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Uniformatization Theorem for Riemann Surfaces

Riemann surface: surface with a complex structure:

Topology Metric Curvature
S? = CP! spherical 1
T? = C/7Z? flat 0
¥, =B!/m1(%,) hyperbolic -1

Riemannian metric: g = E|dz|?> = 8zaz\d z|2.

Constant Gauss/Ricci curvature equation

= 1-dimensional complex Monge-Ampére equation

Ric(g) = \g <= Alog E = —\E <= ¢,5 = e %,
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Kahler manifolds and Kahler metrics

X: complex manifold; J: TX — TX integrable complex structure;
g: Kéhler metric, g(J-,J-) = g(-,-) and dw = 0.

w=g(J)=V-1)_ gzdz' ndZ, (g;) >0.
ij=1
Kahler class [w] € H?(X,R).
Fact (00-Lemma): any w’ € [w] is of the form

Wy = w+ V—100u = \/jz (g,'j"‘ “if) dz' A dZ.
ij
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Kahler metric as curvature forms

L — X: a C-line bundle with holomorphic transition {f,3}.
e ¥ := {e ¥} Hermitian metric on L:

e ¥ = |f,52e %8, (1)
Definition: L is positive (=ample) if 3 e = {e" %>} on L s.t.

w+V—=100u = /=109 := \/—100¢, > 0. (2)

Anticanonical line bundle: —Kx = A"Tyq X, Kx = A" T X.
Fact: {smooth volume forms}={Hermitian metrics on —Kx }

2rc1(X) 2 Ric(w) = —v/—190logw"
2

0 ; ;
_ _ ! =
= - %j ERET log det(g,7)dz' A dZ’.
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Kahler-Einstein metric and Monge-Ampére equation

KE equation:
Ric(wy) = Awy <= (w+V—19du)" = Fe " (3)
a2u —Au
< det (g,-]—i- 82’8ZJ> = Fe™ " det(g;7)-
A= —1 Solvable (Aubin, Yau) ¢i(X) <0
A=0  Solvable (Yau) a(X)=0
A=1 3 obstructions c(X)>0
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Fano manifolds

X Fano: ¢1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.

Q dimc =1: P =52

Q dimc = 2: P?, P! x P!, P24kP2, 1 < k < 8 (del Pezzo).

© dimc = 3: 105 deformation families (Iskovskikh, Mori-Mukai)
Q Hypersurface in P™! of degree < n+1;

@ Toric Fano manifolds

Fact: there are finitely many deformation family in each dimension
(Campana, Kollar-Miyaoka-Mori, Nadel '90).
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Examples: toric Fano manifolds

Toric manifolds < lattice polytopes. Fano <> reflexive polytope.

km

(a) b) P*fP2 c) P*42p2? d) P*43P2

Set B(X) = sup{t; Jw € 2mc1(X) s.t. Ric(w) > tw} € (0,1].
Fact: KE = p(X) =

Theorem (Li '09)

If P # O, then B(Xs) = [0Q| / [PQ|, where @ = P.O N AA.

Example: B(P24P2) = 6/7, [B(P?42PP2) = 21/25.
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Q-Fano varieties: building blocks of algebraic varieties

Q-Fano variety X is a normal projective variety satisfying:

@ Fano: Q-line bundle —Kx is ample.
Q kit (Kawamata log terminal): ¥s! ~ dz! A ... dz" € Ok, (Uy)

n2
/ (V=I"st AT < +oo. (4)
Ureg

v

Let : Y — X by a resolution of singularities (Hironaka)
Ky = 1" Kx + > _(A(Ei) — 1)E;. (5)

The condition (4) <= mld : = min; A(E;) > 0.
Fact: (Birkar '16) e-klt (i.e. mld > e > 0) Fanos are bounded.
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KE equation on Q-Fano varieties

Hermitian metric on the Q-line bundle —Kx: e % = {e %>} s.t.
e %o =|s,[2e7%, {s,} trivializing sections of — Ky

Kahler-Einstein equation on Fano varieties:

(\/ —185@)” = e ¥ |=|sql2e=? (ﬁ"%;/@;). (6)

w = +/—100¢ = u = @ — 1 is globally defined. Then (6)<= (3).
(weak) KE potential: generalized solutions in pluripotential sense.

Fact: KE potential is unique up to automorphism (Berndtsson)
and is smooth on X" (Berman-Boucksom-Eddyssieux-Guedj-Zeriahi)
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Obstructions to KEs on Fano varieties

O KE = Aut(X) is reductive: Aut(X)o is the complexification
of a compact Lie group (Matsushima, BBEGZ, CDS).

@ Futaki invariant: V holomorphic vector field v , 3 canonical
Hamiltonian function 6,

JKE — Fut(v) = / Bt = 0. (7)

© Energy coerciveness (Tian, Tian-Zhu,
Phong-Song-Sturm-Weinkove, Darvas-Rubinstein, Hisamoto)

© K-stability (Tian, Donaldson)
Ding stability (Berman, Boucksom-Jonsson)
all equivalent (Li-Xu '12, Berman-Boucksom-Jonsson, Fujita).
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Main result: Generalized Yau-Tian-Donaldson conjecture

Theorem (Li-Tian-Wang, Li '19)

A Q-Fano variety X has a KE potential if (and only if) X is
Aut(X)o-uniformly K/Ding-stable.

@ X Smooth (Chen-Donaldson-Sun, Tian, Datar-Székelyhidi).
@ Q-Gorenstein smoothable (Spotti-Sun-Yao, Li-Wang-Xu);
© Good (e.g. crepant) resolution of singularities (Li-Tian-Wang).

Proofs in above special cases depend on compactness/regularity
theory in metric geometry and do NOT generalize to singular case.

Q X smooth & Aut(X) discrete: Berman-Boucksom-Jonsson
(BBJ) in 2015 proposed an approach using pluripotential
theory/non-Archimedean analysis. Our work greatly extends
their work and removes the two assumptions.
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Variational point of view

Consider energy functionals on a pluripotential version of Sobolev
space, denoted by £1(X, —Kx) (Cegrell, Guedj-Zeriahi)

(e) Proper (f) Bounded (8) Unbounded

There is a distance-like energy:

I(p) =N(p) —E(p) ~ sup(p—v)—E(p)>0.  (8)

E is the primitive of complex Monge-Ampére operator:
TE(Ge) = [ (Go)V=T00p)" )
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Analytic criterion for KE potentials

Energy functional with KE as critical points:

D——E+L——E_|og</xe—w). (10)

The Euler-Lagrangian equation is just the KE equation:

5D(0) = /X (5¢) (~(V-10Bg)" + C-e?). (1)

Theorem (Darvas-Rubinstein, Darvas, Di-Nezza-Guedj, Hisamoto)
A Q-Fano variety X admits a KE potential if and only if

Q@ Aut(X)o is reductive (with center T = (C*)")

@ there exist v >0 and C > 0 s.t. Vo € EY(X, —Kx)¥,

D(p) >~ - imj‘TJ(a*go) — C. (coercive)
S

<
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Test of coerciveness along algebraic rays (Tian)

For k > 1, fix an Aut(X)o-equivariant Kodaira embedding
b s X = PN = P(HO(X, —kKx)*).

Pick n € Matp, «n,(C), hermitian and commutes with Aut(X)o.
Set 1-psg: o,(t) = exp(—(log t)n) and a path:

olt) = oty rsly € E(—Kx), @ = {p(t)teC).

Slope at infinity:

D) = m, m = —E(®) + L™(9),

t—0 — log | t|2
coerciveness (2) = D’°(®) > v -infeep, I'(0e(t)*P).
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Algebraic rays:TeSt COﬂfigUl’atiOhS:smooth non-Archimedean metrics

Set X = {(0,(£) (X)), t] CPN1x C, £ =k10p(1)|x.

Blz(X x C) Xe
XxC—___@(ﬁ)_x_)X_/__Ua_(f)_\)X
im\ /
X C
F(n+1) i
E>~(¢) = Il ENA, N®(®) = L pi(—Kx)" = AYA,

Jye(o) = AVA _ENA = YA )
L>°(¢) = i;](fhv(AX(v) - G(v)(D)) = LM (X, L).
ve Q

X(Si" : space of divisorial valuations; G(v) : Gauss extension.
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K-stability and Ding-stability

Definition-Theorem (Berman, Hisamoto, Boucksom-Hisamoto-Jonsson)

X KE implies that it is Aut(X)o-uniformly Ding-stable: 3y > 0
(slope) such that for all Aut(X)o-equivariant test configurations

DYA(X, L) > - inf INA(X, Le). (12)
EeNR

Using Minimal Model Program as (Li-Xu '12), one can derive:
© valuative criterions (Li, Fujita, Boucksom-Jonsson).

@ algebraically checkable for (singular) Fano surfaces, and Fano
varieties with large symmetries (e.g. all toric Fano varieties)
Example: toric Fano case (12) <= p. = O <= KE.
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BBJ's proof in case X smooth and Aut(X) discrete

Assume D (and M) not coercive.

Step 1: construct a ray ® in £1(—Kx) such that
0> D(0) = —E(0) + LX(0), E™(®) = 1.

Step 20 @ 1= (Bly(me)(X x C), Lm = m7,p}(—Kx) — mime Em).

m+mg —m

Just need to show that the TC ®,,, m > 1 is destabilising:
Step 3+: Comparison of slopes:
®p>d (= ENY(d,,) > E(d), FAILS when X is singular!)

Contradiction to uniform stability:

—1=E®(®) > L'(d) + LN (o)
>stabiliy (1 — 7)ENA (@) > (1 —)E(d) =y — 1.
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New techniques for singularities I

(Li-Tian-Wang '17)

Take a resolution p: Y — X:

Be
Ky = (M*(—KX) — 629,-5> +) (1= A(E) + e0))E; . (13)

If the cone angle 0 < 2w A(E;) < 2m, then we can construct KE
metrics on Y with edge cone singularities along E; and take

potential=metric=algebraic limit as ¢ — 0 (Li-Tian-Wang '17).

2m3

DR Uiy s
!
T?‘,){

\M

R
)
3R
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New techniques for singularities IT (Li-Tian-Wang, Li'19)

@ uniform stability of in-effective pair (Y, B,) with slope
~Ye — v > 0 (proved by valuative criterion).

@ perturbed destabilizing geodesic ray ®..
© blow-up J(m®,) to get: dem = (Ve.m: Be,ms Le.m) of (Y, Be).
@ Comparison of slopes

ENA(¢pem) > E (

o) =
lim L'(®,) = L"°(®) (key convergence)

e—0

(true since Y is smooth)

)
'*°(®) (key convergence)

2-parameters chain of contradiction:

“1= E(9) > L™(0) ¢ L™(00) ¢ LY (6 )
>siab. (1= 1B (Gem) > (1 - 7)E™(00) = (1 - 1)E™(®)
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New ingredients for continuous Aut(X) (Li'19)

@ Valuative criterion for G-uniform stability: 36 > 1, s.t.

inf sup (Ax(ve) —0SL(ve)) > 0. (14)
VGX&IV £eNg

@ Non-Archimedean metrics <— functions on X&i".

Pe(v) = o(ve) +0(€), 0(§) = Ax(ve) — Ax(v).  (15)

© Reduce the infimum (resp. supremum) to “bounded” subsets
of X&iv (resp. NR) (use Strong Openness Conjecture)

@ Delicate interplay between convexity and coerciveness of
Archimedean and non-Archimedean energy.
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Synthesis: Chain of Contradiction in general

3-parameters approximation argument: Don’t follow!

L'~(¢) + O(k™1)

L'(®,) + O(e, k1)

LNA(Qﬁe,m) + 0(e,m L, k71

A(vk) + de.m(vk)

A(Vk,*ﬁk) + ¢€;m7*§k(vk:£k)

55L5(Vk7*§k) + ¢€7m7*£k(vk7£k)
SENM (6 e m )

1- 6‘1/")JNA(¢e,m &)+ EM (¢em, g
1— 1/n)ANA(¢€m £k) +5 1/nENA(¢Em £k)
1-6 1/")/\’°°(d>e L)+ OTYE® (0 ¢,)
1— 7 Ymyo(d, ¢ )+ E®(c_¢,)

1— 67 YM)yx + E®(®).

E/OO(q))

I T T v

(AVARLVARLY,

v

(
(
(
(
(

v

Ideas and Techniques



Metric structures from KE potentials

Question: Do (weak) KEs induce “good” metric structures?
Partial answer: Yes for orbifolds (Song-Tian). In general they have
orbifold singularities away from codimc 3 subvariety (Li-Tian).

@ Related to [Rong-Zhang, Song, Tian-Zhang, Tian-Wang, ...]

Theorem (Li-Tian-Wang '17)

If X admits a good (e.g. crepant) resolution and is K-(poly)stable,
then X admits a KE metric. Moreover, the metric completion of
(X™8, wkg) is homeomorphic to X.

e KE Fano varieties from Gromov-Hausdorff (GH) limits:
(Mj,wixe) — (X, dx).

X is a Q-Fano variety with a weak KE (Donaldson-Sun, Tian).
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Metric tangent cones (MTC) on GH Fano limits

Question: What does the metric look like near the singularities?
1st order approximation of the metric structure (Cheeger-Colding):

p—GH
G X = lim <X,x, dX>
I’k—>0+ rk

Donaldson-Sun: C,X is homeomorphic to an affine variety and
uniquely determined by the (unknown) metric structure.

Conjecture (Donaldson-Sun)

CX depends only on the algebraic structure of the germ x € X.
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Normalized volume on any kit singularity

Valx ,: space of real valuations centered at x € X.

Definition (Li'15, the normalized volume)

vol := \T&X,x :Valx x — Ry U {+00}
v =  Ax(v)"-vol(v).

Properties/Remarks:

(1] \Tc;l(x,X) = inf@(v) > 0 coincides with volume density
(GMT) on GH limits. (Hein-Sun, Li-Xu)

@ This is an “anti-derivative” of Futaki invariant, motivated by
Martelli-Sparks-Yau's study of Sasaki-Einstein.

© Related to previous works of de-Fernex-Ein-Mustata.
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Minimizing normalized volumes

Conjecture (Proposed by Li, Li-Xu)

(i) V kit germ x € X, 3 a minimizer v, unique up to scaling.
(ii) s is regular: quasi-monomial, finitely generated associated
graded ring s.t. Spec(gr, (Oxx)) is a K-semistable Fano cone.

e Existence: Blum (uses coerciveness estimate from Li'15)

@ Uniqueness:

e Divisorival minimizers are plt blow-ups and unique (Li-Xu '16)
o f.g. quasi-monomial minimizers are unique (Li-Xu '17).

@ Regularity of minimizer:

o True for valuations from GH limits (by Donaldson-Sun)
o Quasi-monomial (Xu '19 by using Birkar's boundedness)
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° Vol(O C"/G) = |G|

@ Toric case: minimizing the volume of convex bodies.

Example:
X = AffCone(S = BI,P?, —Ks)
4ff 4f\ﬁ 1)

v=(
vol(x X)

o 3-dim Ay_1: X ={z2+ 22+ 22+ zk =0} Cc C~.

46+13\/

k 0< k<3| k=4 (Li-Sun'12) k>5
minimizer | (k, k, k, 2) (2,2,2,1) (2,2,2,1)
degeneration | X (stable) | X(semistable) | C2?/Z; x C (stable)
MTC X C2?/Zy x C C?/Zy x C
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Application of normalized volumes

Theorem (Donaldson-Sun’s conjecture, Li-Xu '17, Li-Wang-Xu '18)

For any x on GH limit, 3 a unique valuation v, € Valx . satisfying:
@ v. minimizes vol and v, is “regular”.

@ gr, Ox . uniquely degenerates to a K-polystable Fano cone
which coincides with the MTC C, X.

This allows to determine metric tangent cones a priori without
knowing metric structures. Other connections/applications:

@ Torus-equivariant criterions for the K-semistability and
K-polystability (Li, Li-Liu, Li-Wang-Xu)

@ Bound the singularities of K-semistable Fano varieties (Liu)
and application to moduli problem (Liu-Xu, Spotti-Sun)

© 2-dimensional logarithmic normalized volume is equal to
Langer's local orbifold Euler number (Borbon-Spotti, Li'18)
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Thanks for your attention!
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