Topics on Kähler-Einstein Metrics

Chi Li

Department of Mathematics, Purdue University

December 6, 2019

Table of Contents

- Backgrounds
- 2 KE potentials on (singular) Fano varieties
- 3 Ideas and Techniques
- 4 Metric tangent cones and Normalized volume

Uniformatization Theorem for Riemann Surfaces

Riemann surface: surface with a complex structure:

Topology	Metric	Curvature
$\mathbb{S}^2=\mathbb{CP}^1$	spherical	1
$\mathbb{T}^2=\mathbb{C}/\mathbb{Z}^2$	flat	0
$\Sigma_{\mathfrak{g}}=\mathbb{B}^1/\pi_1(\Sigma_{\mathfrak{g}})$	hyperbolic	-1

Riemannian metric: $g = E|dz|^2 = \frac{\partial^2 \varphi}{\partial z \partial \bar{z}} |dz|^2$.

Constant Gauss/Ricci curvature equation
= 1-dimensional complex Monge-Ampère equation

$$Ric(g) = \lambda g \iff \Delta \log E = -\lambda E \iff \varphi_{z\bar{z}} = e^{-\lambda \varphi}.$$

Kähler manifolds and Kähler metrics

X: complex manifold; *J*: $TX \to TX$ integrable complex structure; *g*: Kähler metric, $g(J\cdot, J\cdot) = g(\cdot, \cdot)$ and $d\omega = 0$.

$$\omega = g(\cdot, J \cdot) = \sqrt{-1} \sum_{i,j=1}^n g_{i\bar{j}} dz^i \wedge d\bar{z}^j, \quad (g_{i\bar{j}}) > 0.$$

Kähler class $[\omega] \in H^2(X,\mathbb{R})$.

Fact $(\partial \bar{\partial}$ -Lemma): any $\omega' \in [\omega]$ is of the form

$$\omega_u := \omega + \sqrt{-1}\partial\bar{\partial}u = \sqrt{-1}\sum_{i,j}\left(g_{i\bar{j}} + u_{i\bar{j}}\right)dz^i \wedge d\bar{z}^j.$$

Kähler metric as curvature forms

 $L \to X$: a \mathbb{C} -line bundle with holomorphic transition $\{f_{\alpha\beta}\}$. $e^{-\varphi} := \{e^{-\varphi_{\alpha}}\}$ Hermitian metric on L:

$$e^{-\varphi_{\alpha}} = |f_{\alpha\beta}|^2 e^{-\varphi_{\beta}}. \tag{1}$$

Definition: L is positive (=ample) if $\exists e^{-\varphi} = \{e^{-\varphi_{\alpha}}\}$ on L s.t.

$$\omega + \sqrt{-1}\partial\bar{\partial}u = \sqrt{-1}\partial\bar{\partial}\varphi := \sqrt{-1}\partial\bar{\partial}\varphi_{\alpha} > 0.$$
 (2)

Anticanonical line bundle: $-K_X = \wedge^n T_{\text{hol}} X$, $K_X = \wedge^n T_{\text{hol}}^* X$. Fact: {smooth volume forms}={Hermitian metrics on $-K_X$ }

$$2\pi c_1(X) \ni Ric(\omega) = -\sqrt{-1}\partial\bar{\partial}\log\omega^n$$
$$= -\sum_{i,j} \frac{\partial^2}{\partial z^i \partial \bar{z}^j} \log \det(g_{k\bar{l}}) dz^i \wedge d\bar{z}^j.$$

Kähler-Einstein metric and Monge-Ampère equation

KE equation:

$$Ric(\omega_u) = \lambda \, \omega_u \iff (\omega + \sqrt{-1}\partial\bar{\partial}u)^n = Fe^{-\lambda u}\omega^n$$

$$\iff \det\left(g_{i\bar{j}} + \frac{\partial^2 u}{\partial z^i \partial \bar{z}^j}\right) = Fe^{-\lambda u} \det(g_{i\bar{j}}).$$
(3)

$$\lambda = -1$$
 Solvable (Aubin, Yau) $c_1(X) < 0$ $\lambda = 0$ Solvable (Yau) $c_1(X) = 0$ $\lambda = 1$ \exists obstructions $c_1(X) > 0$

Fano manifolds

X Fano: $c_1(X) > 0 \iff \exists$ Kähler metric ω with $Ric(\omega) > 0$.

- **1** $\dim_{\mathbb{C}} = 1$: $\mathbb{P}^1 = S^2$.
- ② $\dim_{\mathbb{C}} = 2$: \mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$, $\mathbb{P}^2 \sharp k \overline{\mathbb{P}^2}$, $1 \le k \le 8$ (del Pezzo).
- \odot dim_C = 3: 105 deformation families (Iskovskikh, Mori-Mukai)
- **4** Hypersurface in \mathbb{P}^{n+1} of degree $\leq n+1$;
- Toric Fano manifolds

Fact: there are finitely many deformation family in each dimension (Campana, Kollár-Miyaoka-Mori, Nadel '90).

Examples: toric Fano manifolds

Toric manifolds \leftrightarrow lattice polytopes. Fano \leftrightarrow reflexive polytope.

Set
$$\beta(X) = \sup\{t; \exists \omega \in 2\pi c_1(X) \text{ s.t. } Ric(\omega) > t\omega\} \in (0,1].$$

Fact: $KE \Longrightarrow \beta(X) = 1$.

Theorem (**Li** '09)

If
$$P_c \neq O$$
, then $\beta(X_{\triangle}) = \left| \overline{OQ} \right| / \left| \overline{P_c Q} \right|$, where $Q = \overrightarrow{P_c O} \cap \partial \triangle$.

Example:
$$\beta(\mathbb{P}^2 \sharp \overline{\mathbb{P}^2}) = 6/7$$
, $\beta(\mathbb{P}^2 \sharp 2\overline{\mathbb{P}^2}) = 21/25$.

Q-Fano varieties: building blocks of algebraic varieties

Definition

 \mathbb{Q} -Fano variety X is a normal projective variety satisfying:

- **1** Fano: \mathbb{Q} -line bundle $-K_X$ is ample.
- **2** *klt* (*Kawamata log terminal*): $\forall s_{\alpha}^* \sim dz^1 \wedge \dots dz^n \in \mathcal{O}_{K_X}(U_{\alpha})$

$$\int_{U^{\text{reg}}} (\sqrt{-1}^{n^2} s_{\alpha}^* \wedge \bar{s}_{\alpha}^*) < +\infty. \tag{4}$$

Let $\mu: Y \to X$ by a resolution of singularities (Hironaka)

$$K_Y = \mu^* K_X + \sum_i (A(E_i) - 1) E_i.$$
 (5)

The condition (4) \iff mld : = min_i $A(E_i) > 0$.

Fact: (Birkar '16) ϵ -klt (i.e. $\mathrm{mld} \geq \epsilon > 0$) Fanos are bounded.

KE equation on Q-Fano varieties

Hermitian metric on the \mathbb{Q} -line bundle $-K_X$: $e^{-\varphi}=\{e^{-\varphi_{lpha}}\}$ s.t.

$$e^{-arphi_lpha}=|s_lpha|^2e^{-arphi}, \quad \{s_lpha\}$$
 trivializing sections of $-K_X$

Kähler-Einstein equation on Fano varieties:

$$\boxed{\left(\sqrt{-1}\partial\bar{\partial}\varphi\right)^{n} = e^{-\varphi}} := |s_{\alpha}|^{2}e^{-\varphi}\left(\sqrt{-1}^{n^{2}}s_{\alpha}^{*}\wedge\bar{s}_{\alpha}^{*}\right). \tag{6}$$

 $\omega = \sqrt{-1}\partial\bar{\partial}\psi \Rightarrow u = \varphi - \psi$ is globally defined. Then (6) \iff (3).

(weak) KE potential: generalized solutions in pluripotential sense.

Fact: KE potential is unique up to automorphism (Berndtsson) and is smooth on X^{reg} (Berman-Boucksom-Eddyssieux-Guedj-Zeriahi)

Obstructions to KEs on Fano varieties

- KE $\Longrightarrow \operatorname{Aut}(X)$ is reductive: $\operatorname{Aut}(X)_0$ is the complexification of a compact Lie group (Matsushima, BBEGZ, CDS).
- 2 Futaki invariant: \forall holomorphic vector field v , \exists canonical Hamiltonian function θ_v ,

$$\exists \text{ KE} \implies \text{Fut(v)} := \int_{X} \theta_{v} \omega^{n} = 0.$$
 (7)

- Energy coerciveness (Tian, Tian-Zhu, Phong-Song-Sturm-Weinkove, Darvas-Rubinstein, Hisamoto)
- K-stability (Tian, Donaldson)
 Ding stability (Berman, Boucksom-Jonsson)
 all equivalent (Li-Xu '12, Berman-Boucksom-Jonsson, Fujita).

Main result: Generalized Yau-Tian-Donaldson conjecture

Theorem (**Li**-Tian-Wang, **Li** '19)

A \mathbb{Q} -Fano variety X has a KE potential if (and only if) X is $\operatorname{Aut}(X)_0$ -uniformly $K/\operatorname{Ding-stable}$.

- X Smooth (Chen-Donaldson-Sun, Tian, Datar-Székelyhidi).
- Q-Gorenstein smoothable (Spotti-Sun-Yao, Li-Wang-Xu);
- Good (e.g. crepant) resolution of singularities (Li-Tian-Wang).

Proofs in above special cases depend on compactness/regularity theory in metric geometry and do NOT generalize to singular case.

X smooth & Aut(X) discrete: Berman-Boucksom-Jonsson (BBJ) in 2015 proposed an approach using pluripotential theory/non-Archimedean analysis. Our work greatly extends their work and removes the two assumptions.

Variational point of view

Consider energy functionals on a pluripotential version of Sobolev space, denoted by $\mathcal{E}^1(X, -K_X)$ (Cegrell, Guedj-Zeriahi)

There is a distance-like energy:

$$\mathbf{J}(\varphi) = \mathbf{\Lambda}(\varphi) - \mathbf{E}(\varphi) \sim \sup(\varphi - \psi) - \mathbf{E}(\varphi) > 0.$$
 (8)

E is the primitive of complex Monge-Ampère operator:

$$\delta \mathbf{E}(\delta \varphi) = \int_{X} (\delta \varphi) (\sqrt{-1} \partial \bar{\partial} \varphi)^{n}$$
 (9)

Analytic criterion for KE potentials

Energy functional with KE as critical points:

$$\mathbf{D} = -\mathbf{E} + \mathbf{L} = -\mathbf{E} - \log\left(\int_{\mathcal{X}} e^{-\varphi}\right). \tag{10}$$

The Euler-Lagrangian equation is just the KE equation:

$$\delta \mathbf{D}(\delta \varphi) = \int_{X} (\delta \varphi) \left(-(\sqrt{-1}\partial \bar{\partial} \varphi)^{n} + C \cdot e^{-\varphi} \right). \tag{11}$$

Theorem (Darvas-Rubinstein, Darvas, Di-Nezza-Guedj, Hisamoto)

A \mathbb{Q} -Fano variety X admits a KE potential if and only if

- **1** Aut(X)₀ is reductive (with center $\mathbb{T} \cong (\mathbb{C}^*)^r$)
- ② there exist $\gamma > 0$ and C > 0 s.t. $\forall \varphi \in \mathcal{E}^1(X, -K_X)^{\mathbb{K}}$,

$$\mathbf{D}(\varphi) \ge \gamma \cdot \inf_{\sigma \in \mathbb{T}} \mathbf{J}(\sigma^* \varphi) - C.$$
 (coercive)

Test of coerciveness along algebraic rays (Tian)

For $k \gg 1$, fix an $\operatorname{Aut}(X)_0$ -equivariant Kodaira embedding

$$\iota_k: X \hookrightarrow \mathbb{P}^{N_k-1} = \mathbb{P}(H^0(X, -kK_X)^*).$$

Pick $\eta \in \operatorname{Mat}_{N_k \times N_k}(\mathbb{C})$, hermitian and commutes with $\operatorname{Aut}(X)_0$. Set 1-psg: $\sigma_{\eta}(t) = \exp(-(\log t)\eta)$ and a path:

$$\varphi(t) := \frac{1}{k} \sigma_{\eta}(t)^* \varphi_{\mathrm{FS}}|_{X} \in \mathcal{E}^1(-K_X), \quad \Phi = \{\varphi(t); t \in \mathbb{C}^*\}.$$

Slope at infinity:

$$\mathbf{D}^{\prime\infty}(\Phi) := \lim_{t \to 0} \frac{\mathbf{D}(\varphi(t))}{-\log|t|^2} = -\mathbf{E}^{\prime\infty}(\Phi) + \mathbf{L}^{\prime\infty}(\Phi),$$
$$\mathbf{J}^{\prime\infty}(\Phi) := \lim_{t \to 0} \frac{\mathbf{J}(\varphi(t))}{-\log|t|^2} = \mathbf{\Lambda}^{\prime\infty}(\Phi) - \mathbf{E}^{\prime\infty}(\Phi).$$

$$\text{coerciveness (2)} \quad \Longrightarrow \quad \mathbf{D}'^{\infty}(\Phi) \geq \gamma \cdot \inf_{\xi \in \mathit{N}_{\mathbb{R}}} \mathbf{J}'^{\infty}(\sigma_{\xi}(t)^{*}\Phi).$$

Algebraic rays=Test configurations=smooth non-Archimedean metrics

Set
$$\mathcal{X} = \overline{\{(\sigma_{\eta}(t)(X)), t\}} \subseteq \mathbb{P}^{N_k-1} \times \mathbb{C}, \quad \mathcal{L} = k^{-1}\mathcal{O}_{\mathbb{P}}(1)|_{\mathcal{X}}.$$

$$\begin{split} \mathbf{E}'^{\infty}(\Phi) &= \frac{\bar{\mathcal{L}}^{\cdot(n+1)}}{n+1} = \mathbf{E}^{\mathrm{NA}}, \quad \mathbf{\Lambda}'^{\infty}(\Phi) = \bar{\mathcal{L}} \cdot p_1^*(-\mathcal{K}_X)^{\cdot n} = \mathbf{\Lambda}^{\mathrm{NA}}. \\ \mathbf{J}'^{\infty}(\Phi) &= \mathbf{\Lambda}^{\mathrm{NA}} - \mathbf{E}^{\mathrm{NA}} =: \mathbf{J}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) \\ \mathbf{L}'^{\infty}(\Phi) &= \inf_{v \in X_{\cap}^{\mathrm{div}}} (A_X(v) - G(v)(\mathcal{I})) =: \mathbf{L}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}). \end{split}$$

 $X^{
m div}_{\mathbb O}$: space of divisorial valuations; G(v) : Gauss extension.

K-stability and Ding-stability

Definition-Theorem (Berman, Hisamoto, Boucksom-Hisamoto-Jonsson)

X KE implies that it is $\operatorname{Aut}(X)_0$ -uniformly Ding-stable: $\exists \gamma > 0$ (slope) such that for all $\operatorname{Aut}(X)_0$ -equivariant test configurations

$$\mathbf{D}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) \ge \gamma \cdot \inf_{\xi \in \mathsf{N}_{\mathbb{R}}} \mathbf{J}^{\mathrm{NA}}(\mathcal{X}_{\xi}, \mathcal{L}_{\xi}). \tag{12}$$

Using Minimal Model Program as (Li-Xu '12), one can derive:

- ualuative criterions (Li, Fujita, Boucksom-Jonsson).
- ② algebraically checkable for (singular) Fano surfaces, and Fano varieties with large symmetries (e.g. all toric Fano varieties) **Example:** toric Fano case (12) $\iff p_c = O \iff KE$.

BBJ's proof in case X smooth and Aut(X) discrete

Assume **D** (and **M**) not coercive.

Step 1: construct a ray Φ in $\mathcal{E}^1(-K_X)$ such that

$$0 \geq \boldsymbol{\mathsf{D}}'^{\infty}(\boldsymbol{\Phi}) = -\boldsymbol{\mathsf{E}}'^{\infty}(\boldsymbol{\Phi}) + \boldsymbol{\mathsf{L}}'^{\infty}(\boldsymbol{\Phi}), \quad \boldsymbol{\mathsf{E}}'^{\infty}(\boldsymbol{\Phi}) = -1.$$

- Step 2: $\Phi_m := (\mathrm{Bl}_{\mathcal{J}(m\Phi)}(X \times \mathbb{C}), \mathcal{L}_m = \pi_m^* p_1^* (-K_X) \frac{1}{m+m_0} E_m).$ Just need to show that the TC $\Phi_m, m \gg 1$ is destabilising:
- Step 3+: Comparison of slopes:

$$\Phi_m \ge \Phi \quad (\Rightarrow \mathbf{E}^{NA}(\Phi_m) \ge \mathbf{E}'^{\infty}(\Phi), \text{FAILS when } X \text{ is singular!})$$

Contradiction to uniform stability:

$$\begin{aligned} -1 &= \mathbf{E}'^{\infty}(\Phi) \geq \mathbf{L}'^{\infty}(\Phi) \leftarrow \mathbf{L}^{\mathrm{NA}}(\Phi_m) \\ \geq_{\mathrm{Stability}} & (1 - \gamma)\mathbf{E}^{\mathrm{NA}}(\Phi_m) \geq (1 - \gamma)\mathbf{E}'^{\infty}(\Phi) = \gamma - 1. \end{aligned}$$

New techniques for singularities I (Li-Tian-Wang '17)

Take a resolution $\mu: Y \to X$:

$$-K_Y = \left(\mu^*(-K_X) - \epsilon \sum_i \theta_i E_i\right) + \sum_i (1 - A(E_i) + \epsilon \theta_i) E_i.$$
 (13)

If the cone angle $0 < 2\pi A(E_i) \le 2\pi$, then we can construct KE metrics on Y with edge cone singularities along E_i and take potential=metric=algebraic limit as $\epsilon \to 0$ (**Li**-Tian-Wang '17).

New techniques for singularities II (Li-Tian-Wang, Li'19)

- uniform stability of *in-effective* pair (Y, B_{ϵ}) with slope $\gamma_{\epsilon} \to \gamma > 0$ (proved by valuative criterion).
- 2 perturbed destabilizing geodesic ray Φ_{ϵ} .
- **3** blow-up $\mathcal{J}(m\Phi_{\epsilon})$ to get: $\phi_{\epsilon,m} := (\mathcal{Y}_{\epsilon,m}, \mathcal{B}_{\epsilon,m}, \mathcal{L}_{\epsilon,m})$ of (Y, B_{ϵ}) .
- Comparison of slopes

$$\begin{split} \mathbf{E}^{\mathrm{NA}}(\phi_{\epsilon,m}) &\geq \mathbf{E}'^{\infty}(\Phi_{\epsilon}) \quad \text{(true since Y is smooth)} \\ \lim_{\epsilon \to 0} \mathbf{E}'^{\infty}(\Phi_{\epsilon}) &= \mathbf{E}'^{\infty}(\Phi) \quad \text{(key convergence)} \\ \lim_{\epsilon \to 0} \mathbf{L}'^{\infty}(\Phi_{\epsilon}) &= \mathbf{L}'^{\infty}(\Phi) \quad \text{(key convergence)} \end{split}$$

2-parameters chain of contradiction:

$$\begin{split} -1 &= \mathbf{E}'^{\infty}(\Phi) \geq \mathbf{L}'^{\infty}(\Phi) \leftarrow \mathbf{L}'^{\infty}(\Phi_{\epsilon}) \leftarrow \mathbf{L}^{\mathrm{NA}}(\phi_{\epsilon,m}) \\ \geq_{\mathrm{Stab.}} & (1 - \gamma_{\epsilon})\mathbf{E}^{\mathrm{NA}}(\phi_{\epsilon,m}) \geq (1 - \gamma_{\epsilon})\mathbf{E}'^{\infty}(\Phi_{\epsilon}) \rightarrow (1 - \gamma)\mathbf{E}'^{\infty}(\Phi) \end{split}$$

① Valuative criterion for \mathbb{G} -uniform stability: $\exists \delta > 1$, s.t.

$$\inf_{v \in X_{\mathbb{Q}}^{\mathrm{div}}} \sup_{\xi \in N_{\mathbb{R}}} \left(A_X(v_{\xi}) - \delta S_L(v_{\xi}) \right) \ge 0. \tag{14}$$

 $\textbf{②} \ \ \mathsf{Non\text{-}Archimedean} \ \ \mathsf{metrics} \longleftrightarrow \mathsf{functions} \ \mathsf{on} \ \ \mathcal{X}^{\mathrm{div}}_{\mathbb{Q}}.$

$$\phi_{\xi}(v) = \phi(v_{\xi}) + \theta(\xi), \quad \theta(\xi) = A_X(v_{\xi}) - A_X(v).$$
 (15)

- **3** Reduce the infimum (resp. supremum) to "bounded" subsets of $X^{\text{div}}_{\mathbb{Q}}$ (resp. $N_{\mathbb{R}}$) (use *Strong Openness Conjecture*)
- Oelicate interplay between convexity and coerciveness of Archimedean and non-Archimedean energy.

3-parameters approximation argument: Don't follow!

$$\mathbf{E}'^{\infty}(\Phi) \geq \mathbf{L}'^{\infty}(\Phi) + O(k^{-1})$$

$$\leftarrow \mathbf{L}'^{\infty}(\Phi_{\epsilon}) + O(\epsilon, k^{-1})$$

$$\leftarrow \mathbf{L}^{\mathrm{NA}}(\phi_{\epsilon,m}) + O(\epsilon, m^{-1}, k^{-1})$$

$$= A(v_{k}) + \phi_{\epsilon,m}(v_{k})$$

$$= A(v_{k,-\xi_{k}}) + \phi_{\epsilon,m,-\xi_{k}}(v_{k,\xi_{k}})$$

$$\geq \delta S_{L_{\epsilon}}(v_{k,-\xi_{k}}) + \phi_{\epsilon,m,-\xi_{k}}(v_{k,\xi_{k}})$$

$$\geq \delta \mathbf{E}^{\mathrm{NA}}(\delta^{-1}\phi_{\epsilon,m,-\xi})$$

$$\geq (1 - \delta^{-1/n})\mathbf{J}^{\mathrm{NA}}(\phi_{\epsilon,m,-\xi_{k}}) + \mathbf{E}^{\mathrm{NA}}(\phi_{\epsilon,m,-\xi_{k}})$$

$$= (1 - \delta^{-1/n})\mathbf{\Lambda}^{\mathrm{NA}}(\phi_{\epsilon,m,-\xi_{k}}) + \delta^{-1/n}\mathbf{E}^{\mathrm{NA}}(\phi_{\epsilon,m,-\xi_{k}})$$

$$\geq (1 - \delta^{-1/n})\mathbf{\Lambda}'^{\infty}(\Phi_{\epsilon,-\xi_{k}}) + \delta^{-1/n}\mathbf{E}'^{\infty}(\Phi_{\epsilon,-\xi_{k}})$$

$$= (1 - \delta^{-1/n})\mathbf{J}'^{\infty}(\Phi_{\epsilon,-\xi_{k}}) + \mathbf{E}'^{\infty}(\Phi_{\epsilon,-\xi_{k}})$$

$$\geq (1 - \delta^{-1/n})\mathbf{J}'^{\infty}(\Phi_{\epsilon,-\xi_{k}}) + \mathbf{E}'^{\infty}(\Phi_{\epsilon,-\xi_{k}})$$

$$\geq (1 - \delta^{-1/n})\mathbf{J}'^{\infty}(\Phi_{\epsilon,-\xi_{k}}) + \mathbf{E}'^{\infty}(\Phi_{\epsilon,-\xi_{k}})$$

$$\geq (1 - \delta^{-1/n})\mathbf{J}'^{\infty}(\Phi_{\epsilon,-\xi_{k}}) + \mathbf{E}'^{\infty}(\Phi_{\epsilon,-\xi_{k}})$$

Metric structures from KE potentials

Question: Do (weak) KEs induce "good" metric structures? Partial answer: Yes for orbifolds (Song-Tian). In general they have orbifold singularities away from $\operatorname{codim}_{\mathbb{C}}$ 3 subvariety (**Li**-Tian).

• Related to [Rong-Zhang, Song, Tian-Zhang, Tian-Wang, ...]

Theorem (**Li**-Tian-Wang '17)

If X admits a good (e.g. crepant) resolution and is K-(poly)stable, then X admits a KE metric. Moreover, the metric completion of $(X^{\mathrm{reg}}, \omega_{\mathrm{KE}})$ is homeomorphic to X.

• KE Fano varieties from Gromov-Hausdorff (GH) limits:

$$(M_i, \omega_{i, \text{KE}}) \longrightarrow (X, d_X).$$

X is a \mathbb{Q} -Fano variety with a weak KE (Donaldson-Sun, Tian).

Metric tangent cones (MTC) on GH Fano limits

Question: What does the metric look like near the singularities? 1st order approximation of the metric structure (Cheeger-Colding):

$$C_{X}X := \lim_{r_{k} \to 0+}^{p-GH} \left(X, x, \frac{d_{X}}{r_{k}}\right)$$

Donaldson-Sun: $C_x X$ is homeomorphic to an affine variety and uniquely determined by the (unknown) *metric* structure.

Conjecture (Donaldson-Sun)

 C_xX depends only on the algebraic structure of the germ $x \in X$.

Normalized volume on any klt singularity

 $\operatorname{Val}_{X,x}$: space of real valuations centered at $x \in X$.

Definition (Li'15, the normalized volume)

$$\begin{array}{ccc} \widehat{\mathrm{vol}} := \widehat{\mathrm{vol}}_{X,x} : \mathrm{Val}_{X,x} & \longrightarrow & \mathbb{R}_{>0} \cup \{+\infty\} \\ v & \mapsto & A_X(v)^n \cdot \mathrm{vol}(v). \end{array}$$

Properties/Remarks:

- $\widehat{\mathrm{vol}}(x,X) := \inf \widehat{\mathrm{vol}}(v) > 0$ coincides with volume density (GMT) on GH limits. (Hein-Sun, **Li**-Xu)
- 2 This is an "anti-derivative" of Futaki invariant, motivated by Martelli-Sparks-Yau's study of Sasaki-Einstein.
- 3 Related to previous works of de-Fernex-Ein-Mustață.

Minimizing normalized volumes

Conjecture (Proposed by Li, Li-Xu)

- (i) \forall klt germ $x \in X$, \exists a minimizer v_* unique up to scaling.
- (ii) v_* is regular: quasi-monomial, finitely generated associated graded ring s.t. $\operatorname{Spec}(\operatorname{gr}_{v_*}(\mathcal{O}_{X,x}))$ is a K-semistable Fano cone.
 - Existence: Blum (uses coerciveness estimate from Li'15)
 - Uniqueness:
 - Divisorival minimizers are plt blow-ups and unique (Li-Xu '16)
 - f.g. quasi-monomial minimizers are unique (Li-Xu '17).
 - Regularity of minimizer:
 - True for valuations from GH limits (by Donaldson-Sun)
 - Quasi-monomial (Xu '19 by using Birkar's boundedness)

Examples

- $\widehat{\operatorname{vol}}(0,\mathbb{C}^n/G) = \frac{n^n}{|G|}$.
- Toric case: minimizing the volume of convex bodies.

Example:

$$X = \text{AffCone}(S = Bl_p \mathbb{P}^2, -K_S)$$

 $v = (\frac{4-\sqrt{13}}{3}, \frac{4-\sqrt{13}}{3}, 1)$
 $\widehat{\text{vol}}(x, X) = \frac{46+13\sqrt{13}}{12}$

• 3-dim
$$A_{k-1}$$
: $X = \{z_1^2 + z_2^2 + z_3^2 + z_4^k = 0\} \subset \mathbb{C}^4$.

k	$0 \le k \le 3$	k = 4 (Li -Sun'12)	$k \geq 5$
minimizer	(k, k, k, 2)	(2, 2, 2, 1)	(2, 2, 2, 1)
degeneration	X (stable)	X(semistable)	$\mathbb{C}^2/\mathbb{Z}_2 imes\mathbb{C}$ (stable)
MTC	X	$\mathbb{C}^2/\mathbb{Z}_2 imes \mathbb{C}$	$\mathbb{C}^2/\mathbb{Z}_2 imes \mathbb{C}$

Application of normalized volumes

Theorem (Donaldson-Sun's conjecture, **Li**-Xu '17, **Li**-Wang-Xu '18)

For any x on GH limit, \exists a unique valuation $v_* \in \operatorname{Val}_{X,x}$ satisfying:

- $\mathbf{0}$ v_* minimizes $\widehat{\mathrm{vol}}$ and v_* is "regular".
- ② $\operatorname{gr}_{v_*}\mathcal{O}_{X,x}$ uniquely degenerates to a K-polystable Fano cone which coincides with the MTC C_xX .

This allows to determine metric tangent cones a priori without knowing metric structures. Other connections/applications:

- Torus-equivariant criterions for the K-semistability and K-polystability (Li, Li-Liu, Li-Wang-Xu)
- ② Bound the singularities of K-semistable Fano varieties (Liu) and application to moduli problem (Liu-Xu, Spotti-Sun)
- 2-dimensional logarithmic normalized volume is equal to Langer's local orbifold Euler number (Borbon-Spotti, Li'18)

Thanks for your attention!