-Wang-Xu, '15)

M is quasi-projective.

o Existence (extension) of Weil-Petersson positive (1,1)-current
with continuous potentials (partial C° & explicit calculations).

. . . . Tk
e Existence of continuous metric on CM-line bundle over U,

@ Descend CM line bundle and metrics to U, / G, and glue

@ Quasi-projective criterion («— Schumacher-Tsuji).

Still open: Projectivity of M <— CM-line bundle ample.
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Projectivity of M

Theorem (L.-Wang-Xu, '15)

M is quasi-projective.

o Existence (extension) of Weil-Petersson positive (1,1)-current
with continuous potentials (partial C° & explicit calculations).

. . . . Tk
e Existence of continuous metric on CM-line bundle over U,

@ Descend CM line bundle and metrics to U, / G, and glue

@ Quasi-projective criterion («— Schumacher-Tsuji).

Still open: Projectivity of M <— CM-line bundle ample.
Partial answer: CM-line bundle is nef and big over M.

Algebraic Part Moduli space of K-polystable Fano varieties



Bergman kernel

X: Fano manifold; w: Kahler metric in 2mci(X);
h: Hermitian metric on K;l satisfying —v/—100 log h = w.
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Bergman kernel

X: Fano manifold; w: Kahler metric in 2mci(X);
h: Hermitian metric on K;l satisfying —v/—100 log h = w.

HO(X, K);k): vector space of all holomorphic sections of K)?k.
dimHO(X, Kx*) = Nk. Orthonormal basis {s,-},N:k1 under the

L[2-inner product:  (s,s'),2 :/(s, s') porw".
X
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Bergman kernel

X: Fano manifold; w: Kahler metric in 2mci(X);
h: Hermitian metric on K;l satisfying —v/—100 log h = w.

HO(X, K);k): vector space of all holomorphic sections of K)?k.
dimHO(X, Kx*) = Nk. Orthonormal basis {s,-},N:k1 under the

L[2-inner product:  (s,s'),2 :/(s, s') porw".
X

Ny
Bergman kernel:  px(z) = Z ’5[’%7®k(z)
i=1
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Bergman kernel

X: Fano manifold; w: Kahler metric in 2mci(X);
h: Hermitian metric on K;l satisfying —v/—100 log h = w.

HO(X, K);k): vector space of all holomorphic sections of K)?k.
dimHO(X, Kx*) = Nk. Orthonormal basis {s,-},N:k1 under the

L[2-inner product:  (s,s'),2 :/(s, s') porw".
X

Ny
Bergman kernel:  px(z) = Z ’5[’%7®k(z)
i=1

@ px = px(w) depends only on w.

o p(w) = & + (kL 4 O(k"~2). (Tian, Zelditch, Lu)

where R(w) = g”R;;: scalar curvature of w.
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Tian's Partial C%estimate

Conjecture (Tian's partial C%-estimates)

vVt >0, 3k = k(n, t) and § = §(n, t) > 0 s.t. if Ric(w) > tw, then
Pk > 0.
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Tian's Partial C%estimate

Conjecture (Tian's partial C%-estimates)

vVt >0, 3k = k(n, t) and § = §(n, t) > 0 s.t. if Ric(w) > tw, then
Pk > 0.

Tian's partial CC-estimates in various settings recently were proved
by groups of people (Donaldson-Sun, Tian, Chen-Donaldson-Sun,
Tian-Zhang, Jiang, Székelyhidi, Chen-Wang )
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Tian's Partial C%estimate

Conjecture (Tian's partial C%-estimates)

vVt >0, 3k = k(n, t) and § = §(n, t) > 0 s.t. if Ric(w) > tw, then
Pk > 0.

Tian's partial CC-estimates in various settings recently were proved
by groups of people (Donaldson-Sun, Tian, Chen-Donaldson-Sun,
Tian-Zhang, Jiang, Székelyhidi, Chen-Wang ) It plays a central
role in the recent resolution (by Chen-Donaldson-Sun and Tian) of
the following conjecture:

Conjecture-Theorem (Yau-Tian-Donaldson conjecture (YTD))
X admits a KE if and only if (X, K;l) is K-polystable.

" only if " part: by Tian, and Berman.
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Effective finite generation

Theorem (Li '12)

If px > 0, then for any m > (n+2)k, if we let | = | ] —n—1,
then

N
— (N
u= g Ua) . ySan - - - Sa

ag,...,a=1

with ul) o, € H(X,(m — Ik)L) and

(n+1)! (sup p)™*!

I 2 2
”U&l),‘..,a,HB < Itnl (inf py)rti+1 ||'“’||L2‘
+o00
Tian's partial C%estimate = X, = Proj @ HY% (X, LT).
m=0
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Uniformization for marked sphere

Global setting: > Riemann surface; Euler number x(X) = 2 — 2g(X).
Singularities: {p;}/_;. & conical metric with cone angle 275; at p;.

Gauss-Bonnet: x(X) + E (1-5)= 21/ S(&)dvolg,.
- T™Jy
i=1
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Uniformization for marked sphere

Global setting: > Riemann surface; Euler number x(X) = 2 — 2g(X).
Singularities: {p;}/_;. & conlcal metric with cone angle 273; at p;.

Gauss-Bonnet: x(X) + Z(l - Bi) = / S(&)dvolg,.
Yy=S2 D= S 1a,p,, a, =1 — S (cone defect).

( —2"‘21_5:— /Sd)dvol
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Uniformization for marked sphere

Global setting: > Riemann surface; Euler number x(X) = 2 — 2g(X).
Singularities: {p;}/_;. & conlcal metric with cone angle 273; at p;.

Gauss-Bonnet: x(X) + Z(l - Bi) = / S(&)dvolg,.
Yy=S2 D= S 1a,p,, a, =1 — S (cone defect).

( —2"‘21_5:— /Sd)dvol

o x(S?2,D) < 0: 3w such that S(w) = —1.
x(S?, D) = 0: 3w such that S(w) =
x(S?, D) > 0: Troyanov, McOwen, Luo-Tian:

Jwst Sw)=1 <~ 04,-<Zaj,Vi:1,...,r,
J#i
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Uniformization for marked sphere

Global setting: > Riemann surface; Euler number x(X) = 2 — 2g(X).
Singularities: {p;}/_;. & conlcal metric with cone angle 273; at p;.

Gauss-Bonnet: x(X) + Z(l - Bi) = / S(&)dvolg,.
Yy=S2 D= S 1a,p,, a, =1 — S (cone defect).

( —2"‘21_5:— /Sd)dvol

o x(S?2,D) < 0: 3w such that S(w) = —1.
x(S?2,D) = 0: 3w such that S(w) =
x(S?, D) > 0: Troyanov, McOwen, Luo-Tian:
Jwst S(w)=1 <= «; <Zaj,Vi:1,...,r,
JF#i
< (S? D) is log-K-stable.
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Futaki invariant

v: a holomorphic vector field. Recall: Ric(w) —w = /—190h,,.

Futaki invariant: Futx(v)—/ v(hy)w".
X

Theorem (Futaki)

e Futx(v) is independent of w € 2mcy(X).
e KE — Futx = 0.

Interpretation: (0 — v/—1i,)(w + divg(v)) =0 (Q = efwwn)
1
_ . n+1
FutX(v)—n+1/)<(w+d1VQv) .

Equivariant cohomology = localization formula.
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Special degeneration vs test configuration

Test configuration (TC): C*-equivariant degeneration of Fano
manifolds over C:

(X x C*, _KX) = (X*vﬁh’*)c—> (Xvﬁ) <—)(X07£‘Xo)
c* C (0}

Special test configuration (STC) X} irreducible normal Fano
variety, Q-factorial, Kawamata-log-terminal (klt); £ ~c —Kx.

C*-action ~» holomorphic vector field v on Ap. For STC, define:

Fut(X, £) = —Futa,(v)
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Futaki invariant for general TC as CM weight:

Definition (CM line bundle, [Tian, Fujiki-Schumacher] )
Lem = det(m[n(L — L7 — (n+ 1) (Kt — Kx) - (£ — £71)M).

CM weight:  CM(X, £) = nL™ + (n+ 1)K 1 - L.
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Futaki invariant for general TC as CM weight:

Definition (CM line bundle, [Tian, Fujiki-Schumacher] )
Lem = det(m[n(L — L7 — (n+ 1) (Kt — Kx) - (£ — £71)M).

CM weight:  CM(X, £) = nL™ + (n+ 1)K 1 - L.

Definition-Theorem (Donaldson, Paul-Tian, Wang)

For any test configuration X, Fut(X, L) = CM(X, L).
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Futaki invariant for general TC as CM weight:

Definition (CM line bundle, [Tian, Fujiki-Schumacher] )
Lem = det(m[n(L — L7 — (n+ 1) (Kt — Kx) - (£ — £71)M).

CM weight:  CM(X, £) = nL™ + (n+ 1)K 1 - L.

Definition-Theorem (Donaldson, Paul-Tian, Wang)

For any test configuration X, Fut(X, L) = CM(X, L).

Special test configuration ~+ simplifications:

Law = det(m[~(Kz' = Kx)"™1),  CM(X, £) = —(Kgp)"*

knJrl

det (ﬂ*(KAij)) = —LCM(

Tl)! + O(kn).
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Two versions K-polystability

Definition (K-polystability, Tian '97)
Fut(X, Ky') > 0V STC X of X, with equality holds iff X = X x C.
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Two versions K-polystability

Definition (K-polystability, Tian '97)
Fut(X, Ky') > 0V STC X of X, with equality holds iff X = X x C.

Definition (K-polystability, Donaldson '02)
Fut(X, L) >0V TC (X, L) of X, with equality holds iff X = X x C.
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Two versions K-polystability

Definition (K-polystability, Tian '97)

Fut(X, Ky') > 0V STC X of X, with equality holds iff X = X x C.

Definition (K-polystability, Donaldson '02)

Fut(X, L) >0V TC (X, L) of X, with equality holds iff X = X x C.

Imitating Hilbert-Mumford Numerical criterion in GIT:

Slope at infinity <— Fut(X, £).

(g) Stable (h) Semistable (i) Unstable
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Tian's conjecture

Compactness in Riemannian geometry (partial C%-estimate) ~»

Conjecture (Tian)

For K-polystability of Fano, special degenerations are enough.

Theorem (Li-Xu '12)

(X, L): any TC. Then 3 an integer k > 0, an STC (X®, —Kxs)
and a birational map X® --» X X« C inducing an isomorphism

(XS,,CSN(C* = (X,[,)‘(c* Xk C*,

such that Fut(X®, K1) < k- Fut(&, £),

and the equality holds iff (X, L) — C is itself a STC.
As a consequence, Tian's conjecture holds.
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Proof |: Relative Minimal model program

Vary the polarization in the direction of Ky and fix the volume:

L+ sKy

Ls:
S 1_5 bl

Ls|x, ~ —Kx.

Denote (X©), £()) = a semistable reduction of (X, L).

Increase s: s " \jy1 < 1: L. stops being ample
~» extremal ray [R] € NE(X/C)
divisorial

~»  birational contraction )
small ~» flip

i+1 pitl i+1
~ (XL, LY ample

~» go to Increase s

More technical issues: log canonical modifications, Fano extension.

Supplementary Technicalities Algebraic part



Proof lla: Decrease of Futaki invariant on a fixed model

- _ K
Fut(X,E) = n£n+1+(n+1)Kj/P1 .[’n; £5: %
d r1 d .
EFut(X, LS) == n(n + 1)£S ! (Ls + K.)?/]Pﬂ) . <d5£s>

= n(n+ 1)L (Ls+ Kgp)? /(1= 5)?
< 0. (Zariski Lemma)

— Fut(X, Ls) is a decreasing function of s.
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Proof llb: Invariance at birational surgery

Divisorial contraction Flip
xi fi i+l Xi_ L > yitl
\ / f\\\ -
]P>1 yi
£i+>\i+lei:(fi)*(Dyi)
LN 1 K =(F)* (L 4N 11 K1) | L7 4N 1 Kpir1 =(F71)* (D)

Projection formula for intersection numbers = invariance of Futaki

More technical issues: normalization, base change, log canonical
modifications and Fano extensions
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Projectivity /non-projectivity of moduli spaces

M™: moduli space of canonically polarized manifolds
M=: Kollar-Shepherd-Barron-Alexeev compactification
(properness + boundedness + openness + separatedness)

e Viehweg: M~ is quasi-projective (nef Kx is enough)

e Kollar, Fujino: M~ is projective
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Projectivity /non-projectivity of moduli spaces

M™: moduli space of canonically polarized manifolds
M=: Kollar-Shepherd-Barron-Alexeev compactification
(properness + boundedness + openness + separatedness)

e Viehweg: M~ is quasi-projective (nef Kx is enough)
e Kollar, Fujino: M~ is projective
Other polarizations:

@ Cons: Kollar: moduli space of polarized uniruled manifolds in
general is not quasi-projective

@ Pros: Fujiki-Schumacher: compact subarieties of the moduli
space of CSCK manifolds are projective.

CSCK=Constant Scalar Curvature Kahler: includes KE
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Projectivity /non-projectivity of moduli spaces

M™: moduli space of canonically polarized manifolds
M=: Kollar-Shepherd-Barron-Alexeev compactification
(properness + boundedness + openness + separatedness)

e Viehweg: M~ is quasi-projective (nef Kx is enough)
e Kollar, Fujino: M~ is projective
Other polarizations:

@ Cons: Kollar: moduli space of polarized uniruled manifolds in
general is not quasi-projective

@ Pros: Fujiki-Schumacher: compact subarieties of the moduli
space of CSCK manifolds are projective.

CSCK=Constant Scalar Curvature Kahler: includes KE
Constraint: Use of canonical metrics <— Weil-Petersson geometry
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Three classes of compact Kahler manifolds

Three basic types of manifolds as building blocks:

Property a(X)<o0 a(X)=0 ca(X)>0
Example B"/T C"/N\ cp”

KE v (Aubin, Yau) | v (Yau) YTD conjecture
Aut(X) finite reductive | can be non-reductive
Moduli KSBA good moduli non-separatedness

Rational Curv. | few (conj.) few (conj.) | rationally-connected

Reductive: Complexification of compact Lie group.
Example: C* = (S1)®, SL(N +1,C) = SU(N + 1)C.
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Thanks for your attention!
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