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A inhomogeneous functional on the space of valuations

X : an n-dim. Q-Fano variety, normal Fano variety with kit singularities.
Valx : real valuations on C(X) (field of rational functions).

XS” : set of divisorial valuations: v = c - ordg, dense in Valx.

Ax(v) : log discrepancy of valuations v € Valx.

Assume v = ¢ - ordg with p: Y — X and E is prime on Y.

0, +(_ _
vol(F) := lim W (™ (=mKx) thE).

m—+00 m”/n!

Fact: t — vol(}'ét))l/": decreasing to 0, concave and differentiable (on
[0, Amax(v)] by Boucksom-Favre-Jonsson, Lazarsfeld-Mustatd). Set

§(v) = —log (% /0+°° e’t(fdvol(}'ét))))
= —log <1 - %/Oﬂm eftvol(]:y))dt)
Bv) = { /J4rx(v) —§(v) g: ﬁ\\xgv; i ioo
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Main results |

Theorem (Han-L.)

3 a quasi-monomial valuation v that achieves the minimum of 3(v).

Quasi-monomial <=  rankg(v) + trans.deg.(v) = n (Ein-Lazarsfeld-Smith).

Theorem (Han-L.)

The minimizing valuation that induces a special R-test configuration is unique.
The central fibre (W, &) of this special R-test configuration is K-semistable.

The minimizer is absolutely unique and induces a special R-test configurations.

ﬂ—invariant and nonlinear optimization

https:/ /www.math.purdue.edu/"1i2285 /notes/nonlinear.pdf



Main results |l

Theorem (Han-L.)

If (W, &) is K-semistable, there exists a unique (§)-equivariant special test
configuration with K-polystable (Z,¢).

The above results are proved using purely algebraic techniques.

Works of [Chen-Wang, Chen-Sun-Wang]+[Dervan-Székelyhidi] (which are
based on analytic techniques) showed that, for smooth Fano manifolds, there
exists a quasi-monomial valuation that achieves the minimum of 3(v) and
induces a special R-test configuration, while the uniqueness remained.

Combing above Theorems with [Chen-Sun-Wang, Dervan-Székelyhidi], we get:

Corollary (Chen-Sun-Wang's conjecture)

The Gromov-Hausdorff limit of normalized Kahler-Ricci flow on any Fano
manifold is unique and does not depend on the choice of initial metrics.
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Example: toric case

If P is the polytope of a toric Fano variety, P is reflexive. Set
T = ((C*)n, Nz = HOIn((C*7 T), Ng = Nz ®z R.

Any holomorphic vector field in £ € Ng corresponds to a toric valuation wte:

(Zf) =min{{(«,§); fa # 0}.

Then
Blwie) = C(n) / €Ny, (1)

This function is strictly convex in £ and there is a unique minimizer ..

Theorem (Wang-Zhu, Berman-Berndtsson)

There exists a Kahler-Ricci soliton, whose soliton vector field is &..

Indeed, (X, &) is (T-uniformly) K-polystable (see Theorem 13 later).
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Normalized volume: local analogue

Valx « : space of real valuations centered at a kit singularity x € X. Volume of
valuations (Ein-Lazarsfeld-Smith): for any v € Valx x,

i ; >
vol(v) = lim dime Ox./{fi v(f) = m}'
m—s+o00 m"/n!
Normalized volume (L.'15): vol(v) = Ax(v)"-vol(v).

Theorem (Blum, Xu)

There exists a minimizing valuation that is quasi-monomial.

Theorem (L.-Xu, L.-Wang-Xu)

The finitely generated minimizing valuation is unique, induces a degeneration to
a K-semistable Fano cone. There is further a unique K-polystable degeneration.

Uniqueness is proved to be true in general (Xu-Zhuang).

Conjecture (L. '15)

The minimizing valuation is always finitely generated.

ﬂ—invariant and nonlinear optimization
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6 and J-invariant

X : Q-Fano variety. v € X(Si".

SV = /Om t(~dvol(F)ae = [ " ol(FO)
v = x(v) — v v) = AX(V)
B(v) Ax(v) —S(v), 5(v) SOR

Theorem (Fujita, L.)
(X, —Kx) is K-semistable iff B(v) > 0 (i.e. 6(v) > 1) for any v € X" .

Theorem (Blum-Jonsson, Blum-Liu-Xu)

There exists a minimizing valuation of § that is quasi-monomial.

Theorem (Blum-Liu-Zhou)
The minimizing valuations that induce special test configurations are in general
not unique, but the central fibres have common special degenerations.
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Comparison between 5 and (8

© Concavity of log function implies 3(v) > 8(v).
@ § is homogeneous: ((av) = af(v). Set f(a) = F(av) on [0, +00).

f(a) is strictly convex (for v # viriv), f'(0) = B(v).

Lemma (Properness)

For any € > 0, there exists C = C(¢) s.t. for any a € [0, +00),
f(a) > (A(v) — €)a) — loga — C.

Corollary (Minimizing along a ray)

Q a— f(av) admits a unique minimum over [0, 4oc).
Q X is K-semistable if and only if 3(v) > 0.

Define:

Buv) = _min_ Bav) = Ba:(v)v).

a€[0,+o0
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Proof of properness

Recall that f(x) := V™Y vol(u*(—Kx) — xE)*/™ is decreasing, concave on
[0, Amax(v)), and differentiable. Fix 0 < e < 1 s.t. f(€) < f(0) = 1. Set
C=—f"(e) >0, T = ££¢ Define a majorant:

L,
A 1 x € [0,€]
fix)=< 14+ Ce—Cx x€(eT]

0 x € (T, +00).

Calculation shows that (with v = ordg):
g 1 +oo x +oo
e = - —/ vol(—Kx — =E)e dx =1— a/ f7(x)e”™dx
Vo a 0
> 1- a/ f'(x)e > dx = nCa te *(14 O(a1)).
0

So A(av) = A(av) + log e () > (A(v) — €)a — loga — O(1).

Remark (by the proof)

v< Gv = e=¢(C) = a.(v) < C(B(v), Alv), Gr).
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Filtrations

Rm = H(X,—mKx), R=@, Rn, Nm=dimc Rn.
Definition: A filtration F = {F*Rm}rcr,men satisfies:

O F Rm C FY Ry for N < A

@ Nyor F*Rm = F*Ran.

Q@ F R FY Ry C F N Ry

Q JecRst. F*Rym= Ry for A\ < —em and F R, =0 for A > em.

Successive maxima: )\gm) > > /\S\,?:
™ = max{X; dime F* R > j}.
Volume of graded linear series: F(® = {F*™R,}:

H tm
Vol(FW) = fim  dime SRy

m—+oo m"/n!

Convergence to the Duistermaat-Heckman measure (Boucksom-Chen):

n! w (t)
— > 6, m — DH(F) = —dvol(F).
- J
J

m
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Approximation by test configurations and scalings

Any filtration can be approximated by a sequence of test configurations. Set

17, = Image (]—'AR,,, ® Ox(—mL) — OX) with L = —Kx;
il = Z 75t (a fractional ideal)

A
X, = (Bl (XxC))", Lh=7"(—KxxC)— %Em.

Conversely, any test configuration is dominated by a blowup of flag ideals:
(¥ =Blz(X x C), L = p*Lc — E), and determines a finitely generated
filtration:

FeeyRm = {5 € Rmit 5 € H(x, L) }.

Scaling of filtrations: (aF)*Rn = F>3R,.. For test configurations, if 7 is the
holomorphic vector field generating the C*-action, then

A/a
Flvzoom R = (aF(x,)) R = Fi oy R
Base change and quotient correspond to scaling:

Fax@ @ g0y = Facdn Fen/ze=Fx.cnd
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Non-Archimedean functionals

For test configurations (from blowing-up flag ideals):

NA B 1 EJH»I
E (Xv‘c’) - V n + 13
LY x, L) = let(X xC,Z; (1)) — 1 = in1;_ (Ax(v) — G(v)(2)).
vexdiv
Generalized to filtrations:
EYANF) = L A-DH(F) = i "—!Z il
N |74 R _m—|>Too mn & m
L"NF) = lim LN,
m—+o00
L"F) = sup{x;lct(Z.F(X))zl} (Xu-Zhuang).
Non-linear functional HN4(F) = —SN4(F) + LN4(F), where
1 nn A{m)
&NA _ = = - _ i _ -
AR = Iog(V/Re DH(]—')) log <mL'Too D) )

Scaling effects EN*(aF) = a- ENA(F), LN*(aF) = a- LN4(F) while:
§NA(aF) = —log (%/e"“DH(I)) .
R

Existence of minimizing valuations https:/ /www.math.purdue.edu/"1i2285 /notes/nonlinear.pdf



Functionals for valuations and for special test configurations

For v € X3V, set F)'Rm = {s € H(X, —mKx); v(s) > A}. Then

EYYNF) =S(v), §"A(F)=8(v); LYY(F) < Ax(v)
DY (F,) < B(v), HYMF) < B(v).

(X°, L%) : special test configuration, i.e. X5 is Q-Fano. LN (X, —Kxs) = 0.

Lemma (L.'15, using Boucksom-Hisamoto-Jonsson)

For any special test configuration (X*, —Kxs), vas := ordxg|c(x) satisfies
Fxs,—Kas) = Fuv(—Ax(v)). As a consequence, DNA(XS, —Kxs) = B(VXS).

Shift of filtrations: F(0)*Rm = F* """ Rp.
Similarly:

HYA @, k) = AN Kae) =~ (Flae )
= log (%/R97A(*dvol(]:v(fo(v))(A))))

— Ax(v) + log (%/Re—*(—dva(fé”))) = Blvag).
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Monotonicity of HY/

Theorem (Han-L.)

V test configuration (X, L), 3 a special test configuration (X°, L®) s.t.
HNA (s, £5) < HNYA (X, £). The equality holds iff (X, L) is already special.

e Use scaling to take care of the base change:

FYAXD LD D/ dy = FN(x, £, n).

e Use derivative formula to derive monotonicity formula for HN4

MMP devised in [L.-Xu, '14].
Example: (X, A) is log canonical and run Ky c-MMP with rescaling w.r.t. L.
Assume Ky + L =3 eE with &g <--- < e

along the

K + AL d 1
nx/CcT A~ Ly=—————(Kyjc+L)

b==T7 & T 1)

Then LNA(X, £) = 211 and with SY4 (X, £) = — 1og Q,

d , ,na . 1 1 Z,— e Qi
L) = —ETwe T o Q
il —e)Q;
= O 20
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Derivative formula for S

Q = efszl/ei/\DH(f)
%4
+oo +oo k
_ 1 (=1)" tna
= S G5 [y =y Ellen
k=0 pary

Proposition (Intersection and Derivative formula)

e Intersection formula (generalizing Mumford’s formula k = 1):

NA _ 1 kin Ak—11) "tk
B0 = U (.c ) .

o If %E(t) e Zi e E;, then

d"’NA . . €iQ;
dts (Xa[’) - I

where Qi(X, L) = & [, e %whs > 0.
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Existence of minimizers: based on Blum-Liu-Xu's techniques

Corollary (Together with (2))

inf A(v) = .anNA(f)z inf  HYA(X°, ES)—meNA(]-')

vEValy (xs,L9)

A\

Theorem (Blum-Liu-Xu, using Birkar's work)

There exists N = N(n) such that for any special test configuration (X°, L) of
Q-Fano variety X, vxs is a log canonical place of an N-complement.

@ Set: W = P(H%(X, Ox(—NKx)*), H the universal divisor on X x W, D = %H,
Z ={w € W;lct(Xw, Dw) = 1} locally closed in W. Fixz€ Zand g: Y; —» X
a log resolution. Ky + Dy, = g*(Kx + D).

S := QM(Yz, Dy,) N{v € Valx; Ax(v) = 1}. By Corollary 2, Vv € S,

Ja.(v) > 0 s.t. B(ax(v)v) = infaso B(av) = Bi(v).

Izumi’s estimate: S 3 v < (; - ordg with F =N;Dy, ;.

Remark 2 = {a«(v); v € S} uniformly bounded.

v B(v) is continuous (Blum-Jonsson, Blum-Liu- -Xu).

= 3v} € Ssit. by = B(v}) = minyes Bx(v) = min{B(v); v € QM(Yz, D;)}.
Decompose Z = U;Z; s.t. Z] — Z; étale s.t. (Xz/, Dz/) admits fiberwise log

resolutions. Use Hacon-McKernan-Xu's invariance of log plurigenera to show
that b, is independent of z € Z;. min; bz, is thus achieved.
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Special R-test configurations and valuations

Define a semi-valuation vr : @, Rm — C by

v;(z Sm) = min {max{)\; Sm € ]:’\Rm}, Sm # 0} .

Let [(F) C R be the group generated by {A,(.m) - )\5\,";); m € N}.
The extended Rees algebra and associated graded ring of F:

R(F) =P @ t *F Rn, Gr(F):= P F'Ru/F " Rn

m>0 \er(F m>0 \eT(F)

Definition:

e An R-test configuration (R-TC) is a finitely generated filtration and

Xo := Proj(Gr(F)) has dimension n. F is special if Xp is a Q-Fano variety.

e We call rank(I'(F)) =: rank(F) the rank of F. If rank(F) = 1, then we get
the usual test configuration.

If Gx(F) is integral, then F = F,(—o) for some v = v € Valx and o € R.
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Geometric meaning of R-test configurations

Fact: Any R-TC is induced by a one parameter R-subgroup of PGL(N,) with a
generating holomorphic vector field &, for some embedding X «— PV¢~! st.
lims— 400 exp(sg) - [X] = [Xo].

Assume that F is generated FRy. Let {wa,..., wx} be distinct values of
(normalized) successive maxima of F*R,. {(1,...,(,} the subset of maximal
Q-linearly independent subset. Then

W= rpCo = (aj,6) with6=¢/D, aj=D-Fe.
p=1

We get identity:
Gre(F) = DD F Rt/ 7~ Rt = B D Rna
m>0 A m>0 aeMy

Central fibre: Xo = Proj(Gre(F)) admits a holomorphic vector field £
generating a torus T 2 (C*)"-action.
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g-K-stability and generalized Yau-Tian-Donaldson conjecture

Y : a Q-Fano variety Y that admits an effective T 2 (C*)" action.
Nz = Hom(C*,T), Ng =Nz ®zR, Mg =Ny. PC Mg moment polytope.
g : P — Rxo a smooth function, Vg := n! [, g(y)dy. Ex.: ge(y) = e~ (&),

Definition

(Y,T) is g-K-semistable if VT-equivariant (weakly) special TC:
Futg (Y, —Ky) := —Ey*(Vo,7) > 0, where

(m)
o Hali
EEA(yo,n):\%g limm—s oo 72 27 o %g(%):%g Jyy On(ers)e(mepg s -

(Y, T) is moreover g-K-polystable if = 0 only if (¥, L) is a product TC.

N

Theorem (Valuative criterion)

(Y, T) is g-K-semistable if and only if Bg = Ax(v) — Sg(v) > 0.

N

Theorem (Han-L., Generalized YTD)

(Y, T) is Aut(Y, T)-uniformly g-K-stable if and only if there is a solution to
the g-soliton equation: g(my)(ddp)"” = e~ ¥.

\
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Minimizing valuation is K-semistable

For &€ € Ng, set ge(y) = e ). We say that (Y, &) is K-semi(-poly)stable if
(Y, T) is ge-K-semi(-poly)stable.

Let F be a special R-test configuration. Then vz is a minimizer of § if and
only if the central fibre (Xo, &) is K-semistable.

Idea of proof: If (¥, L) is a T-equivariant special test configuration of
(Y, &) :== (Xr,&F), then there exists a family of R-special test configurations
Fs (generated by a family of holomorphic vector field 7s) with corresponding
valuations vs € Valx such that:

d

— B(vs) = Futg, (Vo,7'(0)) = Futg, (¥, —Ky).
s=0

https:/ /www.math.purdue.edu/"1i2285 /notes/nonlinear.pdf
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Idea of proof of uniqueness

Assume that there are two minimizing special R-test configurations F;,i = 0,1
with central fibre W),

Step 1: Consider the initial term degeneration Fj of F; to W(©.

Step 2: Show that HNA(F;) > ANA(F]) and ANA(Fo) = AN (wig, ).

Step 3: Consider the rescaling of twist F. = S}—/l’sso'

between F{ and F{ = Fute,- Prove that ANA(FL) is strictly convex in
s € [0,1] unless F7 is equivalent to Fy.

Step 4: We know that (W, &) is K-semistable. So Fg = Fus,,
minimum of ICIIJ/’?O). Step 2 implies that F; also obtains the minimum. Step 3
implies F' is equivalent to F5.

Step 5: Note that d2(Fo, F1) = da2(Fg, F1) = 0, which by Boucksom-Jonsson's
characterization of equivalent filtrations implies ¢, = ¢7,.

which interpolates

obtains the

Step 6: We know that F; = F,,(—o;). Prove that d’]"n = (,25]:V2 + ¢ implies
Vi = W.
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Step 1&2: Initial term degeneration of filtrations

Fo : a special R-TC with central fibre (W,&). R' := R(W, —Kw).
Fi : another filtration. For f € Ry, with (o, &) = vz (f), set:

ing,(f) =t (V9F(0) := ' € FOR, /Fy (OO R,,.
VA € R, take the Grobner base type degeneration:
F Ry = Spang {inz,(); f € F'Rn} € R,

Note that Fg = Fut,, R'. Other key facts/properties:
O Preservation of (relative) successive maxima implies:
§¥N(F) =8 N(F). i = 0,1, & (Fo, F1) = dy (Fo, Fi).
@ HYM(Fo) = AWM (Fueg,) = Blvmy).
© Lower semicontinuity of log canonical threshold in families implies:

LY (F) = T"(F),  A™(FR) = AY(F).
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Newton-Okounkov bodies, concave transform

Fix a faithful Z"-valuation v. Define the Newton-Okounkov body of the graded
linear series () = {F™R}:

+oo
AFD) = | o(FEmRy).

m=1

For any filtration F, define the concave transform on A = A(—KXx):

Gr(y) = sup{t € R;y € A(F)}.

Theorem (Boucksom-Chen)

vol(F) = nl - A(FY); —dvol(FY) = (Gr).dy.

If X admits an effective T = (C*)"-action, then we can choose the valuation v
that is adapted to the T-action: for any f € C(X)a,

o(f) = (o, 0" (), ..., 0"(F).
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Step 3&4: Twist of filtrations, convexity of H along interplation

Let F be a T-equivariant filtration. Set (L.)

FiRma = F MR,

Lemma (Yao, Han-L.)

If v is a Z"-valuation adapted to T-action, then we have:

Gr.(v) = Gz(y) + (y,&).

Set Fs = s]-"bf. Then

Gr,(y) = (1 —s)(y,&) +sGx(y).

Rescaling and twist formula = (compare (1))
ANA(F) = sSLYY(F) + log (% / e*“*s)“@*scf(y)dy)
A

is convex with respect to s € [0, 1].

d

2 AFE) =5().

5=0

Derivative formula:
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Step 5&6: Characterization of equivalent filtrations

Non-Archimedean metric associated to filtrations:

(7 = ¢uiv)(v) = lim —*G(V)(If)

m—+00

dp-distance of two filtrations Fo and Fi: El{s(m), ... s,(\,mm)} compatible with
(m) (m)
both FiRm,i =0,1. Assumesj )G]-'" \ F; >Hi

i
The following limit exists (Chen-McLean, Boucksom Jonsson)

| Nm 1/p

. n:

dp(Fo, F1) = lim _ (ngm}, u,&l") :
j=1

Theorem (Boucksom-Jonsson)

For any p € [1,+00), dp(Fo, F1) = 0 if and only if ¢, = ¢F,.

Lemma (Han-L.)
For wvo, vi € Valy, ¢].-V0 = ¢}-V1 +ciffvo=wi.

Uniqueness of minimizing special valuations https:/ /www.math.purdue.edu/"1i2285 /notes/nonlinear.pdf



g-normalized volume over cone points

Cone: C := C(X,—Kx) = Specc(R) with R = @,, H*(X, —mKx) =: @, Rm.

a=,, P,cm, % T-equivariant homogeneous primary ideal.

m

coleng(a) := ZZg(%)dimcRm,a/am,a,

m>0 «

. . coleng(a¥)
multg(a) = m )1

ae = {ax}: graded sequence of C* x T-invariant primary ideals.

mttg(a) = fim 20— (21 [ g

Equivariant g-volume: for any v € Val(E-TOXT, set:
volg(v) := multg(ae(v)).

g-normalized volume:

— Ax(v)" - volg(v), Ax(v)
volg(v) = { Yoo Ax(v)

A

“+00
—+00.
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Properties of g-normalized volume

Similar properties as normalized volumes: e.g. volg(Av) = volg(v) and
g-version of Liu's identities relating to g-version of de-Fernex-Ein-Mustata:

inf volg (7) = inflct(a)” - multg(a) = inflct(ae)” - multg(aa).

For any v € X3 and 7 > 0, set ¥,:

7> smt™) = min (v(sm) +7m).

Formula for g-volume:

dx

_ 1 oo «
volg (V) = ——= Ve — (n+ 1)/0 volg (F, R ))m.

Tt

Theorem (Han-L., modeled on L., L.-Liu-Xu)

C*XT

(X, €) is g-K-semistable if and only if ordx minimizes \Tc;lg over Val¢

Consider ws := @(ks)AX(v) and f(s) = \7O\1(W5). Then f(s) is convex in
s € [0,1] and f'(0) = C - B¢(v). Then apply Theorem 12.
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Uniqueness of K-polystable degenerations, modeled on L.-Wang-Xu

Assume that (X, &) is K-semistable and admits two polystable degeneration via
two T = (€£)-equivariant special test configuration (X), —K (). Then as in
[L.-Wang-Xu], using the help of vol, and [BCHM], we have:

W (1)<_Z( ) 5()
C W\N\,\/\N\AN\,C%Z,((*E,(

h e
N
e »
X< x
¢’ X/ g x() Oz, &, =E xC
\i

XO,</\_/W Xéo)

P 7 x'(0) ™

/. S o
CO<\/V\M_/-\N\N\/\/\, CO eZk,O «— Ek~

c’(0)
Using K-polystability of( o ,5) i=0,1,

Fute(X'™M) = 0 = Fut(A°) =0 = XV = x{ =x
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Thanks for your attention!
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