An inhomogeneous optimal degeneration problem for Fano varieties

Chi Li

Department of Mathematics, Purdue University

Simons Conference on K-stability, September 30, 2020

Table of Contents

- $oldsymbol{\tilde{\beta}}$ -invariant and nonlinear optimization
- 2 Existence of minimizing valuations
- 4 Uniqueness of minimizing special valuations
- 5 Uniqueness of K-polystable degeneration

A inhomogeneous functional on the space of valuations

X: an n-dim. \mathbb{Q} -Fano variety, normal Fano variety with klt singularities.

 Val_X : real valuations on $\mathbb{C}(X)$ (field of rational functions).

 $X^{\mathrm{div}}_{\mathbb{Q}}$: set of divisorial valuations: $v = c \cdot \mathrm{ord}_{\mathcal{E}}$, dense in Val_X .

 $A_X(v)$: log discrepancy of valuations $v \in \operatorname{Val}_X$.

Assume $v = c \cdot \text{ord}_E$ with $\mu : Y \to X$ and E is prime on Y.

$$\operatorname{vol}(\mathcal{F}_{\nu}^{(t)}) := \lim_{m \to +\infty} \frac{h^0(\mu^*(-mK_X) - tmcE)}{m^n/n!}.$$

Fact: $t\mapsto \operatorname{vol}(\mathcal{F}_v^{(t)})^{1/n}$: decreasing to 0, concave and differentiable (on $[0,\lambda_{\max}(v)]$ by Boucksom-Favre-Jonsson, Lazarsfeld-Mustață). Set

$$\begin{split} \tilde{\mathbf{S}}(v) &= -\log\left(\frac{1}{V}\int_0^{+\infty} e^{-t}(-d\mathrm{vol}(\mathcal{F}_v^{(t)}))\right) \\ &= -\log\left(1 - \frac{1}{V}\int_0^{+\infty} e^{-t}\mathrm{vol}(\mathcal{F}_v^{(t)})dt\right) \\ \tilde{\beta}(v) &= \begin{cases} A_X(v) - \tilde{\mathbf{S}}(v) & \text{if } A_X(v) < +\infty \\ +\infty & \text{if } A_X(v) = +\infty. \end{cases} \end{split}$$

Main results I

Theorem (Han-L.)

 \exists a quasi-monomial valuation v that achieves the minimum of $\tilde{\beta}(v)$.

Quasi-monomial \iff rank_Q(v) + trans.deg.(v) = n (Ein-Lazarsfeld-Smith).

Theorem (Han-L.)

The minimizing valuation that induces a special \mathbb{R} -test configuration is unique. The central fibre (W,ξ) of this special \mathbb{R} -test configuration is K-semistable.

Conjecture

The minimizer is absolutely unique and induces a special \mathbb{R} -test configurations.

Theorem (Han-L.)

If (W, ξ) is K-semistable, there exists a unique $\langle \xi \rangle$ -equivariant special test configuration with K-polystable (Z, ξ) .

The above results are proved using purely algebraic techniques.

Remark

Works of [Chen-Wang, Chen-Sun-Wang]+[Dervan-Székelyhidi] (which are based on analytic techniques) showed that, for smooth Fano manifolds, there exists a quasi-monomial valuation that achieves the minimum of $\tilde{\beta}(v)$ and induces a special \mathbb{R} -test configuration, while the uniqueness remained.

Combing above Theorems with [Chen-Sun-Wang, Dervan-Székelyhidi], we get:

Corollary (Chen-Sun-Wang's conjecture)

The Gromov-Hausdorff limit of normalized Kähler-Ricci flow on any Fano manifold is unique and does not depend on the choice of initial metrics.

Example: toric case

If P is the polytope of a toric Fano variety, P is reflexive. Set

$$\mathbb{T}\cong (\mathbb{C}^*)^n, \quad \textit{N}_{\mathbb{Z}}=\mathrm{Hom}(\mathbb{C}^*,\mathbb{T}), \quad \textit{N}_{\mathbb{R}}=\textit{N}_{\mathbb{Z}}\otimes_{\mathbb{Z}}\mathbb{R}.$$

Any holomorphic vector field in $\xi \in N_{\mathbb{R}}$ corresponds to a toric valuation wt_{ξ} :

$$\operatorname{wt}_{\xi}\left(\sum_{\alpha}f_{\alpha}\right)=\min\left\{\left\langle lpha,\xi
ight
angle ;f_{lpha}
eq0
ight\} .$$

Then

$$\tilde{\beta}(\operatorname{wt}_{\xi}) = C(n) \int_{P} e^{-\langle \xi, y \rangle} dy.$$
 (1)

This function is strictly convex in ξ and there is a unique minimizer ξ_* .

Theorem (Wang-Zhu, Berman-Berndtsson)

There exists a Kähler-Ricci soliton, whose soliton vector field is ξ_* .

Indeed, (X, ξ_*) is (\mathbb{T} -uniformly) K-polystable (see Theorem 13 later).

Normalized volume: local analogue

 $\operatorname{Val}_{X,x}$: space of real valuations centered at a klt singularity $x \in X$. Volume of valuations (Ein-Lazarsfeld-Smith): for any $v \in \operatorname{Val}_{X,x}$,

$$\operatorname{vol}(v) = \lim_{m \to +\infty} \frac{\dim_{\mathbb{C}} \mathcal{O}_{X,x}/\{f; v(f) \geq m\}}{m^n/n!}.$$

Normalized volume (L.'15):
$$\widehat{\text{vol}}(v) = A_X(v)^n \cdot \text{vol}(v)$$
.

Theorem (Blum, Xu)

There exists a minimizing valuation that is quasi-monomial.

Theorem (L.-Xu, L.-Wang-Xu)

The finitely generated minimizing valuation is unique, induces a degeneration to a K-semistable Fano cone. There is further a unique K-polystable degeneration.

Uniqueness is proved to be true in general (Xu-Zhuang).

Conjecture (L. '15)

The minimizing valuation is always finitely generated.

β and δ -invariant

 $X : \mathbb{Q}$ -Fano variety. $v \in X^{\text{div}}_{\mathbb{Q}}$.

$$\mathbf{S}(v) = \frac{1}{V} \int_0^{+\infty} t(-d \operatorname{vol}(\mathcal{F}_v^{(t)})) dt = \frac{1}{V} \int_0^{+\infty} \operatorname{vol}(\mathcal{F}_v^{(t)}) dt.$$

$$\beta(v) = A_X(v) - \mathbf{S}(v), \qquad \delta(v) = \frac{A_X(v)}{\mathbf{S}(v)}.$$

Theorem (Fujita, L.)

 $(X,-K_X)$ is K-semistable iff $\beta(v)\geq 0$ (i.e. $\delta(v)\geq 1$) for any $v\in X^{\mathrm{div}}_{\mathbb{Q}}$.

Theorem (Blum-Jonsson, Blum-Liu-Xu)

There exists a minimizing valuation of δ that is quasi-monomial.

Theorem (Blum-Liu-Zhou)

The minimizing valuations that induce special test configurations are in general not unique, but the central fibres have common special degenerations.

Comparison between β and β

- Concavity of log function implies $\tilde{\beta}(v) \geq \beta(v)$.
- ② β is homogeneous: $\beta(av) = a\beta(v)$. Set $f(a) = \tilde{\beta}(av)$ on $[0, +\infty)$.

$$f(a)$$
 is strictly convex (for $v \neq v_{\text{triv}}$), $f'(0) = \beta(v)$.

Lemma (Properness)

For any $\epsilon > 0$, there exists $C = C(\epsilon)$ s.t. for any $a \in [0, +\infty)$, $f(a) \ge (A(v) - \epsilon)a) - \log a - C$.

Corollary (Minimizing along a ray)

- **1** $a \mapsto \tilde{\beta}(av)$ admits a unique minimum over $[0, +\infty)$.
- ② X is K-semistable if and only if $\tilde{\beta}(v) \geq 0$.

Define:

$$\tilde{\beta}_*(v) = \min_{a \in [0, +\infty)} \tilde{\beta}(av) = \tilde{\beta}(a_*(v)v).$$

Proof of properness

Recall that $f(x) := V^{-1/n} \operatorname{vol}(\mu^*(-K_X) - xE)^{1/n}$ is decreasing, concave on $[0, \lambda_{\max}(v))$, and differentiable. Fix $0 < \epsilon \ll 1$ s.t. $f(\epsilon) < f(0) = 1$. Set $C = -f'(\epsilon) > 0$, $T = \frac{1+C\epsilon}{C}$. Define a majorant:

$$\hat{f}(x) = \begin{cases} 1 & x \in [0, \epsilon] \\ 1 + C\epsilon - Cx & x \in (\epsilon, T] \\ 0 & x \in (T, +\infty). \end{cases}$$

Calculation shows that (with $v = \operatorname{ord}_{E}$):

$$e^{-\hat{S}(av)} = 1 - \frac{1}{V} \int_0^{+\infty} \text{vol}(-K_X - \frac{x}{a}E) e^{-x} dx = 1 - a \int_0^{+\infty} f^n(x) e^{-ax} dx$$
$$\geq 1 - a \int_0^{\infty} \hat{f}^n(x) e^{-ax} dx = nCa^{-1} e^{-a\epsilon} (1 + O(a^{-1})).$$

So
$$\tilde{\beta}(av) = A(av) + \log e^{-\tilde{S}(av)} \ge (A(v) - \epsilon)a - \log a - O(1)$$
.

Remark (by the proof)

$$v \leq C_1 v_0 \Longrightarrow \epsilon = \epsilon(C_1) \Longrightarrow a_*(v) \leq C(\tilde{\beta}(v), A(v), C_1).$$

Filtrations

 $R_m = H^0(X, -mK_X), \quad R = \bigoplus_m R_m, \ N_m = \dim_{\mathbb{C}} R_m.$

Definition: A filtration $\mathcal{F} = \{\mathcal{F}^{\lambda} R_m\}_{\lambda \in \mathbb{R}, m \in \mathbb{N}}$ satisfies:

- $\bigcirc \bigcap_{x<\lambda} \mathcal{F}^x R_m = \mathcal{F}^{\lambda} R_m.$

Successive maxima: $\lambda_1^{(m)} \ge \cdots \ge \lambda_{N_m}^{(m)}$:

$$\lambda_j^{(m)} = \max\{\lambda; \dim_{\mathbb{C}} \mathcal{F}^{\lambda} R_m \geq j\}.$$

Volume of graded linear series: $\mathcal{F}^{(t)} = \{\mathcal{F}^{tm}R_m\}$:

$$\operatorname{vol}(\mathcal{F}^{(t)}) = \lim_{m \to +\infty} \frac{\dim_{\mathbb{C}} \mathcal{F}^{tm} R_m}{m^n/n!}.$$

Convergence to the Duistermaat-Heckman measure (Boucksom-Chen):

$$\frac{n!}{m^n} \sum_j \delta_{\frac{\lambda_j^{(m)}}{m}} \stackrel{w}{\longrightarrow} \mathrm{DH}(\mathcal{F}) = -d\mathrm{vol}(\mathcal{F}^{(t)}).$$

Approximation by test configurations and scalings

Any filtration can be approximated by a sequence of test configurations. Set

$$I_{m,\lambda}^{\mathcal{F}} := \operatorname{Image}\left(\mathcal{F}^{\lambda}R_{m}\otimes\mathcal{O}_{X}(-mL)\to\mathcal{O}_{X}\right) \text{ with } L=-K_{X};$$
 $\tilde{\mathcal{I}}_{m}^{\mathcal{F}} := \sum_{\lambda}I_{m,\lambda}^{\mathcal{F}}t^{-\lambda} \quad \text{(a fractional ideal)}$ $\mathcal{X}_{m}^{\mathcal{F}} := (\operatorname{Bl}_{\tilde{\mathcal{I}}_{m}}(X\times\mathbb{C}))^{\nu}, \quad \mathcal{L}_{m}^{\mathcal{F}}=\pi^{*}(-K_{X}\times\mathbb{C})-\frac{1}{n}E_{m}.$

Conversely, any test configuration is dominated by a blowup of flag ideals: $(\mathcal{X} = \mathrm{Bl}_{\mathcal{I}}(X \times \mathbb{C}), \mathcal{L} = \mu^* L_{\mathbb{C}} - E)$, and determines a finitely generated filtration:

$$\mathcal{F}_{(\mathcal{X},\mathcal{L})}^{\lambda}R_{m}=\left\{s\in R_{m};t^{-\lambda}\bar{s}\in H^{0}(\mathcal{X},m\mathcal{L})
ight\}.$$

Scaling of filtrations: $(a\mathcal{F})^{\lambda}R_m=\mathcal{F}^{\lambda/a}R_m$. For test configurations, if η is the holomorphic vector field generating the \mathbb{C}^* -action, then

$$\mathcal{F}^{\lambda}_{(\mathcal{X},\mathcal{L},a\eta)}R_m=\big(a\mathcal{F}_{(\mathcal{X},\mathcal{L})}\big)^{\lambda}R_m=\mathcal{F}^{\lambda/a}_{(\mathcal{X},\mathcal{L})}R_m.$$

Base change and quotient correspond to scaling:

$$\mathcal{F}_{(\mathcal{X}^{(d)},\mathcal{L}^{(d)},\eta^{(d)})} = \mathcal{F}_{(\mathcal{X},\mathcal{L},d\eta)}, \quad \mathcal{F}_{(\mathcal{X},\mathcal{L},\eta)/\mathbb{Z}_d} = \mathcal{F}_{(\mathcal{X},\mathcal{L},\eta/d)}.$$

Non-Archimedean functionals

For test configurations (from blowing-up flag ideals):

$$\mathbf{E}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) = \frac{1}{V} \frac{\bar{\mathcal{L}}^{\cdot n+1}}{n+1},$$

$$\mathbf{L}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) = \mathrm{lct}(X \times \mathbb{C},\mathcal{I};(t)) - 1 = \inf_{v \in X_{\mathbb{O}}^{\mathrm{div}}} (A_X(v) - G(v)(\mathcal{I})).$$

Generalized to filtrations:

$$\mathbf{E}^{\mathrm{NA}}(\mathcal{F}) = \frac{1}{V} \int_{\mathbb{R}} \lambda \cdot \mathrm{DH}(\mathcal{F}) = \lim_{m \to +\infty} \frac{n!}{m^n} \sum_{j} \frac{\lambda_{j}^{(m)}}{m}$$

$$\mathbf{L}^{\mathrm{NA}}(\mathcal{F}) = \lim_{m \to +\infty} \mathbf{L}^{\mathrm{NA}}(\mathcal{X}_{m}^{\mathcal{F}}, \mathcal{L}_{m}^{\mathcal{F}})$$

$$\hat{\mathbf{L}}^{\mathrm{NA}}(\mathcal{F}) = \sup\{x; \mathrm{lct}(\mathcal{I}_{\bullet}^{\mathcal{F}^{(x)}}) > 1\} \quad (\mathsf{Xu-Zhuang}).$$

Non-linear functional $\mathbf{H}^{\mathrm{NA}}(\mathcal{F}) = -\tilde{\mathbf{S}}^{\mathrm{NA}}(\mathcal{F}) + \mathbf{L}^{\mathrm{NA}}(\mathcal{F})$, where

$$\tilde{\mathbf{S}}^{\mathrm{NA}}(\mathcal{F}) = -\log\left(\frac{1}{V}\int_{\mathbb{R}} \mathrm{e}^{-\lambda}\mathrm{DH}(\mathcal{F})\right) = -\log\left(\lim_{m \to +\infty} \frac{n^n}{m^n}\sum_{j} \mathrm{e}^{-\frac{\lambda_{j}^{(m)}}{m}}\right).$$

Scaling effects $\mathbf{E}^{\mathrm{NA}}(a\mathcal{F}) = a \cdot \mathbf{E}^{\mathrm{NA}}(\mathcal{F})$, $\mathbf{L}^{\mathrm{NA}}(a\mathcal{F}) = a \cdot \mathbf{L}^{\mathrm{NA}}(\mathcal{F})$ while:

$$\tilde{\mathbf{S}}^{\mathrm{NA}}(a\mathcal{F}) = -\log\left(rac{1}{V}\int_{\mathbb{D}}e^{-a\lambda}\mathrm{DH}(\mathcal{F})
ight).$$

Functionals for valuations and for special test configurations

For
$$v \in X_{\mathbb{Q}}^{\mathrm{div}}$$
, set $\mathcal{F}_{v}^{\lambda}R_{m} = \{s \in H^{0}(X, -mK_{X}); v(s) \geq \lambda\}$. Then

$$\begin{split} \mathbf{E}^{\mathrm{NA}}(\mathcal{F}_{\nu}) &= S(\nu), \quad \tilde{\mathbf{S}}^{\mathrm{NA}}(\mathcal{F}_{\nu}) = \tilde{\mathbf{S}}(\nu); \quad \mathbf{L}^{\mathrm{NA}}(\mathcal{F}_{\nu}) \leq A_{X}(\nu); \\ \mathbf{D}^{\mathrm{NA}}(\mathcal{F}_{\nu}) &\leq \beta(\nu), \quad \mathbf{H}^{\mathrm{NA}}(\mathcal{F}_{\nu}) \leq \tilde{\beta}(\nu). \end{split}$$

 $(\mathcal{X}^s, \mathcal{L}^s)$: special test configuration, i.e. \mathcal{X}_0^s is \mathbb{Q} -Fano. $\mathbf{L}^{\mathrm{NA}}(\mathcal{X}^s, -K_{\mathcal{X}^s}) = 0$.

Lemma (L.'15, using Boucksom-Hisamoto-Jonsson)

For any special test configuration $(\mathcal{X}^s, -K_{\mathcal{X}^s})$, $v_{\mathcal{X}^s_0} := \operatorname{ord}_{\mathcal{X}_0}|_{\mathbb{C}(X)}$ satisfies $\mathcal{F}_{(\mathcal{X}^s, -K_{\mathcal{X}^s})} = \mathcal{F}_v(-A_X(v))$. As a consequence, $\mathbf{D}^{\mathrm{NA}}(\mathcal{X}^s, -K_{\mathcal{X}^s}) = \beta(v_{\mathcal{X}^s_0})$.

Shift of filtrations: $\mathcal{F}(\sigma)^{\lambda}R_m = \mathcal{F}^{\lambda-\sigma m}R_m$. Similarly:

$$\begin{split} \mathbf{H}^{\mathrm{NA}}(\mathcal{X}^{s}, -K_{\mathcal{X}^{s}}) &= \hat{\mathbf{H}}^{\mathrm{NA}}(\mathcal{X}^{s}, -K_{\mathcal{X}^{s}}) = -\tilde{\mathbf{S}}^{\mathrm{NA}}(\mathcal{F}_{(\mathcal{X}^{s}, -K_{\mathcal{X}^{s}})}) \\ &= \log\left(\frac{1}{V}\int_{\mathbb{R}}e^{-\lambda}(-d\mathrm{vol}(\mathcal{F}_{v}(-A_{X}(v))^{(\lambda)}))\right) \\ &= A_{X}(v) + \log\left(\frac{1}{V}\int_{\mathbb{R}}e^{-\lambda}(-d\mathrm{vol}(\mathcal{F}_{v}^{(\lambda)}))\right) = \tilde{\beta}(v_{\mathcal{X}_{0}^{s}}). \end{split}$$

Monotonicity of **H**^{NA}-functional along MMP

Theorem (Han-L.)

 \forall test configuration $(\mathcal{X}, \mathcal{L})$, \exists a special test configuration $(\mathcal{X}^s, \mathcal{L}^s)$ s.t. $\mathbf{H}^{\mathrm{NA}}(\mathcal{X}^s, \mathcal{L}^s) \leq \mathbf{H}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})$. The equality holds iff $(\mathcal{X}, \mathcal{L})$ is already special.

• Use scaling to take care of the base change:

$$\mathbf{F}^{\mathrm{NA}}(\mathcal{X}^{(d)},\mathcal{L}^{(d)},\eta^{(d)}/d) = \mathbf{F}^{\mathrm{NA}}(\mathcal{X},\mathcal{L},\eta).$$

 \bullet Use derivative formula to derive monotonicity formula for $\textbf{H}^{\rm NA}$ along the MMP devised in [L.-Xu, '14].

Example: $(\mathcal{X}, \mathcal{X}_0)$ is log canonical and run $K_{\mathcal{X}/\mathbb{C}}$ -MMP with rescaling w.r.t. \mathcal{L} . Assume $K_{\mathcal{X}} + \mathcal{L} = \sum_i e_i E_i$ with $e_1 \leq \cdots \leq e_k$.

$$\mathcal{L}_{\lambda} := rac{\mathcal{K}_{\mathcal{X}/\mathbb{C}} + \lambda \mathcal{L}}{\lambda - 1}, \quad rac{d}{d\lambda} \mathcal{L}_{\lambda} = -rac{1}{(\lambda - 1)^2} (\mathcal{K}_{\mathcal{X}/\mathbb{C}} + \mathcal{L}).$$

Then $\mathbf{L}^{\mathrm{NA}}(\mathcal{X},\mathcal{L})=rac{\lambda}{\lambda-1}e_1$ and with $\mathbf{\tilde{S}}^{\mathrm{NA}}(\mathcal{X},\mathcal{L})=-\log\mathbf{Q}$,

$$\begin{split} \frac{d}{d\lambda} \mathbf{H}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) &= -\frac{1}{(\lambda - 1)^2} e_1 + \frac{1}{(\lambda - 1)^2} \frac{\sum_i e_i \mathbf{Q}_i}{\mathbf{Q}} \\ &= \frac{\sum_i (e_i - e_1) \mathbf{Q}_i}{(\lambda - 1)^2 \mathbf{Q}} \geq 0. \end{split}$$

$$\begin{split} \mathbf{Q} &:= & e^{-\mathsf{S}} = \frac{1}{V} \int_{\mathbb{R}} e^{-\lambda} \mathrm{DH}(\mathcal{F}) \\ &= & \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!} \frac{1}{V} \int_{\mathbb{R}} \lambda^k \mathrm{DH}(\mathcal{F}) =: \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!} \mathbf{E}_k^{\mathrm{NA}}. \end{split}$$

Proposition (Intersection and Derivative formula)

• Intersection formula (generalizing Mumford's formula k = 1):

$$\mathsf{E}_k^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) = rac{1}{V} rac{k! n!}{(n+1)!} \left(ar{\mathcal{L}}^{[k-1]}
ight)^{\cdot n+k}.$$

• If $\frac{d}{dt}\mathcal{L}(t) = \sum_i e_i E_i$, then

$$\frac{\textit{d}}{\textit{d}t} \tilde{\textbf{S}}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) \ = \ \frac{\sum_{\textit{i}} \textit{e}_{\textit{i}} \textbf{Q}_{\textit{i}}}{\textbf{Q}},$$

where $\mathbf{Q}_i(\mathcal{X}, \mathcal{L}) = \frac{1}{V} \int_{F_i} e^{-\theta} \omega_{FS}^n > 0$.

Existence of minimizers: based on Blum-Liu-Xu's techniques

Corollary (Together with (2))

$$\inf_{v \in \operatorname{Val}_X} \tilde{\beta}(v) = \inf_{\mathcal{F}} H^{\operatorname{NA}}(\mathcal{F}) = \inf_{(\mathcal{X}^s, \mathcal{L}^s)} H^{\operatorname{NA}}(\mathcal{X}^s, \mathcal{L}^s) = \inf_{\mathcal{F}} \hat{H}^{\operatorname{NA}}(\mathcal{F}).$$

Theorem (Blum-Liu-Xu, using Birkar's work)

There exists N=N(n) such that for any special test configuration $(\mathcal{X}^s,\mathcal{L}^s)$ of \mathbb{Q} -Fano variety X, $v_{\mathcal{X}_0^s}$ is a log canonical place of an N-complement.

- Set: $W = \mathbb{P}(H^0(X, \mathcal{O}_X(-NK_X)^*), H$ the universal divisor on $X \times W$, $D = \frac{1}{N}H$, $Z = \{w \in W; \operatorname{lct}(X_w, D_w) = 1\}$ locally closed in W. Fix $z \in Z$ and $g : Y_z \to X$ a log resolution. $K_Y + D_{Y_z} = g^*(K_X + D_z)$. $S := \operatorname{QM}(Y_z, D_{Y_z}) \bigcap \{v \in \operatorname{Val}_X; A_X(v) = 1\}$. By Corollary 2, $\forall v \in S$, $\exists a_*(v) \geq 0$ s.t. $\tilde{\beta}(a_*(v)v) = \inf_{a>0} \tilde{\beta}(av) = \tilde{\beta}_*(v)$.
- Izumi's estimate: $S \ni v \le C_1 \cdot \operatorname{ord}_F$ with $F = \cap_i D_{Y_z,i}$. Remark $2 \Rightarrow \{a_*(v); v \in S\}$ uniformly bounded. $v \mapsto \tilde{\beta}(v)$ is continuous (Blum-Jonsson, Blum-Liu-Xu). $\Rightarrow \exists v_z^* \in S \text{ s.t. } b_z := \tilde{\beta}(v_z^*) = \min_{v \in S} \tilde{\beta}_*(v) = \min\{\tilde{\beta}(v); v \in \operatorname{QM}(Y_z, D_z)\}.$
- Decompose $Z=\cup_i Z_i$ s.t. $Z_i'\to Z_i$ étale s.t. $(X_{Z_i'},D_{Z_i'})$ admits fiberwise log resolutions. Use Hacon-McKernan-Xu's invariance of log plurigenera to show that b_z is independent of $z\in Z_i$. $\min_i b_{z_i}$ is thus achieved.

Special \mathbb{R} -test configurations and valuations

Define a semi-valuation $ar{v}_{\mathcal{F}}:igoplus_m R_m o \mathbb{C}$ by

$$\bar{v}_{\mathcal{F}}(\sum_{m}s_{m})=\min_{m}\left\{\max\{\lambda;s_{m}\in\mathcal{F}^{\lambda}R_{m}\},s_{m}\neq0\right\}.$$

Let $\Gamma(\mathcal{F}) \subset \mathbb{R}$ be the group generated by $\{\lambda_i^{(m)} - \lambda_{N_m}^{(m)}; m \in \mathbb{N}\}$. The extended Rees algebra and associated graded ring of \mathcal{F} :

$$\mathcal{R}(\mathcal{F}) := \bigoplus_{m \geq 0} \bigoplus_{\lambda \in \Gamma(\mathcal{F})} t^{-\lambda} \mathcal{F}^{\lambda} R_m, \quad \operatorname{Gr}(\mathcal{F}) := \bigoplus_{m \geq 0} \bigoplus_{\lambda \in \Gamma(\mathcal{F})} \mathcal{F}^{\lambda} R_m / \mathcal{F}^{>\lambda} R_m.$$

Definition:

- An \mathbb{R} -test configuration (\mathbb{R} -TC) is a finitely generated filtration and $X_0 := \operatorname{Proj}(\operatorname{Gr}(\mathcal{F}))$ has dimension n. \mathcal{F} is special if X_0 is a \mathbb{Q} -Fano variety.
- We call $\operatorname{rank}(\Gamma(\mathcal{F})) =: \operatorname{rank}(\mathcal{F})$ the rank of \mathcal{F} . If $\operatorname{rank}(\mathcal{F}) = 1$, then we get the usual test configuration.

Lemma

If $Gr(\mathcal{F})$ is integral, then $\mathcal{F} = \mathcal{F}_{\nu}(-\sigma)$ for some $\nu = \nu_{\mathcal{F}} \in \operatorname{Val}_{X}$ and $\sigma \in \mathbb{R}$.

Geometric meaning of \mathbb{R} -test configurations

Fact: Any \mathbb{R} -TC is induced by a one parameter \mathbb{R} -subgroup of $PGL(N_{\ell})$ with a generating holomorphic vector field ξ , for some embedding $X \hookrightarrow \mathbb{P}^{N_{\ell}-1}$, s.t. $\lim_{s \to +\infty} \exp(s\xi) \cdot [X] = [X_0]$.

Assume that \mathcal{F} is generated $\mathcal{F}R_\ell$. Let $\{w_1,\ldots,w_k\}$ be distinct values of (normalized) successive maxima of $\mathcal{F}^\lambda R_\ell$. $\{\zeta_1,\ldots,\zeta_r\}$ the subset of maximal \mathbb{Q} -linearly independent subset. Then

$$w_j = \sum_{p=1}^r r_{jp} \zeta_p = \langle \alpha_j, \xi \rangle$$
 with $\xi = \zeta/D$, $\alpha_j = D \cdot \vec{r_j} \in \mathbb{Z}^r$.

We get identity:

$$\operatorname{Gr}_{\ell}(\mathcal{F}) = \bigoplus_{m \geq 0} \bigoplus_{\lambda} \mathcal{F}^{\lambda} R_{m\ell} / \mathcal{F}^{>\lambda} R_{m\ell} = \bigoplus_{m \geq 0} \bigoplus_{\alpha \in M_{\mathbb{Z}}} R'_{m,\alpha}$$

Central fibre: $X_0 = \operatorname{Proj}(\operatorname{Gr}_{\ell}(\mathcal{F}))$ admits a holomorphic vector field ξ generating a torus $\mathbb{T} \cong (\mathbb{C}^*)^r$ -action.

g-K-stability and generalized Yau-Tian-Donaldson conjecture

Y: a \mathbb{Q} -Fano variety Y that admits an effective $\mathbb{T}\cong (\mathbb{C}^*)^r$ action.

 $N_{\mathbb{Z}} = \operatorname{Hom}(\mathbb{C}^*, \mathbb{T}), \quad N_{\mathbb{R}} = N_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}, \quad M_{\mathbb{R}} = N_{\mathbb{R}}^{\vee}. \ P \subset M_{\mathbb{R}} \ \text{moment polytope}.$

 $g:P o\mathbb{R}_{>0}$ a smooth function, $V_g:=n!\int_P g(y)dy$. Ex.: $g_\xi(y)=e^{-\langle \xi,y\rangle}$.

Definition

 (Y, \mathbb{T}) is g-K-semistable if $\forall \mathbb{T}$ -equivariant (weakly) special TC:

$$\operatorname{Fut}_g(\mathcal{Y}, -K_{\mathcal{Y}}) := - \textbf{E}_g^{\operatorname{NA}}(\mathcal{Y}_0, \eta) \geq 0, \quad \textit{where}$$

$$\mathbf{E}_g^{\mathrm{NA}}(\mathcal{Y}_0, \eta) \! = \! \tfrac{1}{V_g} \lim_{m \to +\infty} \tfrac{n!}{m^n} \sum_{i, \alpha} \tfrac{\mu_{\alpha, i}^{(m)}}{m^n} g(\tfrac{\alpha}{m}) \! = \! \tfrac{1}{V_g} \int_{\mathcal{Y}_0} \theta_{\eta}(\varphi_{\mathrm{FS}}) g(\mathbf{m}_{\varphi_{\mathrm{FS}}}) \omega_{\mathrm{FS}}^n.$$

 (Y, \mathbb{T}) is moreover g-K-polystable if = 0 only if $(\mathcal{Y}, \mathcal{L})$ is a product TC.

Theorem (Valuative criterion)

 (Y, \mathbb{T}) is g-K-semistable if and only if $\beta_g = A_X(v) - S_g(v) \ge 0$.

Theorem (Han-L., Generalized YTD)

 (Y, \mathbb{T}) is $\operatorname{Aut}(Y, \mathbb{T})$ -uniformly g-K-stable if and only if there is a solution to the g-soliton equation: $g(\mathbf{m}_{\varphi})(\operatorname{dd}^{c}\varphi)^{n}=e^{-\varphi}$.

Minimizing valuation is K-semistable

For $\xi \in N_{\mathbb{R}}$, set $g_{\xi}(y) = e^{-\langle \xi, y \rangle}$. We say that (Y, ξ) is K-semi(-poly)stable if (Y, \mathbb{T}) is g_{ξ} -K-semi(-poly)stable.

Theorem

Let \mathcal{F} be a special \mathbb{R} -test configuration. Then $v_{\mathcal{F}}$ is a minimizer of $\tilde{\beta}$ if and only if the central fibre (X_0, ξ) is K-semistable.

Idea of proof: If $(\mathcal{Y}, \mathcal{L})$ is a \mathbb{T} -equivariant special test configuration of $(Y, \xi) := (\mathcal{X}_{\mathcal{F}}, \xi_{\mathcal{F}})$, then there exists a family of \mathbb{R} -special test configurations \mathcal{F}_s (generated by a family of holomorphic vector field η_s) with corresponding valuations $v_s \in \mathrm{Val}_X$ such that:

$$\left. \frac{d}{ds} \right|_{s=0} \tilde{\beta}(v_s) = \operatorname{Fut}_{g_{\xi}}(\mathcal{Y}_0, \eta'(0)) = \operatorname{Fut}_{g_{\xi}}(\mathcal{Y}, -K_{\mathcal{Y}}).$$

Idea of proof of uniqueness

Assume that there are two minimizing special \mathbb{R} -test configurations $\mathcal{F}_i, i=0,1$ with central fibre $W^{(i)}$.

- Step 1: Consider the initial term degeneration \mathcal{F}'_1 of \mathcal{F}_1 to $W^{(0)}$.
- Step 2: Show that $\hat{\mathbf{H}}^{\mathrm{NA}}(\mathcal{F}_1) \geq \hat{\mathbf{H}}^{\mathrm{NA}}(\mathcal{F}_1')$ and $\hat{\mathbf{H}}^{\mathrm{NA}}(\mathcal{F}_0) = \hat{\mathbf{H}}^{\mathrm{NA}}(\mathrm{wt}_{\xi_0})$.
- Step 3: Consider the rescaling of twist $\mathcal{F}'_s = s\mathcal{F}'_{\frac{1-s}{s}\xi_0}$, which interpolates between \mathcal{F}'_1 and $\mathcal{F}'_0 := \mathcal{F}_{\operatorname{wt}_{\xi_0}}$. Prove that $\hat{\mathbf{H}}^{\operatorname{NA}}(\mathcal{F}'_s)$ is strictly convex in $s \in [0,1]$ unless \mathcal{F}'_1 is equivalent to \mathcal{F}'_0 .
- Step 4: We know that $(W^{(0)}, \xi_0)$ is K-semistable. So $\mathcal{F}_0' = \mathcal{F}_{\mathrm{wt}_{\xi_0}}$ obtains the minimum of $\hat{\mathbf{H}}_{W^{(0)}}^{\mathrm{NA}}$. Step 2 implies that \mathcal{F}_1' also obtains the minimum. Step 3 implies \mathcal{F}' is equivalent to \mathcal{F}_0' .
- Step 5: Note that $d_2(\mathcal{F}_0, \mathcal{F}_1) = d_2(\mathcal{F}_0', \mathcal{F}_1') = 0$, which by Boucksom-Jonsson's characterization of equivalent filtrations implies $\phi_{\mathcal{F}_1} = \phi_{\mathcal{F}_0}$.
- Step 6: We know that $\mathcal{F}_i = \mathcal{F}_{\nu_i}(-\sigma_i)$. Prove that $\phi_{\mathcal{F}_{\nu_1}} = \phi_{\mathcal{F}_{\nu_2}} + c$ implies $\nu_1 = \nu_2$.

Step 1&2: Initial term degeneration of filtrations

 \mathcal{F}_0 : a special \mathbb{R} -TC with central fibre (W, ξ_0) . $R' := R(W, -K_W)$. \mathcal{F}_1 : another filtration. For $f \in R_m$ with $\langle \alpha, \xi_0 \rangle = v_{\mathcal{F}_0}(f)$, set:

$$\text{in}_{\mathcal{F}_0}(f) = t^{-\langle \alpha, \xi \rangle} \bar{f}(0) := f' \in \mathcal{F}^{\langle \alpha, \xi_{\mathsf{X}} \rangle} R_m / \mathcal{F}_0^{>\langle \alpha, \xi_0 \rangle} R_m.$$

 $\forall \lambda \in \mathbb{R}$, take the Gröbner base type degeneration:

$$\mathcal{F}_1'^{\lambda}R_m':=\operatorname{Span}_{\mathbb{C}}\left\{\operatorname{in}_{\mathcal{F}_0}(f); f\in\mathcal{F}_1^{\lambda}R_m
ight\}\subset R_m'.$$

Note that $\mathcal{F}_0' = \mathcal{F}_{\mathrm{wt}_{\xi_0}} R'$. Other key facts/properties:

Preservation of (relative) successive maxima implies:

$$\tilde{\boldsymbol{S}}^{\mathrm{NA}}(\mathcal{F}_i) = \tilde{\boldsymbol{S}}^{\mathrm{NA}}(\mathcal{F}_i'), i = 0, 1, \quad d_p^X(\mathcal{F}_0, \mathcal{F}_1) = d_p^W(\mathcal{F}_0', \mathcal{F}_1').$$

- $\hat{\mathbf{H}}_X^{\mathrm{NA}}(\mathcal{F}_0) = \hat{\mathbf{H}}_W^{\mathrm{NA}}(\mathcal{F}_{\mathrm{wt}_{\xi_0}}) = \tilde{\beta}(v_{\mathcal{F}_0}).$
- Output
 Lower semicontinuity of log canonical threshold in families implies:

$$\hat{\boldsymbol{\mathsf{L}}}^{\mathrm{NA}}(\mathcal{F}_1) \geq \hat{\boldsymbol{\mathsf{L}}}^{\mathrm{NA}}(\mathcal{F}_1'), \quad \hat{\boldsymbol{\mathsf{H}}}^{\mathrm{NA}}(\mathcal{F}_1) \geq \hat{\boldsymbol{\mathsf{H}}}^{\mathrm{NA}}(\mathcal{F}_1').$$

Newton-Okounkov bodies, concave transform

Fix a faithful \mathbb{Z}^n -valuation \mathfrak{v} . Define the Newton-Okounkov body of the graded linear series $\mathcal{F}^{(t)} = \{\mathcal{F}^{tm}R_m\}$:

$$\Delta(\mathcal{F}^{(t)}) = \overline{\bigcup_{m=1}^{+\infty} \mathfrak{v}(\mathcal{F}^{(tm)}R_m)}.$$

For any filtration \mathcal{F} , define the concave transform on $\Delta = \Delta(-K_X)$:

$$G_{\mathcal{F}}(y) = \sup\{t \in \mathbb{R}; y \in \Delta(\mathcal{F}^{(t)})\}.$$

Theorem (Boucksom-Chen)

$$\operatorname{vol}(\mathcal{F}^{(t)}) = n! \cdot \Delta(\mathcal{F}^{(t)}); \ -d\operatorname{vol}(\mathcal{F}^{(t)}) = (G_{\mathcal{F}})_* dy.$$

If X admits an effective $\mathbb{T}\cong (\mathbb{C}^*)^r$ -action, then we can choose the valuation $\mathfrak v$ that is adapted to the \mathbb{T} -action: for any $f\in \mathbb{C}(X)_{\alpha}$,

$$\mathfrak{v}(f) = (\alpha, \mathfrak{v}^{r+1}(f), \dots, \mathfrak{v}^n(f).$$

Step 3&4: Twist of filtrations, convexity of **H** along interplation

Let \mathcal{F} be a \mathbb{T} -equivariant filtration. Set (**L.**)

$$\mathcal{F}_{\xi}^{\lambda}R_{m,\alpha}=\mathcal{F}^{\lambda-m\langle\alpha,\xi\rangle}R_{m}.$$

Lemma (Yao, Han-L.)

If v is a \mathbb{Z}^n -valuation adapted to \mathbb{T} -action, then we have:

$$G_{\mathcal{F}_{\xi}}(y) = G_{\mathcal{F}}(y) + \langle y, \xi \rangle.$$

Set $\mathcal{F}_s = s\mathcal{F}_{\frac{1-s}{c}\xi}$. Then

$$G_{\mathcal{F}_s}(y) = (1-s)\langle y, \xi \rangle + sG_{\mathcal{F}}(y).$$

Rescaling and twist formula \Rightarrow (compare (1))

$$\hat{\mathbf{H}}^{\mathrm{NA}}(\mathcal{F}_s) = s\hat{\mathbf{L}}^{\mathrm{NA}}(\mathcal{F}) + \log\left(\frac{1}{V}\int_{\Delta}e^{-(1-s)\langle y,\xi \rangle - sG_{\mathcal{F}}(y)}dy\right)$$

is convex with respect to $s \in [0, 1]$.

Derivative formula:
$$\left. \frac{d}{ds} \right|_{s=0} \hat{\mathbf{H}}^{\mathrm{NA}}(\mathcal{F}_s) = \tilde{\beta}(\mathcal{F}).$$

Step 5&6: Characterization of equivalent filtrations

Non-Archimedean metric associated to filtrations:

$$(\phi_{\mathcal{F}} - \phi_{\mathrm{triv}})(v) = \lim_{m \to +\infty} -\frac{1}{m} G(v)(\tilde{\mathcal{I}}_{m}^{\mathcal{F}}).$$

 d_p -distance of two filtrations \mathcal{F}_0 and \mathcal{F}_1 : $\exists \{s_1^{(m)}, \dots, s_{N_m}^{(m)}\}$ compatible with

both $\mathcal{F}_i R_m, i = 0, 1$. Assume $s_i^{(m)} \in \mathcal{F}_i^{l_{j,i}^{(m)}} \setminus \mathcal{F}_i^{> \mu_{j,i}^{(m)}}$.

The following limit exists (Chen-McLean, Boucksom-Jonsson)

$$d_{
ho}(\mathcal{F}_0,\mathcal{F}_1) := \lim_{m o +\infty} \left(rac{n!}{m^n} \sum_{j=1}^{N_m} |\mu_{j,1}^{(m)} - \mu_{j,0}^{(m)}|^p
ight)^{1/p}.$$

Theorem (Boucksom-Jonsson)

For any $p \in [1, +\infty)$, $d_p(\mathcal{F}_0, \mathcal{F}_1) = 0$ if and only if $\phi_{\mathcal{F}_0} = \phi_{\mathcal{F}_1}$.

Lemma (Han-L.)

For $v_0, v_1 \in \operatorname{Val}_X$, $\phi_{\mathcal{F}_{v_0}} = \phi_{\mathcal{F}_{v_1}} + c$ iff $v_0 = v_1$.

g-normalized volume over cone points

Cone: $C := C(X, -K_X) = \operatorname{Spec}_{\mathbb{C}}(R)$ with $R = \bigoplus_m H^0(X, -mK_X) =: \bigoplus_m R_m$. $\mathfrak{a} = \bigoplus_m \bigoplus_{\alpha \in M_{\mathbb{Z}}} \mathfrak{a}_{\alpha} : \mathbb{T}$ -equivariant homogeneous primary ideal.

$$\operatorname{colen}_{g}(\mathfrak{a}) := \sum_{m \geq 0} \sum_{\alpha} g(\frac{\alpha}{m}) \dim_{\mathbb{C}} R_{m,\alpha}/\mathfrak{a}_{m,\alpha},$$

$$\operatorname{mult}_{g}(\mathfrak{a}) := \lim_{k \to +\infty} \frac{\operatorname{colen}_{g}(\mathfrak{a}^{k})}{k^{n+1}/(n+1)!}.$$

 $\mathfrak{a}_{\bullet} = {\mathfrak{a}_k}$: graded sequence of $\mathbb{C}^* \times \mathbb{T}$ -invariant primary ideals.

$$\operatorname{mult}_{g}(\mathfrak{a}_{\bullet}) := \lim_{k \to +\infty} \frac{\operatorname{colen}_{g}(\mathfrak{a}_{k})}{k^{n+1}/(n+1)!} = (n+1)! \int_{\bar{P}^{c}} g(y) dy.$$

Equivariant *g*-volume: for any $v \in \operatorname{Val}_{C,o}^{\mathbb{C}^* \times \mathbb{T}}$, set:

$$\operatorname{vol}_g(v) := \operatorname{mult}_g(\mathfrak{a}_{\bullet}(v)).$$

g-normalized volume:

$$\widehat{\operatorname{vol}}_g(v) = \left\{ \begin{array}{ll} A_X(v)^n \cdot \operatorname{vol}_g(v), & A_X(v) < +\infty \\ +\infty & A_X(v) = +\infty. \end{array} \right.$$

Properties of g-normalized volume

Similar properties as normalized volumes: e.g. $\widehat{\mathrm{vol}}_g(\lambda v) = \widehat{\mathrm{vol}}_g(v)$ and g-version of Liu's identities relating to g-version of de-Fernex-Ein-Mustață:

$$\inf_{\bar{v}} \widehat{\operatorname{vol}}_g(\bar{v}) = \inf_{\alpha} \operatorname{lct}(\mathfrak{a})^n \cdot \operatorname{mult}_g(\mathfrak{a}) = \inf_{\mathfrak{a}_{\bullet}} \operatorname{lct}(\mathfrak{a}_{\bullet})^n \cdot \operatorname{mult}_g(\mathfrak{a}_{\bullet}).$$

For any $v \in X^{\mathrm{div}}_{\mathbb{O}}$ and $\tau > 0$, set \bar{v}_{τ} :

$$\bar{v}_{\tau}(\sum_{m} s_{m}t^{m}) = \min_{m} (v(s_{m}) + \tau m).$$

Formula for g-volume:

$$\operatorname{vol}_g(\bar{v}_\tau) = \frac{1}{\tau^{n+1}} V_g - (n+1) \int_0^{+\infty} \operatorname{vol}_g(\mathcal{F}_v R^{(x)}) \frac{dx}{(x+\tau)^{n+2}}.$$

Theorem (Han-L., modeled on L., L.-Liu-Xu)

 (X,ξ) is g-K-semistable if and only if ord_X minimizes $\widehat{\operatorname{vol}}_g$ over $\operatorname{Val}_{\mathcal{C},o}^{\mathbb{C}^* \times \mathbb{T}}$.

Proof.

Consider $w_s := \overline{(sv)}_{(1-s)A_X(v)}$ and $f(s) = \widehat{\operatorname{vol}}(w_s)$. Then f(s) is convex in $s \in [0,1]$ and $f'(0) = C \cdot \beta_g(v)$. Then apply Theorem 12.

Uniqueness of K-polystable degenerations, modeled on L.-Wang-Xu

Assume that (X,ξ) is K-semistable and admits two polystable degeneration via two $\mathbb{T}=\langle \xi \rangle$ -equivariant special test configuration $(\mathcal{X}^{(i)},-K_{\mathcal{X}^{(s)}})$. Then as in [L.-Wang-Xu], using the help of $\widehat{\operatorname{vol}}_g$ and [BCHM], we have:

Using K-polystability of $(X_0^{(i)}, \xi)$, i = 0, 1,

$$\operatorname{Fut}_{\mathcal{E}}(\mathcal{X}^{\prime(1)}) = 0 = \operatorname{Fut}_{\mathcal{E}}(\mathcal{X}^{\prime(0)}) = 0 \implies X_0^{(1)} = X_0' = X_0^{(0)}.$$

Thanks for your attention!