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Special test configuration and
K-stability of Fano varieties

By Chi Li and Chenyang Xu

Abstract

For any flat projective family (X ,L)→ C such that the generic fibre Xη
is a klt Q-Fano variety and L|Xη ∼Q −KXη , we use the techniques from

the minimal model program (MMP) to modify the total family. The end

product is a family such that every fiber is a klt Q-Fano variety. Moreover,

we can prove that the Donaldson-Futaki invariants of the appearing models

decrease. When the family is a test configuration of a fixed Fano variety

(X,−KX), this implies Tian’s conjecture: given X a Fano manifold, to

test its K-(semi, poly)stability, we only need to test on the special test

configurations.
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This article is motivated by studying Tian’s conjecture, which says that

to test K-(semi, poly)stability we only need to consider the test configurations

whose special fibers are Q-Fano varieties. It consists of two parts. In the first

part, inspired by Tian’s conjecture, we obtain our main result on the existence

of special degenerations of Fano varieties. In the second part, we apply the

result from the first part to study K-stability of Fano varieties. In particular,

we give an affirmative answer to Tian’s conjecture.

Part 1. Family of Fano Varieties

Through out this part, we work over an algebraically closed field that is

of characteristic 0.
1. Introduction: main results

1.1. Degenerations of Fano varieties. For various questions, especially for

compactifying the moduli spaces, people are interested in the degenerations

of varieties. When the varieties have positive canonical classes, i.e., they are

canonically polarized, this question has attracted much interests. The one di-

mensional case, namely, the degeneration of smooth curves of genus at least 2,

has been understood well after Deligne-Mumford’s work [DM69]. The study of

higher dimensional case by an analogous strategy was initiated more than two

decades ago (see [KSB88], [Ale96]). Using the recent monumental progress on

the minimal model program of [BCHM10] and many other work, the funda-

mental aspects of this theory are close to being completely settled. See Kollár’s

survey paper [Kol13] for more details. One essential point of such varieties hav-

ing a nice moduli theory is that they carry natural polarizations, namely, their

canonical classes.

Another class of varieties carrying natural polarization is the class of Fano

varieties, whose canonical classes are negative. However, such varieties behave

quite differently with the canonically polarized varieties. For example, there

exists a family of Fano manifolds, whose general fibers are isomorphic to a

given Fano manifold, but the complex structure jumps at the special fibers

(see, e.g., [Tia97, §7], [PP10, 2.3]). This means that the functor of Fano

manifolds in general is not separated. Nevertheless, even without knowing the
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uniqueness we can still ask generally whether a ‘nice’ degeneration exists. Of

course, this depends on the meaning of ‘nice.’ In this paper, we are looking

for degenerations satisfying two properties.

First, the degenerate fibers should be mildly singular and still with neg-

ative canonical classes. Recall that a variety X is called a Q-Fano variety if

it only has klt singularities (see [KM98] for the meaning of the terminology)

and −KX is ample. In particular, a Q-Fano variety is normal. This class of

varieties plays a central role in birational geometry. From many viewpoints, it

has a similar behavior as Fano manifolds.

Definition 1. Let f : (X ,L) → C be a flat projective morphism over a

smooth curve, where X is normal and L is an f -ample Q-line bundle. We call

(X ,L)→ C a polarized generic Q-Fano family if there exists a nonempty open

set C∗ ⊂ C such that for any t ∈ C∗, Xt is klt and L|X ∗ ∼Q,C∗ −KX ∗ . In this

case, we say C∗ parametrizes nondegenerate fibers. If we can choose C∗ = C,

then we call f : (X ,−KX/C)→ C a Q-Fano family,

We remark that a family being Q-Fano is a more restrictive condition than

being flat with every fiber Q-Fano, because we also need that the canonical

divisor of the global family is Q-Cartier. Given a polarized generic Q-Fano

family (X ,L) → C, there exists a maximal open set C∗ ⊂ C parametrizing

nondegenerate fibers. Conversely, given a Q-Fano family X ∗ over C∗ and

C∗ ⊂ C where C is a smooth curve, using the properness of the Hilbert scheme,

we easily see X ∗ can be extended to be a generic Q-Fano family over C.

Second, we want our total family to minimize the following invariant,

which is motivated by the intersection number interpretation (see [Wan12,

Oda13a] or Section 8.1) of the original DF invariant defined for a test configu-

ration (see Definitions 3 and 5). We refer to [Fut83], [FS90], [DT92], [Tia97],

[Don02], [PT], [PT09] and Remark 1 in Section 7 for background and history

about this important invariant.

Definition 2 (Donaldson-Futaki invariant). Let L be a relative nef R-line

bundle on X over a proper smooth curve C. We assume that there is a

nonempty open set C∗ ⊂ C, such that for any t ∈ C∗, Xt is klt and L|X ∗ ∼R,C∗

−rKX ∗ , which is ample over C∗. We define the Donaldson-Futaki invariant

(or DF invariant) to be

(1) DF(X/C,L) =
1

2(n+ 1)(−KXt)n

Ç
(n+ 1)KX/C ·

Å
1

r
L
ãn

+

Å
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r
L
ãn+1

å
.

This is proportional to the CM degree, which is the degree of the CM line

bundle (see, e.g., [PT09]). It is a very important invariant for studying the

family of Fano varieties whose positivity has not been fully understood. We

refer Section 7 for more background, especially its relation with the existence

of Kähler-Einstein metric.
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Now we can state our main theorem, which roughly says a certain ‘nice’

degeneration exists.

Theorem 1. Assume that (X ,L) → C is a polarized generic Q-Fano

family over a smooth proper curve C . Let C∗ ⊂ C parametrize nondegenerate

fibers. We can construct a finite morphism φ : C ′ → C from a nonsingular

curve C ′, a Q-Fano family (X s,Ls := −KX s) → C ′ and a birational map

X s 99K X ×C C ′ that induces an isomorphism between the restrictions

(X s,Ls)|φ−1(C∗)
∼= (X ,L)|C∗ ×C C ′

such that

DF(X s/C ′,−KX s) ≤ deg(φ) ·DF(X/C,L),

and the equality holds for the construction only if (X ,L) → C is a Q-Fano

family.

1.2. Outline of the proof. In this subsection, we explain our strategy. The

main idea of showing Theorem 1 is to modify a given a polarized generic Q-Fano

family and then to use the intersection formula to analyze the variation of

Donaldson-Futaki invariants under modifications of the test configurations.

When the polarized generic Q-Fano family arises from a test configuration,

the authors in [RT07] and [ADVLN12] have also studied how to simplify a

given test configuration. In particular, by using the (equivariant) semistable

reduction theorem from [KKMSD73], it was shown (cf. [ADVLN12]) that any

K-unstable polarized variety (X,L) can be destablized by a test configuration

whose central fibre X tc
0 is (reduced) simple normal crossing. In our article, we

will apply the machinery of minimal model program with scaling to modify

this semistable test configuraton. As far as we know, the idea of applying the

modern birational geometry to study K-stability algebraically is first contained

in Odaka’s work (see [Oda13b]). Here we carry out a more refined study of the

change of Donaldson-Futaki invariants under various birational modifications

coming from MMP when X is Fano.

Our first observation is that the DF invariants of the polarizations always

decrease along the direction of the canonical class of the test configuration. Of

course, when we deform the polarization along the canonical class for a long

enough time, we may hit the boundary of ample cone. Then MMP allows us

to change the model and enables us to continue the deformation. So as long

as it is before the pseudo-effective threshold, we still get polarizations but on

some new models. In fact in birational geometry, this process is precisely the

minimal model program with scaling, which is a central theme in many recent

works; see, e.g., [BCHM10].
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On the other hand, we can show if we run an MMP from the semi-stable

model with the scaling of a suitably perturbed polarization, at the pseudo-

effective threshold point we contract all but one components and end with a

special test configuration. Since, by our observation, the Donaldson-Futaki in-

variants decrease along the sequence of MMP with scaling, this indeed finishes

the proof of the K-semistable case.

However, to prove the K-stable case, we have to eliminate the perturbation

term appearing when we perturb the polarization. This is more involved and

therefore we have to take a more delicate process. In fact we have to divide

the modification process into three steps.

Step 1. We first apply semi-stable reduction and run a relative MMP of

this semi-stable family over X . Then we achieve a model X lc that is the log

canonical modification of the base change of (X ,X0). We define the polariza-

tion Llc on X lc to be the sum of the pull back of the original polarization and a

small positive multiple of KX lc ; i.e., the new polarization on KX lc is obtained

by deforming the original one along the direction of the canonical class. Thus

by our observation, we can check that the DF-invariants decrease. We note

that the idea of running the MMP by passing through the log canonical modi-

fication is inspired by Odaka’s work (see [Oda13a]). But here we only need to

compute the derivative of the DF invariants. In Odaka’s work [Oda13a], as he

was studying the K-stability problem for general polarized varieties, a subtler

estimate involving in terms of higher order was needed.

Theorem 2. Let (X ,L) → C be a polarized generic Q-Fano family over

a proper smooth curve, with C∗ ⊂ C parametrizing the nondegenerate fibers.

Then we can construct a finite morphism φ : C ′ → C and a polarized generic

Q-Fano family (X lc,Llc)→ C ′ with the following properties :

(1) There is a birational morphism X lc → X ×C C ′, which is isomorphic over

φ−1(C∗).

(2) For every t ∈ C ′, (X lc,X lc
t ) is log canonical.

(3) There is an inequality

DF(X lc/C ′,Llc) ≤ deg(φ) ·DF(X/C,L).

Moreover, the equality holds for our construction if and only if (X ,Xt) is

log canonical for every t ∈ C , in which case X lc is isomorphic to X ×C C ′.

Step 2. Next, we will run the minimal model program with scaling. By

letting l > 0 be a sufficiently large integer, we can assume that Hlc = Llc −
(l + 1)−1(K lc

X + Llc) is ample. Thus we can run KX lc-MMP with scaling of

Hlc over C starting from the polarization KX lc + (l + 1)Hlc = lLlc. It follows

from [BCHM10] that the sequence of KX lc-MMP with scaling of Hlc over C

will decrease the scaling factor until the pseudo-effective threshold is reached.
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We denote its anti-canonical model by X ac. Since this is again deforming the

polarization along the direction of the canonical class, we can also check that

the DF invariants are continuously decreasing when we scale down the scaling

factor. So we have the following theorem.

Theorem 3. Let (X lc,Llc) → C be a polarized generic Q-Fano family

over a proper smooth curve, with C∗ ⊂ C parametrizing the nondegenerate

fibers. We assume that (X lc,X lc
t ) is log canonical for any t ∈ C . Then we can

construct a polarized generic Q-Fano family (X ac,Lac)→ C that is isomorphic

to (X lc,Llc) over C∗ such that −KX ac ∼Q,C Lac, (X ac,X ac
t ) is log canonical

for any t ∈ C and

DF(X ac/C,Lac) ≤ DF(X lc/C,Llc),

with the equality holding for our construction if and only if (X ac,Lac)∼=(X lc,Llc).

Step 3. At this point, MMP of X ac with scaling of Lac ∼Q,C −KX ac will

not produce any new model. Instead of running MMP, now we apply the

technique of extending Q-Fano varieties. So after possibly a base change, we

obtain a Q-Fano family X s that is isomorphic over the base that parametrizes

nondegenerate fibers. Furthermore, from our construction of Q-Fano extension,

we know that X s
t is a divisor whose discrepancy with respect to X ac is 0.

Thus we can extract X s
t on X ac to get a model X ′ such that −KX ′ is

relatively big and nef, and X ′ 99K X s is a birational contraction. We observe

that, over those models whose anti-canonical class is proportional to the polar-

ization over the base, the DF invariant is just a linear function with negative

leading coefficient on the volume of the anti-canonical class. Thus we easily

see it decreases from X ′ to X s.

Theorem 4. Let (X ac,Lac) → C be a polarized generic Q-Fano family

over a proper smooth curve, where C∗ ⊂ C parametrizes nondegenerate fibers.

We assume that (X ac,X ac
t ) is log canonical for any t ∈ C and −KX ac ∼Q,C Lac.

Then after a finite base change φ : C ′ → C , we can construct a Q-Fano family

(X s,−KX s)→ C ′, which is isomorphic to (X ac,Lac)×CC ′ over φ−1(C∗), such

that

DF(X s/C ′,−KX s) ≤ deg(φ) ·DF(X ac/C,−KX ac),

and the equality holds for our construction if and only if (X s,−KX s) is a Q-

Fano family.

Finally, we outline the organization of Part 1. In Section 2, we review the

results that we need from birational geometry and MMP. At the end we prove

Theorem 6, which is a weaker form of Theorem 1 and will be needed for the

proof of the general case. In Section 3, 4 and 5, we prove Theorem 2, 3 and

4 respectively. In Section 6, we put them together to obtain Theorem 1 the

main theorem.
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2. MMP and birational models

In this section, we give a few definitions as well as briefly introduce some

preliminary results, especially the results in the minimal model program. Then

we prove Theorem 6, which can be considered as a weaker version of Theo-

rem 1. Later this form is needed for the purpose of calculating the variance of

Donaldson-Futaki invariants and thus to address the main theorem.

2.1. Notation and Conventions. We follow [KM98] for the standard ter-

minologies of birational geometry. In particular, see [KM98, 0.4] for the defi-

nitions of general concepts and [KM98, 2.34, 2.37] for the definitions of klt, lc

and dlt singularities.

A smooth variety Y that is flat over a smooth curve C is called a semi-

stable family if for any t ∈ C, (Y, Yt) is simple normal crossing.

Assume that X is proper over S. For any Q-divisor D on X, we denote

⊕mf∗(OX(bmDc)) by R(X/S,D). A Q-Cartier Q-divisor L on X is called rel-

atively semi-ample if for sufficiently divisible m > 0, f∗f∗OX(mL)→ OX(mL)

is surjective.

Assume that f : (X,∆) → S is a log canonical pair projective over S,

where KX + ∆ is big and semi-ample over S. Then we know R(X/S,KX + ∆)

is a finitely generated OS-algebra, and we define

Y = ProjR(X/S,KX + ∆)

as the relative log canonical model of (X,∆) over S. We say Xm is a good

minimal model of (X,∆) over S if h : X 99K Xm is a minimal model of (X,∆)

over S and KXm + h∗∆ is relatively semi-ample.

Let (X,∆) be a normal pair; i.e., X is a normal variety and ∆ =
∑
ai∆i

is a Q-divisor with distinct prime divisors ∆i and rational numbers ai. Assume

0 ≤ ai ≤ 1. We say that a birational projective morphism f : Y → (X,∆) gives

the log canonical modification of (X,∆) if with the divisor ∆Y = f−1
∗ (∆) +Elc

on Y , the pair (Y,∆Y ) satisfies

(1) (Y,∆Y ) is log canonical, and

(2) KY + ∆Y is ample over X.

Here Elc denotes the sum of f -exceptional prime divisors with coefficients 1.

Let X → Y be a dominant morphism between normal varieties. A prime

divisor E of X is called horizontal if E dominates Y ; otherwise it is called

vertical. Given any divisor E, we can uniquely write E = Ev +Eh, where the

horizontal part Eh consists of all the horizontal components and the vertical

part Ev consists of all the vertical components.

For a model • (e.g., X ) over C and 0 ∈ C a point, we denote by •0 its

fiber over 0.
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2.2. MMP with scaling. In this subsection, we briefly introduce the con-

cept of MMP with scaling and summarize the results that we will need later.

For more details see, e.g., [BCHM10].

Let (X,∆)/S be a klt pair that is projective over S. Let H be an ample

class on X. Let λ ≥ 0 be a positive number such that KX +∆+λH is nef over

S. For instance, we can take λ� 0. Denote (X0,∆0) := (X,∆) and λ0 = λ.

Suppose we have defined a klt pair (Xi,∆i) that is projective over S, a

Q-divisor H i on Xi, and a positive number λi such that KXi + ∆i + λiH
i is

nef over S. We first define

(2) λi+1 = min{λ|KXi + ∆i + λH i is nef over S}.

If λi+1 = 0, then we stop. Otherwise, suppose we can choose a (KXi + ∆i)-

negative extremal ray R ⊂ NE(Xi/S), with R · (KXi + ∆i + λi+1H
i) = 0.

Assume that the extremal contraction induced by R is birational. Then we let

Xi+1 be the variety obtained by the (KXi + ∆i)-flip or divisorial contraction

over S with respect to the curve class R (cf. [KM98, §3.7]) and ∆i+1 (resp.

H i+1) the push-forward of ∆i (resp. H i) to Xi+1. It is obvious that λ0 ≥ λ1 ≥
· · · ≥ λi ≥ · · · . We call this sequence

(X0,∆0) 99K (X1,∆1) 99K · · · 99K (Xi,∆i) 99K · · ·

a sequence of (KX + ∆)-MMP with scaling of H, λ the scaling factor and H

the scaling divisor class (or the scaling divisor for abbreviation).

From the definition, we know that for any t ∈ [λi+1, λi], KXi +∆i+ tH i is

nef over S. Moreover, if t ∈ [λi+1, λi), then Xi is a relatively minimal model of

(X,∆+tH) over S because for j ≤ i, the step Xj−1 99K Xj of (KX +∆)-MMP

is also a step for (KX + ∆ + tH)-MMP.

We need the following results.

Theorem 5. With the above notation, let (X,∆) be a klt pair that is

projective over S. There exists a finite number i such that

(1) if ∆ is big and KX+∆ is pseudo-effective over S, then after i steps, λi = 0

and KXi + ∆i is semi-ample over S;

(2) if KX + ∆ is not pseudo-effective, then after i steps, λi > 0 is equal to

the pseudo-effective threshold (see [BCHM10, 1.1.6] for the definition) of

KX + ∆ with respect to H , which is a rational number. Furthermore, if

we let i be the smallest index such that λi is equal to the pseudo-effective

threshold, then Xi−1 is a good minimal model of (X,∆ + λiH) over C .

Proof. In (2), running (KX + ∆)-MMP with scaling of H is the same

as running (KX + ∆ + (λi − ε)H)-MMP with scaling of H for 0 < ε < λi.

Therefore these statements follow from [BCHM10, 1.1.7, 1.3.3 and 1.4.2]. �
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Proposition 1. Let (Y,∆Y ) be a klt pair projective over a smooth curve

C with a relative ample class L. We assume that we can write KY + ∆Y +

L ∼Q,C E = Eh + Ev ≥ 0 such that the horizontal part Eh is exceptional

for a birational morphism Y → X , and the vertical part Ev can be written as∑
aiE

v
i where ai > 0, and Supp(

∑
Evi ) does not contain any fiber. Then we

have the following :

(1) The (KY + ∆Y + L)-MMP with scaling of L will yield a model Y i such

that KY i + ∆Y i +Li ∼Q 0, where ∆Y i and Li are the push forward of ∆Y

and L on Y i.

(2) The divisors contracted by Y 99K Y i are precisely Supp(E), and Li on Y i

is relatively big and nef over C .

Proof. From the assumption, we know that the pseudo-effective threshold

of (Y,∆Y )/C with respect to L is 1. Then by Theorem 5(2), this sequence

of MMP yields a good minimal model Y i of KY + ∆Y + L over C. Since

KY i + ∆Y i + Li is semi-ample, the map Y 99K Y i contracts precisely the

divisorial component in B(KY + ∆Y + L/C), which is Supp(E). In fact, it

is easy to see this for the components in Eh since they are exceptional for a

birational morphism. For Ev, by our assumption, it is of the insufficient fiber

type (cf. [Lai11, 2.9]), so by [Lai11, 2.10] it is contained in

B−(KY + ∆Y + L/C) ⊂ B(KY + ∆Y + L/C).

From the definition of MMP with scaling, we see that for any t ∈ [λi+1, λi],

KY i + ∆Y i + tLi is nef. Since KY i + ∆Y i + Li ∼Q,C 0 and by our assumption

λi > λi+1 = 1, then Li is nef over C. �

2.3. Log canonical modification and Q-Fano extension. Let f∗ : X ∗ → C∗

be a flat projective morphism, X ∗ a klt variety and C∗ the germ of a smooth

curve. Let C be a smooth curve such that C∗ = C \ {0}. Let X be a normal

compacitifcation of X ∗ that is projective over C such that X ∗ = X ×C C∗. We

first show a general result of the existence of the log canonical modification

for the variety fibered over a curve. In fact, the log canonical modification is

known to exist under more general assumptions (see, e.g., [OX12]). Here we

just give a proof of the case that we need for the reader’s convenience.

Proposition 2. With the above notation, assume that (X ,X0) admits

a log resolution Y such that Y0 is reduced simple normal crossing. Then the

log canonical modification X lc → (X ,X0) exists and satisfies (X lc,X lc
0 ) is log

canonical.

Proof. Let π : Y → (X ,X0) be a log resolution. If we write B to be the

reduced divisor Ex(π), it is well known that it suffices to show that (Y, B +

π−1
∗ X0) has a relative log canonical model over X (see [OX12, Lemma 2.2]).
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Write

π∗KX ∗ + F ∗ = KY∗ + E∗,

where F ∗ and E∗ are effective and without common components. Let E be

the closure of E∗ in Y. Now we consider the pair (Y, E + δG), where G

is the sum of the π-exceptional divisors whose centers are over C∗ and 0 <

δ � 1 such that (Y, E + δG) is klt. Then it follows from [BCHM10] that

R(Y/X ,KY + E + δG) is a finitely generated OX -algebra. By taking Proj,

we obtain a model φ : Y 99K X lc over X . The model X lc is isomorphic to

ProjR(Y/X ,KY +E + δG+Y0) since Y0 is the pull back of a divisor from X .

Because D = B + π−1
∗ X0 − E − δG − Y0 ≥ 0 is an effective divisor, we

know that

KY +B + π−1
∗ X0 − φ∗φ∗(KY + E + δG+ Y0)

≥ KY +B + π−1
∗ X0 − (KY + E + δG+ Y0) ≥ 0.

Since φ contracts G, which is the same as Supp(D), we easily see this implies

that there is an isomorphism

R(Y/X ,KY + π−1
∗ X0 +B) ∼= R(Y/X ,KY + E + δG+ Y0).

Hence we see X lc is indeed the log canonical modification of (X ,X0) and

(X lc,X lc
0 ) is log canonical as φ∗(E + δG+ Y0) = X lc

0 . �

Next we study degenerations of Fano varieties.

Example 1 (Degenerations of cubic surfaces). Let us consider a family of

cubic surfaces

X = (tf3(x, y, z, w) + sxyz = 0) ⊂ P(x, y, z, w)× P(s, t),

where f3 (resp. g3) is a general degree 3 homogeneous polynomial of x, y, z and

w (resp. x, y and z). Projecting to the second factor, X are families of cubic

surfaces over A1 whose general fibers are smooth.

Now we modify X in the following way: First we blow up the point

(0, 0, 0, 1) ∈ X0 =
3∑
i=1

Ei = (xyz = 0) ⊂ P3

to get X ′ and we denote the exceptional divisor by S0
∼= P2. The fiber X ′0 has

multiplicity 3 along S0. Each birational transform of Ei is isomorphic to the

P1-bundle P(O ⊕O(1)) over P1.

Next we take a degree 3 base change P[s1, t1]→ P[s, t] that sends t (resp. s)

to t31 (resp. s3
1). Let X̃ be the normalization of X ′×P1P1. The pre-image S1 of S0

in X̃ is the degree 3 cover branched over the intersection of E and the birational

transform of
∑3
i=1Ei, which is isomorphic to (xyz = 0) ⊂ P(x, y, z) ∼= S0.

Hence S1 is a cubic surface with three A2 singularities. We can contract the
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preimage of the birational transform T of
∑3
i=1Ei and get a model X s. It is

easy to see that X s
0
∼= S1.

This construction can indeed be generalized to arbitrary polarized generic

Q-Fano families in the following sense.

Theorem 6 (Q-Fano extension). Let f : X → C be a projective morphism

over a smooth curve C . Assume that X ∗ = X ×C C∗ is a klt variety, where

C∗ = C \ {0}. We assume that there exists an ample Q-divisor L on X such

that L|X ∗ ∼Q,C∗ −KX ∗ and X ∗t is a Q-Fano variety for any t ∈ C∗.
(1) There is a finite morphism φ : C ′ → C and a klt variety X s projective over

C ′ such that the restriction of X s to the preimage φ−1(C∗) is isomorphic to

X ∗×C C ′ and all fibers Xt is Q-Fano variety. In particular, Xt is normal.

(2) Moreover, if we assume that fac : X = X ac → C is a normal compactifica-

tion such that Lac = −KX ac is anti-ample and for any t ∈ C , (X ac,X ac
t ) is

log canonical. We can indeed get a Q-Fano extension X s in (1) such that

the divisor X s
t as a valuation over X̃ ac := X ×C C ′ has the discrepancy

a(X s
t ; X̃ ac) = 0.

Proof. Let φ : C ′ → C be a finite base change such that X ×C C ′ yields a

semi-stable log resolution π : Y → X ×C C ′. We can assume that Y yields an

exceptional divisor A that is π-ample. Let π∗ be the restriction of π over C∗.

By abuse of notation, we will identify C = C ′ and X ∗ = X ×C C ′∗.
Write π∗(KX ∗) + F ∗ = KY∗ + Γ∗, where Γ∗, F ∗ > 0 are effective divisors

without common components; by our assumption, the coefficients of Γ∗ are

less than 1. Let Γ, F be the closures of Γ∗ and F ∗. Let ε be a sufficiently small

positive number such that LY := π∗L + εA is ample. We write A = A1 + A2

such that A2 precisely consists of the vertical components that are over 0. By

perturbing LY and reordering the components, we can assume that if we write

KY + LY + Γ ∼Q,C (εA1 + F ) + (εA2 +B)

with B supported on the fibers Y0 =
∑
Ej and B + εA2 =

∑k
j=1 ajEj , then

aj > a1 if j > 1, where Ej (1 ≤ j ≤ k) are all the components of Y0.

Let G be the sum of the prime divisors that are π-exceptional divisors

whose centers are in X ∗. By choosing ε� δ � 1, we assume that δG+εA1 ≥ 0

and its support is equal to G. We run (KY +LY + Γ + δG)-MMP over X with

scaling of LY . By adding multiples of fibers, we can also assume that a1 = 0

in the above formula. Because

(KY + LY + Γ + δG) ∼Q,C (δG+ εA1 + F ) + (εA2 +B − a1Y0) ≥ 0,

whose support restricting on Y∗ contains all the exceptional divisors for

Y∗ → X ∗, we can apply Proposition 1 and conclude this sequence of MMP
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terminates with a model Xm satisfying that KXm + Lm ∼Q,C 0, the only re-

maining component over 0 is the birational transform of E1 and Lm is big

and nef. Thus we can define X s to be ProjR(Xm/C,−KXm). Over C∗, since

Y∗ 99K Xm∗ contracts the same components as the ones of Y∗ → X ∗, thus

Xm∗(:= Xm×C C∗) 99K X ∗ is isomorphic in codimension 1. Hence we see that

X ∗ = ProjR(X ∗/C∗,L|X ∗) ∼= ProjR(Xm∗/C∗,Lm|Xm∗) = X s∗.

Representing LY by a general Q-divisor, we can assume that (Y,Γ + δG+

Y0+LY) is dlt. The MMP sequence is also a sequence of (KY+Γ+δG+Y0+LY)-

MMP, thus (Xm,Xm
0 +Lm) is dlt. This implies that (Xm,Xm

0 ) is dlt since Xm

is Q-factorial. As Xm
0 is irreducible, this indeed says (Xm,Xm

0 ) is plt, and so

(X s,X s
0) is plt. By adjunction, we know X s

0 is klt. This finishes the proof of (1).

For (2), we apply the same line of argument. We first choose X = X ac.

Then we know that we can write KY + Γ = π∗(KX ac) +F +B, where B is over

{0}. Since (X ac,X ac
0 ) is log canonical, X ac is canonical along X ac

0 . So B ≥ 0,

whose support is the union of those divisors Ej ⊂ Y0 such that a(Ej ,X ac) > 0.

Now we have

KY + LY + Γ + δG ∼Q,X B + F + εA1 + εA2 + δG,

whose vertical part over {0} is B + εA2. Thus by choosing 0 < ε � 1, we

can assume that after a small suitable perturbation, the divisor E1 having

the smallest coefficient a1 is not contained in Supp(B); i.e., it satisfies that

a(E1,X ac) = 0. Then from the proof of (1), Xm
0 will be the birational image

of such E1. �

As investigated in [Kol07a], [HX09], the component E1 constructed in this

way has many interesting geometric properties. Since any Q-Fano variety is

rationally connected (see [Zha06]), the argument that we just presented indeed

gives a new proof of [HX09, Th. 3.1], which was originally obtained by applying

Hacon-McKernan’s extension theorem as in [HM07].

2.4. The Zariski lemma. Using this intersection formula, in the follow-

ing work we need the higher dimensional analogue of the Zariski lemma for

surfaces.

Lemma 1. Let X → C be a projective dominant morphism from an

n-dimensional normal variety to a proper smooth curve. Let E be a Q-divisor

whose supports is contained in a fiber X0. Let L1, . . . ,Ln−2 be n−2 nef divisors

on X . Then

E2 · L1 · · · Ln−2 ≤ 0.

If all Li’s are ample, then the equality holds if and only if E = tX0 for some

t ∈ Q.
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Proof. When n = 2, this is the well-known Zariski lemma (see, e.g.,

[BHPVdV04, III.8.2]). We note that since E is not necessarily Q-Cartier,

here we have to use the intersection theory on normal surfaces developed by

Mumford (see [Mum61]). For n > 2, as a nef bundle is the limit a sequence

of ample Q-line bundles, we can assume all Li are ample Q-line bundles. Re-

placing Li by a multiple, we assume Li to be very ample. Adding a suitable

multiple of the fiber, we can assume that E ≥ 0 and its support does not

contain Supp(X0). Therefore, we can cut X by n − 2 general sections in |Li|
(1 ≤ i ≤ n− 2) and reduce the question to the case when n = 2. �

3. Decreasing of DF invariant for the log canonical modification

Let (X ,L)→ C be a polarized generic Q-Fano family. It is easy to see all

our operations will be local over C, so to simplify the notation, without loss

of generality we will just denote one degenerate fiber to be X0 and argue in a

neighborhood of it.

In this section, we aim to verify Theorem 2. In fact, we will calculate

the DF invariants on the log canonical modification X lc → X . We start from

the line bundle πlc∗L that is the pull back of the polarization on X , whose

DF invariant is equal to the original one. Since KX lc is relative ample, if we

deform πlc∗L along the direction KX lc sufficiently small amount, then we get

an ample bundle on X lc. As this is a deformation along the canonical class,

we can show the DF invariants decrease along this deformation.

Proposition 3. With the above notation, if X lc is not isomorphic to X ,

then we can choose a polarization Llc on X lc such that

DF(X lc/C,Llc) < DF(X/C,L).

Proof. By definition, KX lc is πlc-ample. We choose the relatively πlc-ample

Q-divisor

E = KX lc + πlc∗(L).

Then E is Q-linearly equivalent to a divisor whose support is contained in

X lc
0 . Since for sufficiently small rational ε, Llc

t = πlc∗L + tE is ample for any

0 < t < ε, we see that (X lc,Llc)→ C is also a polarized generic Q-Fano family.

Using the formula, we compute the derivative at t0 ∈ (0, ε):

d

dt
DF(X lc/C,Llc

t )|t0 = n(n+ 1)C0 ·
Ä
(Llc

t0)n · E +KX lc · (Llc
t0)n−1 · E

ä
= C1 · (Llc

t0)n−1 · E ·
Ä
Llc
t0 +KX lc

ä
= C1 · (Llc

t0)n−1 · E2,

where C0 and C1 are positive numbers. By Lemma 1, the intersection (Llc
t0)n−1 ·

E2 ≤ 0 and it is zero if and only if E = KX lc + πlc∗L is Q-linearly equivalent
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to aX lc
0 for some a. But this implies that X lc ∼= X since KX lc ∼Q,X E is

πlc-ample. �

Proof of Theorem 2. First we can take the base change X ×CC ′ such that

its normalization X̃ admits a semi-stable reduction Y. In particular, X̃0 is

reduced. Let φX : X̃ → X be the natural finite morphism, and let L̃ = φ∗XL.

We first note that

Claim 1. deg(C ′/C) · DF(X/C,L) ≥ DF(X̃/C ′, L̃). Furthermore, the

equality holds if and only if X0 is reduced.

Indeed, by the pull-back formula for the log differential, we haveKX̃+X̃0 =

f∗(KX + red(X0)) and KC′ + {0′} = φ∗(KC + {0}). So

KX̃/C′ = f∗(KX/C + (red(X0)−X0)),

and the claim follows from the projection formula.

Now it follows from Proposition 2 that the log canonical modification

πlc : X lc → X̃ exists and satisfies that πlc is an isomorphism over φ−1(C∗).

Then Proposition 3 shows that

DF(X̃/C ′, L̃) ≥ DF(X lc/C ′,Llc).

If (X ,X0) is log canonical, then X0 is reduced and (X̃ , X̃0) is log canonical

(cf. [KM98, 5.20]), which implies X lc ∼= X̃ ; therefore the equality holds.

Conversely, deg(φ)·DF(X/C,L) = DF(X lc/C ′,Llc) is equivalent to saying

the above two inequalities are indeed equalities. By Proposition 3 and the

above claim, this holds only if X0 is reduced and X lc ∼= X̃ , which implies

(X̃ , X̃0) is log canonical. Since

φ∗X (KX + X0) = KX̃ + X̃0,

it follows that (X ,X0) is also log canonical (see [KM98, 5.20]). �

4. MMP with scaling

In this section, we aim to prove Theorem 3. We will apply the idea that the

Donaldson-Futaki invariants decrease if we deform the polarization along the

direction of the canonical class of the total family in ‘a long time’ process. To

keep the deformed line bundle being a polarization, we have to do a sequence

of surgeries on the family. In algebraic geometry, this surgery is given by the

MMP with scaling. (See [BCHM10] and Section 2.2.)

4.1. Running MMP. By taking l > 0 to be a sufficiently large integer, we

can make Hlc = Llc − (l + 1)−1(Llc + K lc
X ) ample. Let λ0 = l + 1. We let

X 0 = X lc, L0 = Llc and H0 = Hlc. Then KX 0 + λ0H0 = lLlc is relatively

ample.
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Given an exceptional divisor E, if its center dominates C, then a(E,X 0) >

−1 because X ∗ is klt; if its center is vertical over C, then a(E,X 0) ≥ 0 since

(X 0,X 0
t ) is log canonical for any t in C. In particular, X 0 is klt. To simplify

the family, we run a sequence of KX 0-MMP over C with scaling of H0 as in

Section 2.2. So we obtain a sequence of models

X 0 99K X 1 99K · · · 99K X k.

Recall that, as in Section 2.2, we have a sequence of critical value of scaling

factors

λi+1 = min{λ | KX i + λHi is nef over C},

with l + 1 = λ0 ≥ λ1 ≥ · · · ≥ λk > λk+1 = 1. Note that λk+1 = 1 is

the pseudo-effective threshold of KX 0 with respect to H0 over C since it is

the pseudo-effective threshold for the generic fiber. Any X i appearing in this

sequence of KX 0-MMP with scaling ofH0 is a relative weak log canonical model

of (X 0, tH0) for any t ∈ [λi, λi+1]. (See [BCHM10, 3.6.7] for the definition of

weak log canonical model.)

For λ > 1, we denote

(3) Lλ =
1

λ− 1
(KX 0 + λH0).

Let Liλ (resp. Hi) be the push forward of L0 (resp. H0) to X i. As is clear from

the context, this should not be confused with the i-th power or intersection

product of Lλ (resp. H). We note that by definition, L0
l+1 = L0.

Given a λ, we will be interested in those i that satisfy the condition that

λi ≥ λ ≥ λi+1. Note that

(4) KX i + Liλ =
λ

λ− 1

Ä
KX i +Hi

ä
.

Lemma 2. −KXk ∼Q,C Lkλk is big and semi-ample over C .

Proof. Since λk > λk+1 = 1, by (4),

KXk + Lkλk ∼Q
λk

λk − 1

Ä
KXk +Hk

ä
.

This line bundle is relatively nef over C, and its restriction to the generic fiber

is trivial, so it is Q-linearly equivalent to a linear sum of components of X k0 .

By its nefness, we can apply Lemma 1 to get

KXk + Lkλk ∼Q,C 0.

By (3), Lkλk is proportional to KXk + λkHk, which is big because λk > 1.

From the relative base-point free theorem (cf. Theorem 3.3 in [KM98]), it is

semi-ample over C. �
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By the above lemma, we can define

X ac = ProjR(X k/C,Lkλk) = ProjR(X k/C,−KXk/C).

Since (X 0,X 0
0 ) is log canonical and X 0

0 = (f ◦πlc)∗({0}), this is also a sequence

of (KX 0 + X 0
0 )-MMP, and thus (X k,X k0 ) is log canonical, which implies that

(X ac,X ac
0 ) is log canonical as well.

4.2. Decreasing of DF-invariant. For any λ > 1, the restriction of KX 0 +

λH0 over C∗ is relatively ample. So the MMP with scaling does not change

X 0 ×C C∗; i.e., X 0 ×C C∗ ∼= X i ×C C∗ for any i ≤ k.

Note that by the above lemma and projection formula,

DF(X k/C,Lkλk) = DF(X k/C,−KXk) = DF(X ac/C,−KX ac).

So Theorem 3 follows from the following proposition.

Proposition 4. With the notation as above, we have

DF(X 0/C,L0) ≥ DF(X k/C,Lkλk) = DF(X k/C,−KXk).

The first equality holds if and only if h : X 0 99K X k is an isomorphism.

To prove Proposition 4, we first study how DF invariants change when we

run MMP with scaling and modify the polarization correspondingly.

4.2.1. Decreasing of DF on a fixed model. Assume that X 0
0 =

∑
j∈I Ej ,

where the Ej ’s are the prime divisors. Since (X 0,L0
λ) ×C C∗ is isomorphic to

(X 0 ×C C∗,−KX 0×CC∗), there exist aj(λ) ∈ R such that

KX 0 + L0
λ ∼R,C

∑
j∈I

aj(λ)Ej .

On X i, for any rational number λ > 1 satisfying λi ≥ λ ≥ λi+1, we

know Liλ is big and semi-ample. Let Zλ be the relative log canonical model of

(X 0, λH0) over C. Then there is a morphism πλ : X i → Zλ and a relatively

ample Q-divisor Mλ on Zλ whose pull back is

1

λ− 1
(KX i + λHi) = Liλ.

Lemma 3. If λi≥ a > b≥λi+1 and b > 1, then DF(X i,Lia) ≥ DF(X i,Lib).
The inequality is strict if there is a rational number λ ∈ [a, b] such that the push

forward of
∑
j∈I aj(λ)Ej to Zλ is not a multiple of the pull back of 0 ∈ C on

Zλ.
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Proof. We compute the derivative of the DF invariants in a way similar

to Propostion 3:

d

dλ
DF(X i/C,Liλ) =C0

Ä
(Liλ)n−1 · (Liλ)′ · (Liλ +KX i)

ä
=− C0

λ(λ− 1)
(Liλ)n−1 ·

Ä
KX i + Liλ

ä2
=− C0

λ(λ− 1)
(Liλ)n−1 ·

Ñ∑
j∈I

aj(λ)Ej

é2

,

where C0 is a positive constant. Then Lemma 3 follows from Lemma 1. �

4.2.2. Invariance of DF at contraction or flip points. If λi+1 > 1, then by

the definition of MMP with scaling, we pick up a KX i-negative extremal ray

[R] in NE(X i/C) such that R · (KX i + λi+1Hi) = 0. We perform a birational

transformation

X i
f i //

  

Y i

~~
P1,

which contracts all curves R′ whose classes [R′] are in the ray R>0[R]. There

are two cases:

(1) (Divisorial Contraction). If f i is a divisorial contraction, then X i+1 = Y i.
Since f i is a (KX i+λi+1Hi)-trivial morphism by the definition of the MMP

with scaling, we have

KX i + λi+1Hi = (f i)∗(KYi + λi+1Hi+1),

which implies

Liλi+1
= (f i)∗Li+1

λi+1
.

Then it follows from Definition 2 and the projection formula that

DF(X i/C,Liλi+1
) = DF(X i+1/C,Li+1

λi+1
).

(2) (Flipping Contraction). If f i is a flipping contraction, let φi : X i 99K X i+1

be the flip:

X i
φi //

−KX i is f i-ample

f i

  

X i+1

KX i+1 is f i+-ample

f i+

||
Y i.

As f i is a KX i + λi+1Hi-trivial morphism, KX i + λi+1Hi = (f i)∗DYi for

some divisor DYi . Since f i, f i+, φi are isomorphisms in codimension 1, we
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also have KX i+1 + λi+1Hi+1 = (f i+)∗DYi . Therefore, using the projection

formula, we see that

DF(X i/C,KX i+λi+1Hi) = DF(Y i/C,DYi) = DF(X i+1/C,KX i+1 +λi+1Hi+1).

Now we can finish the proof of Proposition 4.

Completion of proof of Proposition 4. By the discussion in 4.2.1 and 4.2.2,

we have

DF(X 0/C,L0
λ0

) ≥ DF(X 0/C,L0
λ1

)

= DF(X 1/C,L1
λ1

) ≥ DF(X 1/C,L1
λ2

)

· · · · · · · · ·
= DF(X i/C,Liλi) ≥ DF(X i/C,Liλi+1

)

= DF(X i+1/C,Li+1
λi+1

) ≥ DF(X i+1/C,Li+1
λi+2

)

· · · · · · · · ·
= DF(X k/C,Lkλk) = DF(X k/C,−KXk).

We proceed to characterize the equality case. Since −KXk ∼Q,C Lkλk is

relatively nef over C, we conclude that fk−1 : X k−1 → X k can only be a

divisorial contraction. Therefore, h : X 0 99K X k contracts at least one divisor

if it is not an isomorphism.

Since X k is a minimal model of (X 0,H0) (see Theorem 5(2)), we know

that

0 < E = KX 0 +H0 − h∗(KXk +Hk) ∼Q,C KX 0 +H0,

which is supported on the fiber over 0. From the fact that the support of E is

a proper subset of X 0
0 , it follows that KX 0 +H0 is not Q-linearly equivalent to

0 over C; i.e., the equality condition of Lemma 3 cannot hold on X lc. Thus a

for sufficiently small rational number ε,

DF(X lc/C,Llc) = DF(X 0/C,L0
λ0

) > DF(X 0/C,L0
λ0−ε) ≥ DF(X k/C,Lkλk). �

5. Revisiting of Q-Fano extension

Let us continue the study of Example 1.

Example 2. We use the notation of Example 1. Since KX is of bidegree

(−1,−1),

DF(X/P1,−KX ) = − 1

2(n+ 1)(−KXt)n
(−KX/P1)n+1 =

4

9
.
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Using the intersection formula, we easily see

DF(X̃/P1,−KX̃ ) = DF(X̃/P1,−(KX̃ + X̃0))

= 3 ·DF(X ′/P1,−(KX ′ + X ′0))

= 3 ·DF(X/P1,−(KX + X0))

= 3 ·DF(X/P1,−KX )

=
4

3
.

Since KX̃ |S1 = (KX̃ + X̃0)|S1 is trivial, we calculate

DF(X s/P1,−KX s) =
1

18
(KX s/P1)3

=
1

18
(KX̃/P1 − T )3 =

1

18
(KX̃/P1 − X̃0 + S1)3

=
4

3
− 1

18
(9− 3) < 3 ·DF(X/P1,−KX ).

Therefore, we see that if we normalize the DF invariants by dividing the degree

of the base change, then our process in this example decreases this normalized

DF invariant.

From the discussion of the last section, we achieve a model X ac over C

with polarization Lac that compactifies X ∗/C∗ such that Lac ∼Q,C −KX ac and

(X ac,X ac
t ) is log canonical for any t ∈ C. We cannot run an MMP directly from

X ac to get X s. Instead we will resolve X ac again and run MMP. More precisely,

by Theorem 6(2), we know that there exists φ : C ′ → C with a Q-Fano family

X s/C ′. We will show this is our final Q-Fano family by verifying the decreasing

of the DF invariant.

Using the notation in Theorem 6, a(X s
0 ; X̃ ac) = 0 implies

a(X s
0 ; X̃ ac, X̃ ac

0 ) = −1

since X̃ ac
0 is Cartier and (X̃ ac, X̃ ac

0 ) is log canonical. Then for any number

λ ∈ [0, 1], we know that

a(X s
0 ; X̃ ac, λX̃ ac

0 ) = −λ.

In particular, there exists a model π′ : X ′ → X̃ ac that precisely extracts the

divisor X s
0 (cf. [BCHM10, 1.4.3]). Since a(X s

0 ; X̃ ac) = 0, we know π′∗(KX̃ ac) =

KX ′ . Then by the projection formula,

DF(X ′/C ′,−KX ′) = DF(X̃ ac/C ′,−KX̃ ac) = deg(φ) ·DF(X ac/C,−KX ac).

Proposition 5. We have the inequality

DF(X ′/C ′,−KX ′) ≥ DF(X s/C ′,−KX s),
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and the equality holds if and only if the rational map X̃ an 99K X s is an iso-

morphism.

Proof. By abuse of notation, we identify C and C ′, X ac and X̃ ac. Using

the intersection formula, we have that

DF(X ′/C,−KX ′/C) = − 1

2(n+ 1)(−KXt)n
(−KX ′/C)n+1.

Similarly,

DF(X s/C,−KX s/C) = − 1

2(n+ 1)(−KXt)n
(−KX s/C)n+1.

Let p : X̂ → X ′ and q : X̂ → X s be a common log resolution, and write

(π′ ◦ p)∗(KX ac) = p∗KX ′ = q∗KX s + E.

Since X ′ 99K X s is a birational contraction, by negativity lemma (cf. [KM98,

3.39]), we conclude that E ≥ 0. For 0 ≤ λ ≤ 1, let

f(λ) = (−p∗KX ′/C + λE)n+1.

Then for any 0 ≤ λ ≤ 1,

df(λ)

dλ
= (n+ 1)E · (−p∗KX ′ + λE)n

= (n+ 1)E · (−(1− λ)p∗KX ′ − λq∗KX s)n

≥ 0

since −(1− λ)p∗KX ′ − λq∗KX s is relatively nef over C. Thus

DF(X ′/C ′,−KX ′) ≥ DF(X s/C ′,−KX s).

We analyze when the equality holds. If E = 0, then

X ac ∼= ProjR(X ′/C,−KX ′/C) ∼= ProjR(X s/C,−KX s/C) = X s.

So we may assume that the effective Q-divisor E is not equal to 0.

Next we assume that X ac is isomorphic to X s in codimension 1. Thus for

any divisor D on X ac,

R(X ac/C,D) ∼= R(X s/C,DX s),

where DX s is the push forward of D to X s. In particular, if we let D = −KX ac ,

we again have

X ac ∼= ProjR(X ac/C,−KX ac/C) ∼= ProjR(X s/C,−KX s/C) = X s.

Thus we can assume that E > 0 and X ac is not isomorphic to X s in codimen-

sion 1. Then we claim that

(5) f(0) < f(λ)

for any 1 > λ > 0.
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In fact, since X s
0 is irreducible, from the above discussion we may assume

that there exists a component E1 ⊂ X ac
0 such that the birational transform

Ê1 of E1 on X̂ is contracted under X̂ → X s. As −KX ac is ample on E1,

−(π′ ◦ p)∗KX ac is nontrivial on the generic fiber of Ê1 → centerX s(E1). This

implies Ê1 ⊂ Supp(E) (cf. [KM98, 3.39]). Denote the coefficient of Ê1 in E to

be a > 0. Then

df(λ)

dλ

∣∣∣∣∣
λ=0

= (n+ 1)E · (−p∗KX ′)n

≥ (n+ 1)aÊ1 · (−p∗KX ′)n

= (n+ 1)aE1 · (−KX ac)n

> 0.

Since f(λ) is nondecreasing on λ ∈ [0, 1] and its derivative at 0 is positive, we

easily see f(λ) > f(0) for any λ ∈ (0, 1]. �

6. Proof of Theorem 1

In this section, we finish proving Theorem 1 by combining the three steps

proved in Theorem 2, Theorem 3 and Theorem 4.

Proof of Theorem 1. Let (X ,L) be any polarized generic Q-Fano family.

Note that, in particular, we assume X is normal.

Then it follows from Theorem 2 that, after a base change φ : C ′ → C,

we get a polarized generic Q-Fano family (X lc,Llc) satisfying the properties

stated in Theorem 2. Letting l > 0 be a sufficiently large integer, we can run a

sequence of KX lc-MMP over C with scaling of Hlc = Llc−(l+1)−1(KX lc +Llc)

as in Section 4. We obtain a model X k → C ′ where −KXk is relatively big and

semi-ample. Therefore, it admits an anti-canonical model X ac that satisfies

the condition that (X ac,X ac
t ) is log canonical for every t ∈ C ′. Finally, after

a base change C ′′ → C ′, we construct a Q-Fano family X s → C ′′. After base

change to C ′′, all our models after base change are isomorphic over C∗×C C ′′.
For the DF invariants,

deg(C ′/C) ·DF(X/C,L) ≥ DF(X lc/C ′,Llc) (by Theorem 2)(6)

≥ DF(X ac/C ′,−KX ac) (by Theorem 3)(7)

≥ 1

deg(C ′′/C ′)
DF(X s/C ′′,−KX s) (by Theorem 4).(8)

By Theorem 4, the equality in (8) holds if and only if X̃ ac = X s. Assume

that t′′ ∈ C ′′ is mapped to t′ ∈ C ′; then (X ac,X ac
t′ ) is plt if and only if (X̃ ac, X̃ ac

t′′ )

(see [KM98, 5.20]), which then implies that X ac is a Q-Fano family over C ′.

By Theorem 3, the equality in (7) holds if and only if X lc = X ac and

Llc = Lac.
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Finally by Theorem 2, the equality in (6) holds if and only if (X ,Xt) is log

canonical for any t ∈ C and X lc ∼= X×CC ′. As (X lc,X lc
t ) ∼= (X s,X s

t ) is a plt for

any t ∈ C ′ and Llc ∼Q,C′ −KX lc , this implies that (X ,Xt) is plt for any t ∈ C
(cf. [KM98, 5.20]) and L ∼Q,C −KX ; i.e., X is a Q-Fano family over C. �

Part 2. Application to KE Problem

In this part, we consider the application of Theorem 1 to the study of

K-stability of Fano varieties and existence of Käbler-Einstein metric.

7. Introduction: K-stability from Kähler-Einstein problem

A fundamental problem in Kähler geometry is to determine whether there

exists a Kähler-Einstein metric on a Fano manifold X, i.e., to find a Kähler

metric ωKE in the Kähler class c1(X) satisfying the equation

Ric(ωKE) = ωKE.

This is a variational problem. Futaki [Fut83] found an important invariant as

the obstruction to this problem. Then Mabuchi [Mab86] defined the K-energy

functional by integrating this invariant. This is a Kempf-Ness type function

on the infinite dimensional space of Kähler metrics in c1(X). The minimizer of

the K-energy is the Kähler-Einstein metric. Tian [Tia97] proved that, under

some restriction on the automorphism group, there is a Kähler-Einstein metric

if and only if the K-energy is proper on the space of all Kähler metrics in

c1(X). So the problem is how to test the properness of the K-energy.

Tian also developed a program to reduce this infinite dimensional prob-

lem to finite dimensional problems. More precisely, he proved in [Tia90] that

the space of Kähler metrics in a fixed Kähler class can be approximated

by a sequence of spaces consisting of Bergman metrics. The latter spaces

are finite dimensional symmetric spaces. Tian ([Tia97]) then introduced the

K-stability condition using the generalized Futaki invariant ([DT92]) for testing

the properness of K-energy on these finitely dimensional spaces. Later Don-

aldson [Don02] reformulated it by defining the Futaki invariants algebraically

(see (9)), which is now called the Donaldson-Futaki invariant. The following

folklore conjecture is the guiding question in this area.

Conjecture 1 (Yau-Tian-Donaldson conjecture). Let X be a Fano man-

ifold. Then there is a Kähler-Einstein metric in −c1(X) if and only if (X,−KX)

is K-polystable.1

1In the recent remarkable works, Tian and Chen-Donaldson-Sun announced proofs of this

conjecture [Tiaa], [CDSa], [CDSb], [CDSc]. Their results also imply Corollary 1 below.



SPECIAL TEST CONFIGURATION 219

See [Tia12] for more detailed discussion for the Kähler-Einstein problem.

In the following we will recall the definition of K-stability. First we need

to define the notion of test configuration.

Definition 3. (1) Let X be an n-dimensional Q-Fano variety. Assume

that −rKX is Cartier for some fixed r ∈ N. A test configuration of (X,−rKX)

consists of

• a variety X tc with a Gm-action;

• a Gm-equivariant ample line bundle Ltc → X tc;

• a flat Gm-equivariant map π : (X tc,Ltc) → A1, where Gm acts on A1

by multiplication in the standard way (t, a)→ ta

such that for any t 6= 0, (X tc
t ,Ltc

t ) is isomorphic to (X,−rKX), where X tc
t =

π−1(t) and Ltc
t = Ltc|X tc

t
.

(2) Fix r ∈ Q>0. We call (X tc,Ltc) a Q-test configuration of (X,−rKX)

if Ltc is a Q-Cartier divisor class on X tc such that for some integer m ≥ 1,

(X tc,mLtc) yields a test configuration of (X,−mrKX).

Obviously we can rescale the polarization of any test configuration to

obtain a Q-test configuration of (X,−KX).

Similarly to the notion of Q-Fano family, we have the following definition.

Definition 4. A normal Q-test configuration (X tc,Ltc) of (X,−KX) is

called a special Q-test configuration if Ltc ∼Q −KX tc and X tc
0 is a Q-Fano

variety. Whenever there is no ambiguity, we will also abbreviate it as a special

test configuration.

For any Q-test configuration, we can define the Donaldson-Futaki invari-

ant. First by the Riemann-Roch theorem, for sufficiently divisible k ∈ N, we

have

dk = dimH0(X,OX(−kKX)) = a0k
n + a1k

n−1 +O(kn−2)

for some rational numbers a0 and a1. Let (X tc
0 ,Ltc

0 ) be the restriction of

(X tc,Ltc) over {0}. Since Gm acts on (X tc
0 ,Ltc⊗k

0 ), Gm also acts on the space

of holomorphic sections H0(X tc
0 , kLtc

0 ). We denote the total weight of this

action by wk. By the equivariant Riemann-Roch Theorem,

wk = b0k
n+1 + b1k

n +O(kn−1).

So we can expand

wk
kdk

= F0 + F1k
−1 +O(k−2).
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Definition 5 ([Don02]). The (normalized) Donaldson-Futaki invariant

(DF-invariant) of the Q-test configuration (X tc,Ltc) is defined to be

(9) DF(X tc,Ltc) = −F1

a0
=
a1b0 − a0b1

a2
0

With the normalization in (9), we easily see for any a ∈ Q>0, DF(X tc,Ltc)

= DF(X tc, aLtc).

Remark 1. We have the following remarks about Donaldson-Futaki in-

variant:

(1) From the differential geometry side, Ding and Tian [DT92] defined the gen-

eralized Futaki invariants by extending the original differential geometric

formula of Futaki [Fut83] from smooth manifolds to normal varieties. On a

normal Q-Fano variety, the differential geometric definition coincides with

the above algebraic definition. This was proved by Donaldson [Don02] in

the smooth case. The calculation via equivariant forms in [Don02] is also

valid in the normal case, because the codimension of singularities on a

normal variety is at least two.

(2) In [PT] and [PT09], Paul and Tian proved that the Donaldson-Futaki in-

variant is the same as the total Gm-weight of the CM line bundle, which was

introduced to give a GIT formulation of K-stability. See [FS90], [Tia97],

[PT], [PT09] for details.

As we will show in Section 8.1, by adding a ‘trivial fiber’ over the point

∞ ∈ P1, we can compactify a Q-test configuration (X tc,Ltc)→ A1 to obtain a

polarized generic Q-Fano family (X̄ tc/P1, L̄tc). By comparing the DF invariant

and DF invariant, we have the equality

DF(X̄ tc/P1, L̄tc) = DF(X tc,Ltc),

which explains the origin of our terminology.

If we apply our Theorem 1 to this case, it specializes to the following

result.

Theorem 7. Let X be a Q-Fano variety and (X tc,Ltc) a test configura-

tion of (X,−KX). We can construct a special test configuration (X st,−KX st)

and a positive integer m such that

mDF(X tc,Ltc) ≥ DF(X st,−KX st).

Furthermore, if we assume that X tc is normal, then the equality holds for our

construction only when (X tc,Ltc) itself is a special test configuration.

This corollary will be applied to study K-stability, which we define as

follows.
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Definition 6. Let X be a Q-Fano variety.

(1) X is called K-semistable if for any Q-test configuration (X tc,Ltc) of

(X,−KX), we have DF(X tc,Ltc) ≥ 0.

(2) X is called K-stable (resp. K-polystable) if for any normal Q-test con-

figuration (X tc,Ltc) of (X,−KX), we have DF(X tc,Ltc) ≥ 0, and the

equality holds only if (X tc,Ltc) is trivial (resp. only if X tc ∼= X × A1).

Remark 2. We have the following remarks for the definitions of K-stability

and K-polystability.

(1) Though the notions of K-stability can be stated for a general singular va-

riety X with −KX being Q-Cartier and ample, in [Oda13b], Odaka shows

that for such a variety, if it is K-semistable, it can only have klt singulari-

ties.

(2) In the definitions of K-polystability and K-stability, for the triviality of

the test configuration with Donaldson-Futaki invariant 0, we require the

test configuration to be normal. This is slightly different with the original

definition. However, we believe this should be the right one. For more

details, see Section 8.2. It is a consequence of [RT07, 5.2] that we only

need to consider normal test configurations for K-semistability as well.

All these notions of test configurations, Donaldson-Futaki invariants and

K-(semi,poly)-stability can be defined for a general polarized projective vari-

ety (X,L). A more general version of Conjecture 1 predicts the equivalence

between the K-polystability of a polarized manifold (X,L) and the existence

of a constant scalar curvature Käbler metric in c1(L). Nevertheless, in this

paper, except in Section 8.2 we mainly consider the notion of K-stability for

the Kähler-Einstein problem on Fano varieties.

In [Tia97], where Tian gave the original definition of the K-stability in

the analytic setting, he only considered test configurations with normal cen-

tral fibers. Later he conjectured that (see [Tiab]) for Fano manifolds, even

with Donaldson’s definition, one still only needs to consider those test config-

urations with normal central fibers. This is motivated by compactness results

for Kähler-Einstein manifolds (See [CCT02]).

As an immediate consequence of Corollary 7, we verify Tian’s conjecture.

In fact, it suffices to consider an even smaller class of test configurations,

namely, the test configurations whose central fibers are Q-Fano.

Corollary 1 (Tian’s conjecture). Assume that X is a Q-Fano variety. If

X is destablized by a test configuration, then X is indeed destablized by a special

test configuration. More precisely, the following two statements are true:

(1) (K-semistability). If X is not K-semi-stable, then there exists a spe-

cial Q-test configuration (X st,−KX st) with a negative Futaki invariant

DF(X st,−KX st) < 0.
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(2) (K-polystability). Let X be a K-semistable variety. If X is not K-poly-

stable, then there exists a special Q-test configuration (X st,−KX st) with

Donaldson-Futaki invariant 0 such that X st is not isomorphic to X × A1.

8. Donaldson-Futaki invariant and K-stability

In this section, we will concentrate on the study of Donaldson-Futaki

invariants of a test configuration, which is algebraically defined by Donald-

son [Don02]. In the first subsection, we recall the fact that for a given test

configuration (X tc,Ltc) → A1, its Donaldson-Futaki invariant coincides with

the Donaldson-Futaki invariant of the natural compactification (X̄ tc, L̄tc) →
P1. This characterization of the Donaldson-Futaki invariants first appears in

Wang’s work [Wan12]. A different proof was also given in [Oda13a]. In the

second subsection, we correct a small inaccuracy in the original definition of

K-polystability in literatures.

8.1. Intersection formula for the Donaldson-Futaki invariant. Given any

test configuration (X tc,Ltc), we first compactify it by gluing (X tc,Ltc) with

(X× (P1 \{0}), p∗1L). It is known that the Donaldson-Futaki invariant is equal

to the DF invariant on this compactified space as defined in Definition 2 (see

[Wan12, Oda13a]). We will present a proof for reader’s convenience.

Example 3. Gm acts on (X,L−1) = (P1,OP1(−1)) by

t ◦ ([Z0, Z1], λ(Z0, Z1)) = ([Z0, tZ1], λ(Z0, tZ1)).

In particular, the Gm-weights on

OP1(−1)|0,OP1(1)|0,OP1(−1)|∞ and OP1(1)|∞
are 0,0,1 and -1. Let τ0 = Z1, τ∞ = Z0 be the holomorphic sections of OP1(1).

Then the Gm-weights of τ0 and τ∞ are −1 and 0.

Take X̄ = P(OP1(1) ⊕ OP1) and L̄ = OX̄ (1) = OD∞ , where D∞ is the

divisor at infinity. We see that (X tc := X̄ \ P1
∞,Ltc := L̄|X tc) yields a test

configuration of (X,L). Then H0(P1, L⊗k) is of dimension dk = k + 1 and by

the calculation in the first paragraph, the total Gm-weight of H0(P1, L⊗k) is

wk = −1
2(k2 + k). We know D2

∞ = −1 and K−1
X̄ ·D∞ = 1. So

wk =
D2
∞
2
k2 +

(
K−1
X̄ ·D∞

2
− 1

)
k,

DF(X tc,Ltc) =
D2
∞
2
−
(
K−1
X̄ ·D∞

2
− 1

)
(= 0).

This example illustrates general cases (see (11), (12)). In the following we

will use Donaldson’s argument (see the proof of Proposition 4.2.1 in [Don02])

to get the general intersection formula for DF invariant.
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First note that, after identifying the fiber X tc
1 over {1} and X, we have

an equivariant isomorphism:

(X tc\X tc
0 ,Ltc) ∼= (X × (A1 \ {0}), p∗1L)

by (p, a, s) → (a−1 ◦ p, a, a−1 ◦ s). Therefore, Gm acts on the right-hand side

by

t ◦ ({p} × {a}, s) = ({p} × {ta}, s)

for any p ∈ X, a ∈ A1 and s ∈ Ltc
p . The gluing map is given by

(X tc,Ltc) (X × P1 \ {0}, p∗1L)⋃ ⋃
(X tc\X tc

0 ,Ltc) −→ (X × (A1 \ {0}), p∗1L)

(p, a, s) 7−→ ({a−1 ◦ p} × {a}, a−1 ◦ s),

where Gm only acts by multiplication on the factor P1\{0} of (X×P1\{0}, p∗1L).

Definition 7. Using the above gluing map, from a test configuration

(X tc,Ltc) of (X,−rKX), we get a generic Q-Fano family π̄ : (X̄ tc, 1
r L̄

tc)→ P1,

which we call ∞-trivial compactification of the test configuration.

In what follows, we will denote (X̄ tc, L̄tc) by (X̄ , L̄) for simplicity. Note

that there exists an integer N such that M̄ = L̄ ⊗ π̄∗(OP1(N · {∞})) is ample

on X̄ (cf. [KM98, 1.45]).

We need the following weak form of the Riemann-Roch formula whose

proof is well known.

Lemma 4. Let X be an n-dimensional normal projective variety and L

an ample divisor on X then

dimH0(X,L⊗k) =
Ln

n!
kn +

1

2

(−KX) · Ln−1

(n− 1)!
kn−1 +O(kn−2).

We define

dk = dimH0(X,L⊗k) =: a0k
n + a1k

n−1 +O(kn−2)

Proposition 6. Let (X tc,Ltc) be a test configuration of (X,−rKX). As-

sume that X tc is normal. Then

(10) DF(X tc,Ltc) = DF(X̄/P1, L̄).



224 CHI LI and CHENYANG XU

Proof. For k � 0, by the Serre Vanishing Theorem, we have two exact

sequences:

A B C

‖ ‖ ‖

0 −→ H0(X̄ ,M̄⊗k(−X tc
0 ))

⊗σ0−→ H0(X̄ ,M̄⊗k) −→ H0(X̄0,M̄⊗k|X tc
0

) −→ 0

0 −→ H0(X̄ ,M̄⊗k(−X̄∞))
⊗σ∞−→ H0(X̄ ,M̄⊗k) −→ H0(X̄∞,M̄⊗k|X̄∞ ) −→ 0,

‖ ‖ ‖

A B D

where σ0, σ∞ are sections of π̄∗OP1(1) that are the pull back of the divisors

{0}, {∞} on P1.

We can assume that the Gm-weights of σ0 and σ∞ are −1 and 0. Note

the first terms in the two exact sequences are the same as A := H0(X̄ ,M̄⊗k ⊗
π̄∗OP1(−1)). We have the equation: wB = wA − dA + wC = wA + wD, where

we denote dA and wA to be the dimension and the Gm-weight of the vector

space A and similarly for dB, wC etc. Since the Gm-weight of OP1(1)|∞ is -1

and Gm acts on L̄|X̄∞ trivially, we have wD = −kNdimH0(X̄∞, L̄⊗k|X̄∞). So

we get

wC = dA + wD = dB − dC − kNdD = dB − (kN + 1)dC .

Since Gm acts trivially onOP1(1)|0, we get the Gm-weight onH0(X tc
0 ,M̄⊗k|X tc

0
)

= H0(X tc
0 ,Ltc⊗k|X tc

0
):

wk = dimH0(X̄ ,M̄⊗k)− (kN + 1) dimH0(X tc
0 ,Ltc⊗k|X tc

0
).

Expanding wk, we get

wk = b0k
n+1 + b1k

n +O(kn−1),

with

(11) b0 =
M̄n+1

(n+ 1)!
−Na0 =

L̄n+1

(n+ 1)!

and

(12) b1 =
1

2

(−KX̄ ) · M̄n

n!
−Na1 − a0 =

1

2

(−KX̄ ) · L̄n

n!
− a0.
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By substituting the coefficients into (9), we get

a1b0 − a0b1
a2

0

=
1

(n+ 1)!a0

Å
a1

a0
L̄n+1 +

n+ 1

2
KX̄ · L̄n

ã
+ 1

=
1

(n+ 1)rn(−KX)n

Å
n

2r
L̄n+1 +

n+ 1

2
KX̄ · L̄n

ã
+ 1

=
1

2(n+ 1)(−KX)n

Å
n(

1

r
L̄)n+1 + (n+ 1)KX̄/P1 · (

1

r
L̄)n
ã

= DF(X̄/P1, L̄). �

Remark 3.

(1) As the above proof shows, Donaldson’s formula of Futaki invariant in the

toric case (Proposition 4.2.1 in [Don02]) is a special example of the intersec-

tion formula. This intersection formula is also related to the interpretation

of Donaldson-Futaki invariant as the CM-weight in [PT].

(2) When (X tc,Ltc)→ A1 is a test configuration, where we only assume Ltc to

be relative big and semi-ample Q-line bundle, this definition of Donaldson-

Futaki invariant using intersection numbers DF(X̄ tc/P1, L̄tc) still coincides

with the definition via computing the Gm-weights of cohomological groups

as in [ADVLN12]. For more details, see [RT07] and [ADVLN12].

8.2. Normal test configuration. It follows from [RT07, 5.1] or [ADVLN12,

3.9] that if n : (X ′, n∗L)→ (X ,L) is a finite morphism between test configura-

tions of a polarized projective variety (X,L) that is an isomorphism over C∗,
then

DF(X ′,L′) ≤ DF(X ,L),

and the equality holds if and only if n is an isomorphism in codimension 1.

So to make the definition of K-polystablity reasonable, we need to identify the

test configurations that are isomorphic in codimension 1. Alternatively, when

X is normal (resp. S2), we could only consider test configurations X that are

normal (resp. S2) as in Definition 6.

The following easy example shows that pathological nontrivial test con-

figurations, which are trivial in codimension 1, do occur.

Example 4. Let (X,L) = (P1,OP1(3)). Consider the test configuration

X ⊂ P3 × A1 = P(x, y, z, w)× Spec k[a]

given by

I = (a2(x+ w)w − z2, ax(x+ w)− yz, xz − ayw, y2w − x2(x+ w))

(cf. [Har77, III.9.8.4]). The Gm action on it is just sending

X ×Gm → X : (x, y, z, w; a)× {t} → (x, y, tz, w; at).
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Then for a = 0, the special fiber has the ideal

I0 = (z2, yz, xz, y2w − x2(x+ w)).

Geometrically, X tc
t is a cubic curve in P3. They degenerate to the special fiber

X tc
0 that is a plane nodal cubic curve in P2 = P(x, y, w) with an embedded

point at (0, 0, 0, 1).

For k � 0, we have

h0(P1, kL) = h0(P1,OP1(3k)) = 3k + 1 and H0(X0, kL0) = V1 ⊕ V2,

where

V1
∼= H0(X red

0 ,OP(x,y,w)(k)|X red
0

),

and V2 is the one dimensional space spanned by z ·wk−1 (or z ·f(x, y, w) for any

homogeneous polynomial of degree k−1 such that f(0, 0, 1) 6= 0). As the total

weight of V1 is 0 and the total weight of V2 is 1, we conclude that b0 = b1 = 0.

In fact, it is easy to see in general such pathological test configuration

exists for any polarized variety (X,L).

Remark 4. (1) In [Sto09], J. Stoppa claimed a proof of the K-stability

of varieties with Kähler-Einstein metric under the original definition, namely

without assuming the normality of the test configuration. However, he made

a mistake on the calculation of the Donaldson-Futaki invariant for the ‘degen-

erate case.’ More precisely, the formula (3.7) of the proof of Proposition 3.3 in

[Sto09] is false because multiplying sections H0(X red
0 ,Lk−1|X red

0
) by a nilpotent

element is not always an injection in general.

There is also a similar overlooking in [PT09]. Corollary 2 there said that

the properness of K-energy implies Donaldson-Futaki invariant is positive for

any test configuration. The case missing in their proof in Section 3.3 is when

limt→0 Osc(φt) < ∞ and the central fibre is generically reduced as the above

example shows.

(2) As far as we can see, in most of the published literature, including

[RT07], [Oda13b] and [Oda12], the same arguments of proving the results on

K-stability for certain classes of varieties work, once we replace the definition

there by our new definition. More precisely, for any nontrivial normal test

configuration X tc, there is a semi-test configuration Ytc with equivariant mor-

phisms p : Ytc → X tc and q : Ytc → X × A1 such that q is not the trivial

morphism. Therefore, q gives an exceptional divisor E over X × A1. Then

their calculations can be carried out by using this exceptional divisor.

9. Proof of Theorem 7

To prove Theorem 7, now we only need to check that if we start with a

∞-trivial compactification of a test configuration as in Section 8.1, the families
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in Theorems 2, 3 and 4 can be also constructed to be ∞-trivial compactifica-

tions of test configurations.

9.1. Equivariant Semi-stable reduction. The following result, whose proof

is a simple combination of the equivariant resolution (see, e.g., [Kol07b, 3.9.1]

and reference therein) and the semistable reducetion (see [KKMSD73]), is well

known. However, we cannot find it in the literature. Hence we include a short

argument here. A similar statement for resolution appears in [ADVLN12].

Lemma 5. Let f : X → A1 be a dominant morphism from a normal

variety with a Gm-action such that f is Gm-equivariant. Then there exist a

base change zm : A1 → A1 and a semistable family Y over A1 with a mor-

phism π : Y → X ×A1,zm A1 that is a log resolution of (X̃ , X̃0) where X̃ is the

normalization of X ×A1,zm A1.

Proof. First, we perform the blow up of (X ,X0) Gm-equivariantly to get

an equivariant log resolution Y∗. This is always possible by the theorem of

equivariant resolution of singularities. Then we can take a base change zm :

A1 → A1 such that the normalization Ỹ∗ of Y∗ ×A1,zm A1 has a reduced fiber

over each point of A1. Then it follows from [KKMSD73] that possibly after

a further base change, we can take a sequence of toroidal blow-ups of Ỹ∗ to

obtain a log resolution Y of (Ỹ∗, Ỹ∗0 ) such that Y0 has reduced fibers.

As each component of Ỹ∗0 is Gm-invariant, so are the irreducible com-

ponents of their intersections. Since the centers of the toroidal blow-ups are

Gm-invariant, Gm action on Ỹ∗ can be sucessively lifted to Y. �
9.2. Proof of Tian’s conjecture.

Proof of Theorem 7. It suffices to check that if we start with an ∞-trivial

compactfication
(X̄ tc, L̄tc)→ P1

of a Q-test configuration (X tc,Ltc) → A1, the models we construct in Theo-

rems 2, 3 and 4 are all ∞-trivial compacitifcations of Q-test configurations.

Since resolution of singularities and semistable reduction can be obtained

Gm-equivariantly (see Lemma 5), starting from an ∞-trivial compactfication

(X̄ tc, L̄tc) → P1, we can perform a base change d : P1 → P1 such that X̄ tc
d :=

X̄ tc ×d,P1 P1 → P1 via the second projection admits a Gm-equivariant semi-

stable reduction π : Y → X̄ tc
d .

Then the log canonical modification

X lc = ProjR(Y/X̄ tc
d ,KY)

admits a Gm-action such that πlc : X lc
d → X̄ tc

d , which is isomorphism over

P1 \ {0}, is equivariant. Thus the polarization

Llc = (πlc)∗d∗L̄tc + tKX lc

for sufficiently small t > 0 also clearly admits a compatible Gm-action.
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Now we run a relative KX lc-MMP with scaling of Llc over P1. Each step

is indeed automatically Gm-equivariant. In fact, assuming this is true after the

i-th step, since Gm is connected, then NE(Xi)Gm = NE(Xi). (See the proof of

[And01, 1.5].) Hence the contraction is Gm-equivariant. As the flip is a Proj

of a Gm-equivariant algebra, it also admits a Gm-action. Therefore, at the end

X ac is Gm-equivariant. So (X ac,−KX ac) is a ∞-trivial compactfication of the

associated test configuration.

Similarly, the process involved in the proof of Theorem 4 can be proceeded

Gm-equivariantly so that the special Q-Fano family we obtain at the end yields

a special test configuration. We leave the details to the reader. �

Proof of Corollary 1. The semistability case follows from Theorem 1 im-

mediately. Now we assume that (X,−rKX) is K-semistable and all special

test configurations (X st,Lst) with DF(X st,Lst) = 0 satisfy that X st ∼= X×A1.

Let (X tc,Ltc) be an arbitrary normal test configuration whose DF invariant is

0. Applying Theorem 1, we obtain a special test configuration (X st,−KX st) of

(X,−rKX) and inequalities

0 ≤ DF(X st,−rKX st) ≤ mDF(X tc,Ltc) = 0.

Then since the equality holds, by the conclusion of Theorem 1 we know that

(X tc,Ltc) is a special test configuration, which implies that X tc ∼= X×A1. �

We finish our article with the following remark.

Remark 5. We are inspired by Odaka’s algebraic proof of K-stability of

canonically polarized variety and Calabi-Yau variety [Oda12], which provides

the counterpart of our theory for the case when KX is ample or trivial.
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