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1. Introduction

The development of algebraic geometry and complex geometry has interwoven in
the history. One recent example is the interaction between the theory of higher
dimensional geometry centered around the minimal model program (MMP), and
the existence of ‘good’ metrics on algebraic varieties. Both subjects have major
steps forward, whose influences are beyond the subjects themselves, spurring out
new progress in topics once people could not imagine. In this note, we will discuss
a ‘local stability theory’ of singularities, which in our opinion provides an excellent
example on the philosophy that there are many unexpected connections underlying
these two different topics.

Ever since the starting of the theory of MMP in higher dimensions (that is,
the dimension is at least three), people understand that a feature of such a the-
ory is that we need to deal with singular varieties. Then it becomes very nature
to investigate this class of singularities for people working on the MMP. To deal
with singular varieties in complex geometry is a more recent trend, and it signif-
icantly improves people’s knowledge on the existence of interesting metrics, even
in situations which people originally only want to study smooth varieties.

It becomes clear now, Kawamata log terminal (klt) singularities form an
exceptionally important class of singularities for many reasons: it is the natural
class of singular varieties for people to inductively prove deep results in the MMP;
it is the class of singularities appearing on degenerations in many natural settings
and it carries properties which globally Fano varieties have.

What we want to survey here is a rather new theory on klt singularities.
The picture consists of two closely related parts: firstly, we want to establish a
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structure which provides a canonically determined degeneration to a stable log
Fano cone from each klt singularity; secondly, to construct the degeneration, we
need a valuation which minimizes the normalized volume function on the ‘non-
archimedean link’, and since such minimum is a deep invariant defined for all
klt singularities, we want to explore more properties of this invariant, including
calculating it in many cases.

1.1. History

The first prototype of the local stability theory underlies in [MSY06, MSY08].
They find that the existence of Ricci-flat cone metric on an affine variety with
a good action by a torus group T is closely related to the normalized volume
minimizing problem. In our language, they concentrate on the valuations induced
by the vectors in the Reeb cone provided by the torus action. Later a systematic
study of K-stability in the setting of Sasaki geometry is further explored in [CS18,
CS15].

Consider klt singularities which appear on the Gromov-Hausdorff (GH) limit
of Käher-Einstein Fano manifolds. At the first sight, we do not know more algebraic
structure for these singularities. Nevertheless, by looking at the metric tangent
cone, it is shown in [DS17], built on the earlier works in [CCT02,DS14,Tia13], that
the metric tangent cone of such singularities is an affine T -variety with a Ricci-flat
cone metric. Furthermore, [DS17] gives a a two-step degeneration description of
the metric tangent cone. They further conjecture that this two-step degeneration
should only depend on the algebraic structure of the singularity, but not the metric.

Then in [Li18a], the normalized volume function on the ‘non-archimedean
link’ of a given klt singularity is defined, and a series of conjectures on normalized
volume function are proposed. This attempt is not only to algebrize the work in
[DS17] without invoking the metric, but it is also of a completely local nature. Since
then, the investigation on this local stability theory points to different directions.

In [Blu18], the existence of a minimum (opposed to only infimum) which was
conjectured in [Li18a] is affirmatively answered. The proof uses the properness
estimates in [Li18a] and the observation in [Liu18] that the minimizer can be
computed by the minimal normalized multiplicities, and then skillfully uses the
techniques from the study of asymptotic invariants (see [Laz04]). Later in [BL18],
lower semicontinuity of the volume of singularities are also established using this
circle of ideas.

In [Li17,LL19], the case of a cone singularity over a Fano variety is intensively
studied, and it was found if we translate the minimizing question for the canonical
valuation into a question on the base Fano varieties, what appears is the sign of
the β-invariant developed in [Fuj18,Fuj16,Li17].

Built on the previous study of cone singularities, implementing the ideas cir-
cled around the MMP in birational geometry, an effective process of degenerating a
general singularity to a cone singularity is established in [LX16], provided the min-
imizer is a divisorial valuation. In [LX17a], a couple of conjectural properties are
added to complete the picture proposed in [Li18a], and now the package is called
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‘stable degeneration conjecture’, see Conjecture 4.1. The investigation in [LX16] is
also extended in [LX17a] to the case when the minimizer is a quasi-monomial valu-
ation with a possibly higher rational rank, where the study involves a considerable
amount of new techniques. As a corollary, the first part of Donaldson-Sun’s con-
jecture in [DS17] is answered affirmatively in [LX17a]. Later the work is extended
in [LWX18] and a complete solution of Donaldson-Sun’s conjecture is found.

Applications to global questions, especially the existence of KE metrics on
Fano varieties, are also explored. In [Liu18], built on the work of [Fuj18], an
inequality to connect the local volume and the global one is proved. Then in
[SS17, LX17b], via the approach of the ‘comparison of moduli’, complete moduli
spaces parametrizing explicit Fano varieties with a KE metric are established by
studying the local constraint posted by the lower bound of the local volumes.

1.2. Outline

In the note, we will survey a large part of the results mentioned above. From
the perspective of techniques, there are three closely related ways to think about
the volume of a singularity: the infima of the normalized volume of valuations,
of the normalized multiplicity of primary ideals or of the volume of models. The
viewpoint using valuations gives the most canonical picture, e.g. the stable de-
generation conjecture, but there are less techniques available to directly study the
space. The viewpoint using ideals is flexible for many purposes, e.g. taking de-
generations. Moreover, though usually working on a single ideal does not give too
much advantage over others, working on a graded sequence of ideals really enables
one to use the powerful theory on asymptotical invariants for such setting. The
third viewpoint of using models allows us to apply the machinery from the MMP
theory, and it is the key to degenerate the underlying singularities into cone sin-
gularities. The interplay among these three circle of techniques is fruitful, and we
expect further insight can be made in the future.

In Section 2, we give the definition of the function of the normalized vol-
umes and sketch the basic properties of its minimizer, including the existence.
In Section 3, we discuss the theory on searching for Sasaki-Einstein metrics on a
Fano cone singularities. The algebraic side, namely the K-stability notions on a
Fano cone plays an important role as we try to degenerate any klt singularity to
a K-semistable Fano cone. Such an attempt is formulated in the stable degener-
ation conjecture, which is the focus of Section 4. In Section 5, we present some
applications, including the torus equivariant K-stability (Section 5.1), a solution of
Donaldson-Sun’s conjecture (Section 5.2) and the K-stability of cubic threefolds
(Section 5.3). In the last Section 6, we discuss many unsolved questions, which
we hope will lead to some future research. Some of them give new approaches to
attack existing problems.

Acknowledgement: We would like to use this chance to express our deep gratitude
to Gang Tian, from whom we all learn a large amount of knowledge related to
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K-stability questions on Fano varieties in these years. We want to thank Harold
Blum, Sébastien Boucksom for helpful discussions.

CL is partially supported by NSF (Grant No. DMS-1405936) and an Alfred P.
Sloan research fellowship. CX is partially supported by the National Science Fund
for Distinguished Young Scholars (11425101). A large part of the work is written
while CX visits Institut Henri Poincaré under the program ‘Poincaré Chair’. He
wants to thank the wonderful environment.

2. Definitions and first properties

2.1. Definitions

In this section, we give the definition of the normalized volume v̂ol(X,D),x(v) (or

abbreviated as v̂ol(v) if there is no confusion) for a valuation v centered on a klt
singularity x ∈ (X,D) as in [Li18a]. It consists of two parts: the volume vol(v)
(see Definition 2.1) and the log discrepancy AX,D(v) (see Definition 2.2).

Let X be a reduced, irreducible variety defined over C. A real valuation of
its function field K(X) is a non-constant map v : K(X)× → R, satisfying:

• v(fg) = v(f) + v(g);
• v(f + g) ≥ min{v(f), v(g)};
• v(C∗) = 0.

We set v(0) = +∞. A valuation v gives rise to a valuation ring Ov := {f ∈
K(X) | v(f) ≥ 0}. We say a real valuation v is centered at a scheme-theoretic
point ξ = cX(v) ∈ X if we have a local inclusion Oξ,X ↪→ Ov of local rings. Notice
that the center of a valuation, if exists, is unique since X is separated. Denote by
ValX the set of real valuations of K(X) that admits a center on X. For a closed
point x ∈ X, we denote by ValX,x the set of real valuations of K(X) centered at
x ∈ X. It’s well known that v ∈ ValX is centered at x ∈ X if v(f) for any f ∈ mx.

For each valuation v ∈ ValX,x and any integer m, we define the valuation ideal
am(v) := {f ∈ Ox,X | v(f) ≥ m}. Then it is clear that am(v) is an mx-primary
ideal for each m > 0.

Given a valuation v ∈ ValX and a nonzero ideal a ⊂ OX , we may evaluate a
along v by setting v(a) := min{v(f) | f ∈ a · OcX(v),X}. It follows from the above
definition that if a ⊂ b ⊂ OX are nonzero ideals, then v(a) ≥ v(b). Additionally,
v(a) > 0 if and only if cX(v) ∈ Cosupp(a). We endow ValX with the weakest
topology such that, for every ideal a on X, the map ValX → R∪{+∞} defined by
v 7→ v(a) is continuous. The subset ValX,x ⊂ ValX is endowed with the subspace
topology. In some literatures, the space ValX,x is called the non-archimedean link
of x ∈ X. When X = C2, the geometry of ValX,x is understood well (see [FJ04]).
For higher dimension, its structure is much more complicated but can be described
as an inverse limit of dual complexes (see [JM12,BdFFU15]).
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Let Y
µ−→ X be a proper birational morphism with Y a normal variety. For a

prime divisor E on Y , we define a valuation ordE ∈ ValX that sends each rational
function in K(X)× = K(Y )× to its order of vanishing along E. Note that the
center cX(ordE) is the generic point of µ(E). We say that v ∈ ValX is a divisorial
valuation if there exists E as above and λ ∈ R>0 such that v = λ · ordE .

Let µ : Y → X be a proper birational morphism and η ∈ Y a point such
that Y is regular at η. Given a system of parameters y1, · · · , yr ∈ OY,η at η and
α = (α1, · · · , αr) ∈ Rr≥0 \ {0}, we define a valuation vα as follows. For f ∈ OY,η
we can write it as f =

∑
β∈Zr≥0

cβy
β , with cβ ∈ ÔY,η either zero or unit. We set

vα(f) = min{〈α, β〉 | cβ 6= 0}.

A quasi-monomial valuation is a valuation that can be written in the above form.

Let (Y,E =
∑N
k=1Ek) be a log smooth model of X, i.e. µ : Y → X is an

isomorphism outside of the support of E. We denote by QMη(Y,E) the set of all
quasi-monomial valuations v that can be described at the point η ∈ Y with respect
to coordinates (y1, · · · , yr) such that each yi defines at η an irreducible component
of E (hence η is the generic point of a connected component of the intersection of
some of the divisors Ei). We put QM(Y,E) :=

⋃
η QMη(Y,E) where η runs over

generic points of all irreducible components of intersections of some of the divisors
Ei.

Given a valuation v ∈ ValX,x, its rational rank rat.rank v is the rank of its
value group. The transcendental degree trans.deg v of v is the transcendental degree
of the field extension C ↪→ Ov/mv. The Zariski-Abhyankar Inequality says that

trans.deg v + rat.rank v ≤ dimX.

A valuation satisfying the equality is called an Abhyankar valuation. By [ELS03],
we know that a valuation v ∈ ValX is Abhyankar if and only if it is quasi-monomial.

Definition 2.1. Let X be an n-dimensional normal variety. Let x ∈ X be a closed
point. We define the volume of a valuation v ∈ ValX,x following [ELS03] as

volX,x(v) = lim sup
m→∞

`(Ox,X/am(v))

mn/n!
.

where ` denotes the length of the artinian module.

Thanks to the works of [ELS03,LM09,Cut13] the above limsup is actually a
limit.

Definition 2.2. Let (X,D) be a klt log pair. We define the log discrepancy function
of valuations A(X,D) : ValX → (0,+∞] in successive generality.

(a) Let µ : Y → X be a proper birational morphism from a normal variety Y .
Let E be a prime divisor on Y . Then we define A(X,D)(ordE) as

A(X,D)(ordE) := 1 + ordE(KY − µ∗(KX +D)).
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(b) Let (Y,E =
∑N
k=1Ek) be a log smooth model of X. Let η be the generic

point of a connected component of Ei1 ∩Ei2 ∩ · · ·∩Eir of codimension r. Let
(y1, · · · , yr) be a system of parameters of OY,η at η such that Eij = (yj = 0).
Then for any α = (α1, · · · , αr) ∈ Rr≥0 \ {0}, we define A(X,D)(vα) as

A(X,D)(vα) :=

r∑
j=1

αjA(X,D)(ordEij ).

(c) In [JM12], it was showed that there exists a retraction map rY,E : ValX →
QM(Y,E) for any log smooth model (Y,E) over X, such that it induces
a homeomorphism ValX → lim←−(Y,E)

QM(Y,E). For any real valuation v ∈
ValX , we define

A(X,D)(v) := sup
(Y,E)

A(X,D)(r(Y,E)(v)).

where (Y,D) ranges over all log smooth models overX. For details, see [JM12]
and [BdFFU15, Theorem 3.1]. It is possible that A(X,D)(v) = +∞ for some
v ∈ ValX , see e.g. [JM12, Remark 5.12].

Then we can define the main invariant in this paper. As we mentioned in
Section 3, it is partially inspired the definition in [MSY08] for a valuation coming
from the Reeb vector field.

Definition 2.3 ([Li18a]). Let (X,D) be an n-dimensional klt log pair. Let x ∈ X
be a closed point. Then the normalized volume function of valuations v̂ol(X,D),x :
ValX,x → (0,+∞) is defined as

v̂ol(X,D),x(v) =

{
A(X,D)(v)n · volX,x(v), if A(X,D)(v) < +∞;

+∞, if A(X,D)(v) = +∞.

The volume of the singularity (x ∈ (X,D)) is defined as

v̂ol(x,X,D) := inf
v∈ValX,x

v̂ol(X,D),x(v).

Since v̂ol(v) = v̂ol(λ · v) for any λ ∈ R>0, for any valuation v ∈ ValX,D with

a finite log discrepancy, we can rescale such that λ · v ∈ Val=1
X,D where Val=1

X,D

consists of all valuations v ∈ ValX,x with A(X,D)(v) = 1.

Remark 2.4. A definition of volume of singularities is also given in [BdFF12]. Their
definition is the local analogue of the volume KX whereas our definition is the one
of the volume of −KX . In particular, a singularity has volume 0 in the definition
of [BdFF12] if it is log canonical.

2.2. Properties

In this section, we discuss some properties of v̂ol on ValX,x. We start from the

properness and Izumi estimates. As a corollary, we conclude that v̂ol(x,X,D) is
always positive for any klt singularity x ∈ (X,D).
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Theorem 2.5 ([Li18a]). Let (x ∈ (X,D)) be a klt singularity. Then there exists
positive constants C1, C2 which only depend on x ∈ (X,D) (but not the valuation
v) such that the following holds.

1. (Izumi-type inequality) For any valuation v ∈ ValX,x, we have

v(mx)ordx ≤ v ≤ C2 ·A(X,D)(v)ordx.

2. (Properness) For any valuation v ∈ ValX,x with A(X,D)(v) < +∞, we have

C1

A(X,D)(v)

v(mx)
≤ v̂ol(v).

Note that since x ∈ X is singular, ordx in the above inequality might not be
a valuation. In other words, for f, g ∈ OX,x, ordx(fg) ≥ ordx(f) + ordx(g) may be
a strict inequality.

The above Izumi type inequality is well known when x ∈ X is a smooth point.
In the case of a general klt singularity, it can be reduced to the smooth case after
a log resolution and decreasing the constant. Then for the properness, it follows
from a more subtle estimate that there exists a positive constant c2 that

vol(v) ≥ c2
(

sup
mx

v

ordx

)1−n

· 1

v(m)
.

Let a• = {am}m∈Z be a graded sequence of mx-primary ideals. By the works
in [LM09,Cut13], the following identities hold true:

mult(a•) := lim
m→+∞

`(OX,x/am)

mn/n!
= lim
m→+∞

mult(am)

mn
.

In particular, the two limits exist. Note that, by definition, for any v ∈ ValX,x and
a•(v) = {am(v)}, we have vol(v) = mult(a•(v)) .

The following observation on characterizing the normalized volumes by nor-
malized multiplicities provides lots of flexibility in the study as we will see.

Theorem 2.6 ([Liu18]). Let (x ∈ (X,D)) be an n-dimensional klt singularity. Then
we have

v̂ol(x,X,D) = inf
a : mx-primary

lct(X,D; a)nmult(a) = inf
a• : mx-primary

lct(X,D; a•)
nmult(a•).

We also set lct(X,D; a•)
nmult(a•) = +∞ if lct(X,D; a•) = +∞.

Proof. Firstly, for any mx-primary ideal a, we can take a divisorial valuation v ∈
ValX,x computing lct(a). In other words, lct(a) = AX(v)/v(a). We may rescale v
such that v(a) = 1. Then clearly am ⊂ am(v) for any m ∈ N, hence mult(a) ≥
vol(v). Therefore, lct(a)nmult(a) ≥ AX(v)nvol(v) which implies

v̂ol(x,X,D) ≤ inf
a : mx-primary

lct(a)nmult(a). (1)

Secondly, for any graded sequence of mx-primary ideals a•, we have

lct(a•) = lim
m→∞

m · lct(am)
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by [JM12,BdFFU15]. Hence

lct(a•)
nmult(a•) = lim

m→∞
(m · lct(am))n

mult(am)

mn
= lim
m→∞

lct(am)nmult(am).

As a result,

inf
a : mx-primary

lct(a)nmult(a) ≤ inf
a• : mx-primary

lct(a•)
nmult(a•). (2)

Lastly, for any valuation v ∈ ValX,x, we consider the graded sequence of
its valuation ideals a•(v). Since v(a•(v)) = 1, we have lct(a•) ≤ AX(v). We also
have mult(a•(v)) = vol(v). Hence lct(a•(v))nmult(a•(v)) ≤ AX(v)nvol(v), which
implies

inf
a• : mx-primary

lct(a•)
nmult(a•) ≤ v̂ol(x,X,D). (3)

The proof is finished by combining (1), (2), and (3). �

In general we have the following relation between a sequence of graded ideals
and the one from a valuation: Let Φg be an ordered subgroup of the real numbers R.
Let (R,m) be the local ring at a normal singularity o ∈ X. A Φg-graded filtration
of R, denoted by F := {am}m∈Φg , is a decreasing family of m-primary ideals of R
satisfying the following conditions:

(i) am 6= 0 for every m ∈ Φg, am = R for m ≤ 0 and ∩m≥0a
m = (0);

(ii) am1 · am2 ⊆ am1+m2 for every m1,m2 ∈ Φg.
Given such an F , we get an associated order function

v = vF : R→ R≥0 v(f) = max{m; f ∈ am} for any f ∈ R.

Using the above (i)-(ii), it is easy to verify that v satisfies v(f+g) ≥ min{v(f), v(g)}
and v(fg) ≥ v(f) + v(g). We also have the associated graded ring:

grFR =
∑
m∈Φg

am/a>m, where a>m =
⋃

m′>m

am
′
.

For any real valuation v with valuative group Φg, {Fm} := {am(v)} is a Φg-graded
filtration of R. We will need the following facts.

Lemma 2.7 (see [Tei03,Tei14]). With the above notations, the following statements
hold true:

(1) ([Tei14, Page 8]) If grFR is an integral domain, then v = vF is a valuation
centered at o ∈ X. In particular, v(fg) = v(f) + v(g) for any f, g ∈ R.

(2) (Piltant) A valuation v is quasi-monomial if and only if the Krull dimen-
sion of grvR is the same as the Krull dimension of R.

The existence of a minimizer for v̂ol(X,D),x was conjectured in the first version
of [Li18a] and then proved in [Blu18].

Theorem 2.8 ([Blu18]). For any klt singularity x ∈ (X,D), there exists a valuation

vmin ∈ ValX,x that minimizes the function v̂ol(X,D),x.
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Let us sketch the idea of proving the existence of v̂ol-minimizer. We first take
a sequence of valuations (vi)i∈N such that

lim
i→∞

v̂ol(vi) = v̂ol(x,X,D).

Then we would like to find a valuation v∗ that is a limit point of the sequence

(vi)i∈N and then show that v∗ is a minimizer of v̂ol.
Instead of seeking a limit point v∗ of (vi)i∈N in the space of valuations, we

consider graded sequences of ideals. More precisely, each valuation vi induces a
graded sequence a•(vi) of mx-primary ideals. By Theorem 2.6, we have

v̂ol(vi) ≥ lct(a•(vi))
nmult(a•(vi)) ≥ v̂ol(x,X,D).

Therefore, once we find a graded sequence of mx-primary ideals ã• that is a ‘limit
point’ of the sequence (a•(vi))i∈N, a valuation v∗ computing lct(ã•) will minimizes

v̂ol. The existence of such ‘limits’ relies on two ingredients: the first is an asymp-
totic estimate to control the growth for ak(vi) for a fixed k; once the growth is
controlled, we can apply the generic limit construction.

Proof. For simplicity, we will assume D = 0. More details about log pairs can be
found in [Blu18, Section 7].

Let us choose a sequence of valuations vi ∈ ValX,x such that

lim
i→∞

v̂ol(vi) = v̂ol(x,X).

Since the normalized volume function is invariant after rescaling, we may assume
that vi(m) = 1 for all i ∈ N where m := mx. Our goal is to show that the family of
graded sequences of m-primary ideals (a•(vi))i∈N satisfies the following conditions:

(a) For every ε > 0, there exists positive constants M,N so that

lct(am(vi))
nmult(am(vi)) ≤ v̂ol(x,X) + ε for all m ≥M and i ≥ N.

(b) For each m, i ∈ N, we have mm ⊂ am(vi).
(c) There exists δ > 0 such that am(vi) ⊂ mbmδc for all m, i ∈ N.

Part (b) follows easily from vi(m) = 1. Hence vol(vi) ≤ mult(m) =: B. For
part (c), we need to use Theorem 2.5. By Part (2), there exists a positive constant
C1 such that

AX(v) ≤ C−1
1 · v(m)v̂ol(v) for all v ∈ ValX,x.

Let A := C−1
1 supi∈N v̂ol(vi), then AX(vi) ≤ A for any i ∈ N. By Theorem 2.5(1),

then there exists a positive constant C2 such that

v(f) ≤ C2 ·AX(v)ordx(f) for all v ∈ ValX,x and f ∈ OX,x.
In particular, vi(f) ≤ C2A · ordx(f) for all i ∈ N and f ∈ OX,x. Thus by letting

δ := (C2A)−1 we have am(vi) ⊂ mbmδc which proves part (c).

The proof of part (a) relies on the following result on uniform convergence of
multiplicities of valuation ideals.
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Proposition 2.9 ([Blu18]). Let (x ∈ X) be an n-dimensional klt singularity. Then
for ε, A,B, r ∈ R>0, there exists M = M(ε, A,B, r) such that for every valuation
v ∈ ValX,x with AX(v) ≤ A, vol(v) ≤ B, and v(m) ≥ 1/r, we have

vol(v) ≤ mult(am(v))

mn
< vol(v) + ε for all m ≥M.

Proof. The first inequality is straightforward. When the point is smooth, the sec-
ond inequality uses the inequality that for the graded sequence of ideals {a•}, there
exists a k such that for any m and l

aml ⊆ alm−k.

The proof of such result uses the multiplier ideal, see [ELS03]. For isolated klt
singularity, then an estimate of a similar form in [Tak06] says

J l−1
X · aml ⊂ alm−k (4)

suffices, where JX is the Jacobian ideal of X. Finally, in the general case, an
argument using (4) and interpolating JX and a power of m gives the proof. See
[Blu18, Section 3] for more details. �

To continue the proof, let us fix an arbitrary ε ∈ R>0. Since AX(vi) ≤ A,
vol(vi) ≤ B, and vi(m) = 1 for all i ∈ N, Proposition 2.9 implies that there exists
M ∈ N such that

mult(am(vi))

mn
≤ vol(vi) + ε/(2An) for all i ∈ N.

We also have lct(am(vi)) ≤ AX(vi)/vi(am(vi)) ≤ m · AX(vi). Let us take N ∈ N
such that v̂ol(vi) ≤ v̂ol(x,X) + ε/2 for any i ≥ N . Therefore,

lct(am(vi))
nmult(am(vi)) ≤ AX(vi)

n(vol(vi) + ε/(2An))

= v̂ol(vi) + ε ·AX(vi)
n/(2An)

= v̂ol(vi) + ε/2

≤ v̂ol(x,X) + ε.

So part (a) is proved.

Finally, (b) and (c) guarantee that we can apply a generic limit type con-
struction (cf. [Blu18, Section 5]). Then (a) implies that a ‘limit point’ ã• of the

sequence (a•(vi))i∈N satisfies that lct(ã•)
nmult(ã•) ≤ v̂ol(x,X). Thus a valution v∗

computing the log canonical threshold of ã•, whose existence follows from [JM12],
necessarily minimizes the normalized volume. �

Theorem 2.10 ([LX17b]). Let x ∈ (X,D) be an n-dimensional klt singularity. Then

v̂ol(x,X,D) ≤ nn and the equality holds if and only if x ∈ X\Supp(D) is a smooth
point.
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Using the fact that we can specialize a graded sequence of ideals preserving
the colength, and the lower semi-continuous of the log canonical thresholds, we
easily get the inequality part of Theorem 2.10. Then the equality part gives us a
characterization of the smooth point using the normalized volume. The following
Theorem 2.11 on the semicontinuity needs a more delicate analysis. We conjecture
that the normalized volume function is indeed constructible (see Conjecture 6.6).

Theorem 2.11 ([BL18]). Let π : (X , D) → T together with a section t ∈ T 7→
xt ∈ Xt be a Q-Gorenstein flat family of klt singularities. Then the function t 7→
v̂ol(xt,Xt, Dt) is lower semicontinuous with respect to the Zariski topology.

Now we introduce a key tool that the minimal model program provides to
us to understand minimizing the normalized volume. For more discussions, see
Section 4.3.

Definition 2.12 (Kollár component, [Xu14]). Let x ∈ (X,D) be a klt singularity.
We call a proper birational morphism µ : Y → X provides a Kollár component S,
if µ is isomorphic over X \ {x}, and µ−1(x) is an irreducible divisor S, such that
(Y, S+µ−1

∗ D) is purely log terminal (plt) and −S is Q-Cartier and ample over X.

Theorem 2.13 ([LX16]). We have the identity:

v̂ol(x,X,D) = inf
S
{v̂ol(ordS) | for all Kollár components S over x}. (5)

For the explanation of proof, see the discussions for (27) in Section 4.3.

3. Stability in Sasaki-Einstein geometry

To proceed the study of normalized volumes, we will introduce the concept of K-
stability. This is now a central notion in complex geometry, which serves as an
algebraic characterization of the existence of some ‘canonical metrics’.

In the local setting, such problem on an affine T -variety X with a unique
fixed point x was first considered in [MSY08]. We can then varies the Reeb vector
field ξ ∈ t+R , and call such a structure (X, ξ) is a Fano cone if X only has klt

log terminal singularities. The name is justified since if ξ ∈ t+Q , let 〈ξ〉 be the C∗
generated by ξ, then X \ {x}/〈ξ〉 is a log Fano variety.

In [MSY08], the relation between the existence of Sasaki-Einstein metric
along (X, ξ) and the K-stability of (X, ξ), a mimic of the absolute case, was ex-
plored. A key observation in [MSY08] is that we can define a normalized volume

function v̂olX(ξ) for ξ ∈ t+R , and among all choices of ξ the one minimizing v̂olX(·)
gives ‘the most stable’ direction.

Then an important step to advance such a picture is made in [CS18,CS15] by
extending the definition of K-stability notions on (X, ξ) allowing degenerations,
and showing that there is a Sasaki-Einstein metric along an isolated Fano cone
singularity (X, ξ) if and only of (X, ξ) is K-polystable, extending the solution of the
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Yau-Tian-Donaldson’s conjecture in the Fano manifold case (see [CDS15, Tia15])
to the cone case.

In this section, we will briefly introduce these settings.

3.1. T-varieties

We first introduce the basic setting using T -varieties. For general results of T -
varieties, see [AIP+12].

AssumeX = SpecC(R) is an affine variety with Q-Gorenstein klt singularities.
Denote by T the complex torus (C∗)r. Assume X admits a good T -action in the
following sense.

Definition 3.1 (see [LS13, Section 4]). Let X be a normal affine variety. We say
that a T -action on X is good if it is effective and there is a unique closed point
x ∈ X that is in the orbit closure of any T -orbit. We shall call x (sometimes also
denoted by oX) the vertex point of the T -variety X.

Let N = Hom(C∗, T ) be the co-weight lattice and M = N∗ the weight lattice.
We have a weight space decomposition of the coordinate ring of X:

R =
⊕
α∈Γ

Rα where Γ = {α ∈M | Rα 6= 0}.

The action being good implies R0 = C, which will always be assumed in the below.
An ideal a is called homogeneous if a =

⊕
α∈Γ a ∩ Rα. Denote by σ∨ ⊂ MQ the

cone generated by Γ over Q, which will be called the weight cone or the moment
cone. The cone σ ⊂ NR, dual to σ∨, is the same as the following conical set

t+R := { ξ ∈ NR | 〈α, ξ〉 > 0 for any α ∈ Γ \ {0}}.

Motivated by notations from Sasaki geometry, we will introduce:

Definition 3.2. With the above notations, t+R will be called the Reeb cone of the

T -action of X. A vector ξ ∈ t+R will be called a Reeb vector on the T -variety X.

To adapt this definition into our setting in Section 2.1, for any ξ ∈ t+R , we
can define a valuation

wtξ(f) = min
α∈Γ
{〈α, ξ〉 | fα 6= 0}.

It is easy to verify that wtξ ∈ ValX,oX . The rank of ξ, denoted by rk(ξ), is the
dimension of the subtorus Tξ (as a subgroup of T ) generated by ξ ∈ t. The following
lemma can be easily seen.

Lemma 3.3. For any ξ ∈ t+R , wtξ is a quasi-monomial valuation of rational rank
equal to the rank of ξ. Moreover, the center of wtξ is oX .

We recall the following structure results for any T -varieties.
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Theorem 3.4 (see [AIP+12, Theorem 4]). Let X = Spec(R) be a normal affine
variety and suppose T = Spec (C[M ]) has a good action on X with the weight cone
σ∨ ⊂MQ. Then there exist a normal projective variety Y and a polyhedral divisor
D such that there is an isomorphism of graded algebras:

R ∼= H0(X,OX) ∼=
⊕

u∈σ∨∩M
H0
(
Y,O(D(u))

)
=: R(Y,D).

In other words, X is equal to SpecC
(⊕

u∈σ∨∩M H0(Y,O(D(u)))
)
.

In the above definition, a polyhedral divisor D : u→ D(u) is a map from σ∨

to the set of Q-Cartier divisors that satisfies:

1. D(u) + D(u′) ≤ D(u+ u′) for any u, u′ ∈ σ∨;
2. u 7→ D(u) is piecewisely linear;
3. D(u) is semiample for any u ∈ σ∨, and D(u) is big if u is in the relative

interior of σ∨.

Here Y is projective since from our assumption

H0(Y,OY ) = RT = R0 = C

(see [LS13]). We collect some basic results about valuations on T -varieties.

Theorem 3.5 (see [AIP+12]). Assume a T -variety X is determined by the data
(Y, σ,D) such that Y is a projective variety, where σ = t+R ⊂ NR and D is a
polyhedral divisor.

1. For any T -invariant quasi-monomial valuation v, there exist a quasi-monomial
valuation v(0) over Y and ξ ∈MR such that for any f · χu ∈ Ru, we have:

v(f · χu) = v(0)(f) + 〈u, ξ〉.

We will use (ξ, v(0)) to denote such a valuation.
2. T -invariant prime divisors on X are either vertical or horizontal. Any vertical

divisor is determined by a divisor Z on Y and a vertex v of DZ , and will be
denoted by D(Z,v). Any horizontal divisor is determined by a ray ρ of σ and
will be denoted by Eρ.

3. Let D be a T -invariant vertical effective Q-divisor. If KX +D is Q-Cartier,
then the log canonical divisor has a representation KX+D = π∗H+div(χ−u0)
where H =

∑
Z aZ ·Z is a principal Q-divisor on Y and u0 ∈MQ. Moreover,

the log discrepancy of the horizontal divisor Eρ is given by:

A(X,D)(Eρ) = 〈u0, nρ〉, (6)

where nρ is the primitive vector along the ray ρ.

Sketch of the proof. For the first statement, the case of divisorial valuations fol-
lows from [AIP+12, Section 11]. It can be extended to the case of quasi-monomial
valuations by the same proof. Note also that any T -invariant quasimonomial valu-
ation can be approximated by a sequence of T -invariant divisorial valuations. The
second statement is in [PS11, Proposition 3.13]. The absolute case (e.g. without
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boundary divisor D) for the third statement is from [LS13, Section 4] whose proof
also works for the case of log pairs.. �

We will specialize the study of general affine T -varieties to case that the log
pair is klt. Assume X is a normal affine variety with Q-Gorenstein klt singularities
and a good T -action. Let D be a T -invariant vertical divisor. Then there is a
nowhere-vanishing T -equivariant section s of m(KX + D) where m is sufficiently
divisible. The following lemma says that the log discrepancy of wtξ can indeed
be calculated in a similar way as in the toric case (the toric case is well-known).
Moreover, it can be calculated by using the weight of T -equivariant pluri-log-
canonical sections. The latter observation was first made in [Li18a].

Lemma 3.6. Using the same notion as in the Theorem 3.5, the log discrepancy of
wtξ is given by: A(X,D)(wtξ) = 〈u0, ξ〉. Moreover, let s be a T -equivariant nowhere-
vanishing holomorphic section of |−m(KX+D)|, and denote Lξ the Lie derivative
with respect to the holomorphic vector field associated to ξ. Then A(X,D)(ξ) = λ if
and only if

Lξ(s) = mλs for λ > 0.

As a consequence of the above lemma, we can formally extend A(X,D)(ξ) to
a linear function on tR:

A(X,D)(η) = 〈u0, η〉. (7)

for any η ∈ tR. By Lemma 3.6, A(X,D)(η) = 1
mLηs/s where s is a T -equivariant

nowhere-vanishing holomorphic section of | −m(KX +D)|.

Definition 3.7 (Log Fano cone singularity). Let (X,D) be an affine pair with a
good T action. Assume (X,D) is a normal pair with klt singularities. Then for
any ξ ∈ t+R , we call the triple (X,D, ξ) a log Fano cone structure that is polarized
by ξ. We will denote by 〈ξ〉 the sub-torus of T generated by ξ. If 〈ξ〉 ∼= C∗, then
we call (X,D, ξ) to be quasi-regular. Otherwise, we call it irregular.

In the quasi-regular case, we can take the quotient (X \ {x}, D \ {x}) by the
C∗-group generated by ξ in the sense of Seifert C∗-bundles (see [Kol04]), and we
will denote by (X,D)/〈ξ〉, which is a log Fano variety, because of the assumption
that (X,D) is klt at x (see [Kol13, Lemma 3.1]).

3.2. K-stability

In this section, we will discuss the K-stability notion of log Fano cones, which
generalizes the K-stability of log Fano varieties originally defined by Tian and
Donaldson. For irregular Fano cones, such a notion was first defined in [CS18].

Definition 3.8 (Test configurations). Let (X,D, ξ0) be a log Fano cone singularity
and T a torus containing 〈ξ0〉.

A T -equivariant test configuration (or simply called a test configuration) of
(X,D, ξ0) is a quadruple (X ,D, ξ0; η) with a map π : (X ,D) → C satisfying the
following conditions:
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(1) π : X → C is a flat family and D is an effective Q-divisor such that D does
not contain any component X0, the fibres away from 0 are isomorphic to
(X,D) and X = Spec(R) is affine, where R is a finitely generate flat C[t]
algebra. The torus T acts on X , and we write R =

⊕
αRα as decomposition

into weight spaces.
(2) η is a holomorphic vector field on X generating a C∗(= 〈η〉)-action on (X ,D)

such that π is C∗-equivariant where C∗ acts on the base C by the multipli-
cation (so that π∗η = t∂t if t is the affine coordinate on C) and there is a
C∗-equivariant isomorphism φ : (X ,D)×C C∗ ∼= (X,D)× C∗.

(3) The torus T -action commutes with η. The holomorphic vector field ξ0 on
X ×C C∗ (via the isomorphism φ) extends to a holomorphic vector field on
X which we still denote to be ξ0.

In most our study, we only need to treat the case that test configuration (X ,D, ξ0; η)
of (X,D, ξ0) satisfies that

(4) KX +D is Q-Cartier and the central fibre (X0, D0) is klt

In other words, we will mostly consider special test configurations (see [LX14,
CS15]).

Condition (1) implies that each weight piece Rα is a flat C[t]-module. So X
and X0 have the same weight cone and Reeb cone with respect to the fiberwise
T -action.

A test configuration (X ,D, ξ0; η) is called a product one if there is a T -
equivariant isomorphism (X ,D) ∼= (X,D) × C and η = η0 + t∂t where η0 is a
holomorphic vector field on X that preserves D and commutes with ξ0. In this
case, we will denote (X ,D, ξ0; η) by

(X × C, D × C, ξ0; η) =: (XC, DC, ξ0; η).

In [MSY08], only such test configurations are considered.

Definition 3.9 (K-stability). For any special test configuration (X ,D, ξ0; η) of
(X,D, ξ0) with central fibre (X0, D0, ξ0), its generalized Futaki invariant is de-
fined as

Fut(X ,D, ξ0; η) :=
D−Tξ0 (η)volX0

(ξ0)

volX0(ξ0)

where we denote

Tξ0(η) =
A(ξ0)η −A(η)ξ0

n
. (8)

Since the generalized Futaki invariant defined above only depends on the data on
the central fibre, we will also denote it by Fut(X0, D0, ξ0; η).

We say that (X,D, ξ0) is K-semistable, if for any special test configuration,
Fut(X ,D, ξ0; η) is nonnegative.

We say that (X,D, ξ0) is K-polystable, if it is K-semistable, and any special
test configuration (X ,D, ξ0; η) with Fut(X ,D, ξ0; η) = 0 is a product test configu-
ration.
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In the above definition, we used the notation (8) and the directional deriva-
tive:

D−Tξ0(η)
volX0

(ξ0) :=
d

dε

∣∣∣∣
ε=0

volX0
(ξ0 − εTξ0(η)).

Recall that the π∗η = t∂t. Then the negative sign in front of Tξ0(η) in the above
formula is to be compatible with our later computation. Using the rescaling in-
variance of the normalized volume, it is easy to verify that the following identity
holds:

D−Tξ0ηvolX0(ξ0) =
d

dε

∣∣∣∣
ε=0

v̂olX0(wtξ0−εη) · 1

nA(ξ0)n−1
, (9)

where A(ξ0) = A(X0,D0)(wtξ0). As a consequence, we can rewrite the Futaki in-
variant of a special test configuration as:

Fut(X ,D, ξ0; η) := D−ηv̂olX0
(wtξ0) · 1

nA(ξ0)n−1 · volX0(ξ0)
. (10)

One can show that, up to a constant, the above definition of Fut(X ,D, ξ0; η)
coincides with the one in [CS18,CS15] defined using index characters. For conve-
nience of the reader, we recall their definition. It is enough to define the Futaki
invariant for the central fibre which we just denote by X. For any ξ ∈ t+R , the
index character F (ξ, t) is defined by:

F (ξ, t) :=
∑
α∈Γ

e−t〈α,ξ〉 dimCRα. (11)

Then there is a meromorphic expansion for F (ξ, t) as follows:

F (ξ, t) =
a0(ξ)(n− 1)!

tn
+
a1(ξ)(n− 2)!

tn−1
+O(t2−n). (12)

One always has the identity a0(ξ) = vol(ξ)/(n− 1)!.

Definition 3.10 (see [CS18]). For any η ∈ tR, define:

Futξ0(X, η) =
1

n− 1
D−η(a1(ξ0))− 1

n

a1(ξ0)

a0(ξ0)
D−ηa0(ξ0)

=
a0(ξ0)

n− 1
D−η

(
a1

a0

)
(ξ0) +

a1(ξ0)D−ηa0(ξ0)

n(n− 1)a0(ξ0)
.

This is a complicated expression. But in [CS15, Proposition 6.4], it was
showed that, whenX is Q-Gorenstein log terminal, there is an identity a1(ξ)/a0(ξ) =
A(ξ)(n − 1)/2 for any ξ ∈ t+R (by using our notation involving log discrepancies).

Note that the rescaling properties a0(λξ) = λ−na0(ξ) and a1(λξ) = λ−(n−1)a1(ξ)

which imply Futξ0(X, ξ0) = 0. If we denote η′ = η − A(η)
A(ξ0)ξ0, then we get:

Futξ0(X, η) = Futξ0 (X, η′) =
A(ξ0)

2n
D−η′a0(ξ0) =

1

2(n− 1)!
D−Tξ0 (η)vol(ξ0).

(13)
So the definition in [CS18, CS15] differs from our notation by a constant 2(n −
1)!/volX(ξ0).
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Remark 3.11. More precisely, our notation differs from that in [CS18] by a sign.
Our choice of minus sign for −η, besides being compatible with the sign choice in
Tian’s original definition of K-stability in [Tia97], is made for least two reasons.
The first is that the careful calculation in [LX17a, Section 5.2] shows that the
limiting slope of the Ding energy along the geodesic ray associated to any special
test configuration is indeed the directional derivative of vol(ξ) along −η instead
of η. For the second reason, as we stressed in [LX17a, Remark 3.4], for the special
test configuration coming from a Kollár component S, the −η vector corresponds

to ordS . Since our goal is to compare v̂ol(wtξ0) and v̂ol(ordS), −η is the correct
choice of sign (see [LX17a, Proof of Theorem 3.5]).

Remark 3.12. In fact, in a calculation, instead of the generalized Futaki invariant,
it is the Berman-Ding invariant, denoted by DNA(X ,D, ξ0; η), where

DNA(X ,D, ξ0; η) :=
D−Tξ0 (η)volX0

(ξ0)

vol(ξ0)
− (1− lct(X , D;X0)).

appears more naturally, whenever we know

(D) there exists a nowhere vanishing section s ∈ |m(KX + D)| such that we can
use it to define A(·) as in the formula in Lemma 3.6.

Then we can similarly define Ding semi(poly)-stable, replacing Fut(X ,D, ξ0; η) by
DNA(X ,D, ξ0; η). For a special test configuration, since

Fut(X ,D, ξ0; η) = DNA(X ,D, ξ0; η)

the two notions coincide.

If we specialize the above definitions to the case of quasi-regular log Fano
cone (X,D, ξ0), then we get the corresponding more familiar notions for the log
Fano projective pair (S,B) = (X,D)/〈ξ0〉.

3.3. Sasaki-Einstein geometry

The introduction of normalized volumes in [Li18a] was motivated by the minimiza-
tion phenomenon in the study of Sasaki-Einstein metrics. The latter was discovered
in [MSY06,MSY08] and was motivated by the so called AdS/CFT correspondence
from mathematical physics. Here we give a short account on this. For the reader
who are mostly interested in the algebraic part of the theory, one can skip this
section. The results will only be used in Section 5.2.

Classically, a Sasaki manifold is defined as an odd dimensional Riemannian
manifold (M2n−1, gM ) such that metric cone over it, defined as:

(X, gX) := ((M × R>0) ∪ {oX}, dr2 + r2gM )

is Kähler. It’s convenient to work directly on X = X◦∪oX which is an affine variety
with the Kähler metric

√
−1∂∂̄r2. The Reeb vector field of (X◦, gX) is usually

defined as J(r∂r) where J is the complex structure on X◦. The corresponding
holomorphic vector field ξ = r∂r − iJ(r∂r), which we also call Reeb vector field,
generates a Tξ ∼= (C∗)rk(ξ)-action on X where r(ξ) ≥ 1. For simplicity, we will
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denote such a torus by 〈ξ〉. Moreover the corresponding element in (tξ)R, also
denoted by ξ is in the Reeb cone: ξ ∈ (tξ)

+
R . The volume of ξ is defined to be the

volume density of gX :

vol(ξ) := vol(r2) =
1

(2π)nn!

∫
X

e−r
2

(
√
−1∂∂̄r2)n

=
1

(2π)n

∫
M

(−Jdr) ∧ (−dJdr)n−1

=
(n− 1)!

2πn
vol(M, gM ) =

vol(M, gM )

vol(S2n−1)

=
vol(B1(X), gX)

vol(B1(0), gCn)
. (14)

Here gX = 1
2

√
−1∂∂̄r2(·, J ·) and gM = gX |M are the Riemannian metric on X and

M respectively, S2n−1 is the standard unit sphere in Cn with volume vol(S2n−1) =
2πn/(n− 1)!.

This is well-defined because if two Sasaki metrics have the same Reeb vector
field, then their volumes are the same. Indeed, ω1 =

√
−1∂∂̄r1 and ω2 =

√
−1∂∂̄r2

have the same Reeb vector field if r2 = r1e
ϕ for a function ϕ satisfying Lr∂rϕ =

Lξϕ = 0 (i.e. ϕ is a horizontal function on M with respect to the foliation defined
by Im(ξ0)). Letting r2

t = r2etϕ and differentiating the volume we get:

C · d
dt

vol(r2
t ) =

∫
X

e−r
2
t (−r2

tϕ)
√
−1∂∂̄r2

t )
n + e−r

2
tn
√
−1∂∂̄(r2

tϕ) ∧ (
√
−1∂∂̄r2

t )
n−1

=

∫
X

−e−r
2
t r2
tϕ(
√
−1∂∂̄r2

t )
n + e−r

2
tn
√
−1∂r2

t ∧ (ϕ∂̄r2
t ) ∧ (

√
−1∂∂̄r2

t )
n−1

+

∫
X

e−r
2
tn
√
−1∂r2

t ∧ (r2
t ∂̄ϕ) ∧ (

√
−1∂∂̄r2

t )
n−1

= 0.

The second equality follows from integration by parts. The last equality follows
by substituting f = r2

t and f = ϕ in to the following identities and using the fact
that ϕ is horizontal (so that ξt(ϕ) = 0):

n
√
−1∂r2

t ∧ ∂̄f ∧ (
√
−1∂∂̄r2

t )
n−1 = ξt(f)(

√
−1∂∂̄r2

t )
n.

One should compare this to the fact that two Kähler metrics in the same
Kähler class have the same volume.

The Reeb vector field associated to a Ricci-flat Kähler cone metric satisfies
the minimization principle in [MSY08]. To state it in general, we assume X is a T -
variety with the Reeb cone t+R with respect to T and recall the variation formulas

of volumes of Reeb vector fields from [MSY08]. For any ξ ∈ t+R , we can find a
radius function r : X → R+ such that vol(ξ) is given by the formula (14).
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Lemma 3.13. The first order derivative of volX(ξ) is given by:

Dvol(ξ) · η1 =
1

(2π)n(n− 1)!

∫
X

θ1e
−r2(
√
−1∂∂̄r2)n, (15)

where θi = ηi(log r2). The second order variation of volX(ξ) is given by:

D2vol(ξ)(η1, η2) =
n+ 1

(2π)n(n− 1)!

∫
X

θ1θ2e
−r2(
√
−1∂∂̄r2)n.

Now we fix a ξ0 ∈ t+R and a radius function r : X → R+ (by using equivariant
embedding of X into CN for example), we define:

Definition 3.14. PSH(X, ξ0) is the set of bounded real functions ϕ on X◦ that
satisfies:

(1) ϕ ◦ τ = ϕ for any τ ∈ 〈ξ0〉, the torus generated by ξ0;
(2) r2

ϕ := r2eϕ is a proper plurisubharmonic function on X.

To write down the equation of Ricci-flat Kähler-cone equation, we fix a T -
equivariant no-where vanishing section s ∈ H0(X,mKX) as in the last section and
define an associated volume form on X:

dVX :=
(

(
√
−1)mn

2

s ∧ s̄
)1/m

. (16)

Definition 3.15. We say that r2
ϕ := r2eϕ where ϕ ∈ PSH(X, ξ0) is the radius

function of a Ricci-flat Kähler cone metric on (X, ξ0) if ϕ is smooth on Xreg and
there exists a positive constant C > 0 such that

(
√
−1∂∂̄r2

ϕ)n = C · dV, (17)

where the constant C is equal to:

C =

∫
X
e−r

2
ϕ(
√
−1∂∂̄r2

ϕ)n∫
X
e−r

2
ϕdVX

=
(2π)nn!vol(ξ0)∫
X
e−r

2
ϕdVX

.

Motivated by standard Kähler geometry, one defines the Monge-Ampère
energy E(ϕ) using either its variations or the explicit expression on the link
M := X ∩ {r = 1}:

δE(ϕ) · δϕ = − 1

(n− 1)!(2π)nvol(ξ0)

∫
X

δϕe−r
2
ϕ(
√
−1∂∂̄r2

ϕ)n.

Then the equation (16) is the Euler-Lagrange equation of the following Ding-Tian-
typed functional:

D(ϕ) = E(ϕ)− log

(∫
X

e−r
2
ϕdVX

)
.
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This follows from the identity:

δD(ϕ) · δϕ =
1

(2π)n(n− 1)!vol(ξ0)

∫
X

δϕe−r
2
ϕ(
√
−1∂∂̄r2

ϕ)n −
∫
X
r2
ϕδϕe

−r2ϕdVX∫
X
e−r

2
ϕdVX

= n

∫
X

e−r
2
ϕδϕ

(
(
√
−1∂∂̄r2

ϕ)n

(2π)nn!vol(ξ0)
− dVX∫

X
e−r

2
ϕdVX

)
.

Compared with the weak Kähler-Einstein case, it is expected that the regular-
ity condition in the above definition is automatically satisfied. With this regularity
assumption, on the regular part Xreg, both sides of (17) are smooth volume forms
and we have rϕ∂rϕ = 2Re(ξ0) or, equivalently, ξ0 = rϕ∂rϕ − iJ(rϕ∂rϕ). Moreover,
taking Lrϕ∂rϕ on both sides gives us the identity Lrϕ∂rϕdV = 2n dV . Equivalently
we have:

Lξ0s = mn · s,
where s ∈ |−mKX | is the chosen T -equivariant non-vanishing holomorphic section.
By Lemma 3.6, this implies AX(wtξ0) = n (see [HS17, LL19] for this identity in
the quasi-regular case). The main result of [MSY08] can be stated as follows.

Theorem 3.16. If (X, ξ0) admits a Ricci-flat Kähler cone metric, then AX(ξ0) = n
and wtξ0 obtains the minimum of vol on t+R .

The following result partially generalizes Berman’s result on K-polystability
of Kähler-Einstein Fano varieties to the more general case of Ricci-flat Fano cones.
Together with Theorem 4.6, it is used to show a generalization the minimization

result [MSY08]: the valuation wtξ0 minimizes v̂ol where ξ0 is the Reeb vector field
of the Ricci-flat Fano cone.

Theorem 3.17 (see [CS15,LX16,LX17a]). Assume (X, ξ0) admits a Ricci-flat Kähler
cone metric. Then AX(wtξ0) = n and (X, ξ0) is K-polystable among all special test
configurations.

Proof. Fix any smooth Kähler cone metric
√
−1∂∂̄r2 on X. Any special test config-

uration determines a geodesic ray {r2
t = r2eϕt}t>0 of Kähler cone metrics. Denote

D(t) = D(ϕt). Then we have the following formula:

lim
t→0

D(t)

− log |t|2
=
D−ηvol(ξ0)

vol(ξ0)
− (1− lct(X ,X0)) = DNA(χ, ξ0; η), (18)

which is a combination of two ingredients:

1. The Fano cone version of an identity from Kähler geometry which combined
with (15) gives the formula:

lim
t→0

E(ϕt)

− log |t|2
=
D−ηvol(ξ0)

vol(ξ0)
. (19)

2. G(ϕt) is subharmonic in t (cone version of Berndtsson’s result) and its Lelong
number at t = 0 is given by 1− lct(X ,X0) (cone version of Beman’s result).
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The other key result is the cone version of Berndtsson’s subharmonicity and
uniqueness result, which was used to characterize the case of vanishing Futaki
invariant. �

Remark 3.18. The argument in [LX17a] gives a slightly more general result: As-
sume (X, ξ0) admits a Ricci-flat Käler cone metric, then AX(wtξ0) = n and (X, ξ0)
is Ding-polystable among Q-Gorenstein test configurations (see Remark 3.12).

4. Stable degeneration conjecture

In this section, we give a conjectural description of minimizers for general klt
singularities, and explain various parts of the picture that we can establish.

4.1. Statement

For a klt singularity x ∈ (X,D), one main motivation to study the minimizer v of

v̂ol(X,D),x is to establish a ‘local K-stability’ theory, guided by the local-to-global
philosophy mentioned in the introduction. In particular, we propose the following
conjecture for all klt singularities.

Conjecture 4.1 (Stable Degeneration Conjecture, [Li18a, LX17a]). Given any ar-
bitrary klt singularity x ∈ (X = Spec(R), D), there is a unique minimiser v up to
rescaling. Furthermore, v is quasi-monomial, with a finitely generated associated
graded ring R0 =defn grv(R), and the induced degeneration

(X0 = Spec(R0), D0, ξv)

is a K-semistable Fano cone singularity. (See below for the definitions.)

Let us explain the terminology in more details: First by the grading of R0,
there is a T ∼= Cr-action on X0 where r is the rational rank of v, i.e. the valuative
semigroup Φ of v generates a group M ∼= Zr. Moreover, since the valuation v
identifies M to a subgroup of R and sends Φ into R≥0, it induces an element in
the Reeb cone ξv. If R0 is finitely generated, then [LX17a] shows that we can
embed (x ∈ X) ⊂ (0 ∈ CN ) and find an rational vector ξ ∈ t+R ∩ NQ sufficiently
close to ξv such that the C∗-action generated by ξ degenerates X to X0 with a
good action. We denote by o (or oX0) the unique fixed point on X0. Furthermore,
the extended Rees algebra yielding the degeneration does not depend on the choice
of ξ. So we can define D0 as the degeneration of D.

Conjecture 4.1, if true, would characterize deep properties of a klt singularity.
Various parts are known, see Theorem 4.14. However, the entire picture remains
open in general.

4.2. Cone case

The study of the case of cone is not merely verifying a special case. In fact, since
the stable degeneration conjecture predicts the degeneration of any klt singularities
to a cone, understanding the cone case is a necessary step to attack the conjec-
ture. Here we divide our presentations into two case: the rank one case and the
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general higher rank case. Although our argument in the higher rank case covers
the rank one case with various simplifications, we believe it is easier for reader
to first understand the rank one case, as it is equivalent to the more standard
K-semistability theory of the base which is a log Fano pair. This connection is
made via the theory of β-invariant, which is first introduced in [Fuj18] in terms of
ideal sheaves and further developed in [Li17,Fuj16] via valuations.

4.2.1. Rank one case. The rank one Fano cone is just a cone over a log Fano pair.
More precisely, let (S,B) be an (n−1)-dimensional log Fano pair, and r a positive
integer such that r(KS + B) is Cartier. Then we can consider the minimizing
problem of the normalized volume at the vertex of the cone

x ∈ (X,D) = C(S,B;−r(KS +B)).

Such a question was first extensively studied in [Li17]. More precisely, there is
a canonical divisorial valuation obtained by blowing up x to get a divisor S0

isomorphic to S, which yields the degeneration of x ∈ (X,D) to itself with ξ being
the natural rescaling vector field from the cone structure. Therefore, the stable

degeneration conjecture predicts vS0 = ordS0 is a minimizer of v̂ol(X,D),x if and
only if (S,B) is K-semistable, and this is confirmed in [Li17,LL19,LX16].

Theorem 4.2. The valuation vS0
is a stabilizer of v̂ol(X,D),x if and only if (S,B)

is K-semistable. Moreover, v̂ol(S0) < v̂ol(E) for any other divisor E over x.

In the below, we will sketch the ideas of two slightly different proofs of The-
orem 4.2.

In the first approach, we carry out a straightforward calculation as follows:
Given a compactified nontrivial special test configuration (S,B) of (S,B), then
we obtain a valuation v∗ by restricting the divisorial valuation of the special fiber
S0 to K(S) ⊂ K(S × A1), which is a multiple of some divisorial valuation (cf.
[BHJ17]). Such a valuation v∗ pull backs a valuation v∗X on K(X). Then we define
a C∗-valuation on K(X) by v∞(fm) = v∗X(fm) −mraS(v∗) over X for any fm ∈
H0(S,−mr(KS +B)). In other words, v∞ = v∗X − raS(v∗)vS0

, and we know that
the induced filtration on R yields the Duistermaat-Heckman (DH) measure of
(S,B) (see [BHJ17, Definition 3.5]). We define the ray in{

vt = vS0 + t · v∞ ∈ ValX,x | t ∈ [0,
1

raS(v∗)
)

}
.

Then the key computation in [Li17] is that

d

dt
v̂ol(vt)|t=0 =

n

rn
(−KS −B)n−1 · Fut(S,B). (20)

In fact, if for any valuation v over S, we denote by Rm = H0(S,−mr(−KS −B))
and define

FxvRm := {f ∈ Rm| f ∈ H0(S,−mr(−KS −B)⊗ ax)},
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then we easily see

ak(vt) ∩Rm = F
k−m
t

v∞ H0(S,−mr(−KS −B)).

So

vol(vt) = lim
k

lC(R/ak(vt))

kn/n!

= lim
k→∞

n!

kn

∑
m=0

(
dimF0

v∞Rm − dimF
k−m
t

v∞ H0(S,−mr(−KS −B))
)

= −
∫ ∞
−∞

dvol(Fv∞R(x))

(1 + tx)n
, (21)

where Fv∞R(x) :=
⊕

m Fmxv∞ Rm and the last equality is obtained by a change of
variables (see Lemma [Li17, Lemma 4.5]).

Since A(S0) = 1
r and A(v∞) = 0, Avt = 1

r , so

v̂ol(vt) = −(
1

r
)n
∫ ∞
−∞

dvol(Fv∞R(x))

(1 + tx)n
,

and this implies that

d

dt
v̂ol(vt)|t=0 =

n

rn

∫ ∞
−∞

x · dvol(Fv∞R(x))

=
n

rn
lim
k→∞

wk
kNk

= − 1

rn
(−KS − B)n,

=
n

rn
(−KS −B)n−1 · Fut(S,B).

where for the second equality we use that v∞ is the DH measure for (S,B).

It is not straightforward to reverse the argument to show that (S,B) is K-

semistable implies that ordS0
is a minimizer of v̂ol(X,D),x, since a priori there

could be more complicated valuations than those induced by central fibres of test
configurations. In particular, originally in [Li17], the techniques of ‘taking the limit
of a sequence of filtered linear systems’ developed in [Fuj18] were used in the case
when the associated bigraded ring⊕

m,k

H0(S,−rm(KS +B)⊗ ak)

is not finitely generated, and this is enough to treat all C∗-equivariant valuations.

In [LX16], after the MMP method was systematically applied, it was shown
that

inf
v∈ValX,x

v̂ol(v) = {inf v̂ol(ordS) | C∗-equivariant Kollár components S} (22)
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(see (27) and the discussion below it). Since Kollár components yield special degen-
erations, therefore, the above arguments can be essentially reversed. See Section
4.2.2.

Remark 4.3. In fact, we establish a one-to-one correspondence between special
test configurations of (S,B) (up to a base change) and rays in ValX,x emanating
from vS0

containing a Kollár component (different with vS0
).

An interesting consequence is that the above argument indeed gives an al-
ternative way to show that K-semistability implies the valuative criterion of K-
semistability with β-invariant as in [Fuj16,Li17], but without using the arguments
of ‘taking a limit of filtered linear systems’.

The second approach to treat the cone singularity is developed in [LL19] (see
also [LX16]). It is shown that K-semistablity of (S,B) is equivalent to that of
(X̄, D̄ + (1− 1

rn )S∞), where (X̄, D̄) is the projective cone of (X,D) with respect
to −r(KX + D) and S∞(= S) is the divisor at the infinity place. This follows
from a straightforward Futaki invariant calculation as in [LX16, Proposition 5.3].
Applying the inequality 5.12 to x ∈ (X̄, D̄+(1− 1

rn )S∞), we immediately conclude
that

v̂ol(x, X̄, D̄) ≥ (−KS −B)n−1

rn
= v̂ol(X,D),x(ordS0). (23)

To understand better the relation between the K-semistability of (X̄, D̄ +
(1− 1

rn )S∞) and of (S,B), we want to present a direct calculation which connects

the calculation on β-invariant on (X̄, D̄ + 1
rnS∞) and the one on (S,B).

Lemma 4.4. Assume β-invariant is nonnegative for any divisorial valuation over
S. Denote by L̂ = O(1) = O(S∞) and δ = n+1

rn . For any C∗-invariant divisorial
valuation E. We have the following

β(E) := A(X̄,D̄+(1− 1
rn )S∞)(E)− δ

L̂n

∫ +∞

0

vol(FordE R̂
(x))dx ≥ 0, (24)

where R̂ =
⊕+∞

m=0H
0(X̄,mL̂).

The key of the proof is to relate the β-invariant for a C∗-invariant valuation
v over X̄ to the β-invariant of the restriction of v over the base S.

Proof. We have KX̄ + D̄ + (1− 1
rn )S∞ = −n+1

rn L̂ = −δL̂, and define

Fxv R̂m := {f ∈ R̂m| f ∈ R̂m = ⊕0≤k≤mH
0(S, kr(−KS −B)) and v(f) ≥ x},

For any C∗-invariant divisorial valuation v = ordE on X̄, there exists c1 ∈ Z,
a ≥ 0 and a divisorial valuation ordF over S such that for any f ∈ H0(S,mr(−KS−
B)), we have

v(t) = c1; and v(f) = a · ordF (f) =: v̄(f).

We estimate β(E) in three cases depending on the signs of a and c1:
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(a = 0) : The valuation v is associated to the canonical C∗-action along the
ruling of the cone, up to rescaling, then we easily get β(E) = 0

(a > 0 and c1 ≥ 0) : Then the center of v is contained in S∞. In this case we
can easily calculate:

vol(FR̂(x)) = lim
m→+∞

dimC FxmR̂m
mn/n!

= lim
m→+∞

1

mn/n!

m∑
k=0

dimC Fxm−c1(m−k)
v̄ Rk

= n

∫ 1

0

vol(Fv̄R(c1+
x−c1
τ ))τn−1dτ,

where the last identity can be proved in the same way as in (21). So we have:∫ +∞

0

vol(FR̂(x))dx = n

∫ +∞

0

dx

∫ 1

0

vol(Fv̄R(c1+
x−c1
τ ))τn−1dτ

= n

∫ 1

0

τn−1dτ

∫ +∞

0

vol(Fv̄R(c1+
x−c1
τ ))dx

= n

∫ 1

0

τn−1dτ

[
Hn−1c1(1− τ) + τ

∫ +∞

c1

vol
(
Fv̄R(y)

)
dy

]
=

c1
n+ 1

+ n

∫ +∞

0

vol(Fv̄R(x))dx

∫ 1

0

τndτ

=
c1

n+ 1
+

n

n+ 1

∫ +∞

0

vol(Fv̄R(x))dx.

On the other hand, we have Hn−1 = L̂n and:

A(X̄,D̄+(1−β)S∞)(ordE) = A(S,B)(v̄) + c1 − (1− β)c1 = A(S,B)(v̄) +
c1
rn

So we get:

β(E) = A(S,B)(v̄) +
c1
rn
−

n+1
rn

Hn−1

n

n+ 1

(
c1

n+ 1
+

∫ +∞

0

vol(Fv̄R(x))dx

)
= A(S,B)(v̄)− 1

rHn−1

∫ +∞

0

vol(Fv̄R(x))dx = β(v̄),

which is non-negative by our assumption.
(a > 0 and c1 < 0): In this case, the center of v is at the vertex. As a

consequence we have:

A(X̄,D̄+(1−β)S∞)(v) = A(S,B)(v̄) + (−c1) + (
1

r
− 1)(−c1)

= A(S,B)(v̄) +
−c1
r
≥ A(S,B)(v̄).

The similar calculation as in the second case shows that β(E) ≥ β(v̄). �

Finally, to show v̂ol(S0) < v̂ol(E) for E 6= S0, in [LX16], it was first proved
that if E is a minimizer then it has to be a C∗-equivariant Kollár component. Then
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a careful study of the geometry of E using the equality condition in (23) implies
E = S. This is similar to the analysis for the equality case in [Fuj18,Liu18] where
they showed that the K-stable Q-Fano variety with the maximal volume (n+ 1)n

can only be CPn. We will leave the discussion on this uniqueness type result to the
general case of cones of higher rational ranks, where we take a somewhat different
approach, using more convex geometry.

Remark 4.5. It is worthy pointing out that there is another global invariant for
an n-dimensional log Fano pair (S,B), defined as

δ(S,B) = inf
v∈ValS

A(S,B)(v) · (−KS −B)n∫∞
0

vol(−KS −B − tv)dt

(see [FO16,BJ17]). δ-invariant shares lots of common properties with the normal-
ized volume. For example, the existence of minimizers were proved using similar

strategy. They both have differential geometric meanings. The minimizer of v̂ol is
related to the metric tangent cone (see section 5.2); while the valuation on K(S)
yielding δ(S,B) is related to the the existence of twisted Kähler-Einstein metrics
(see [BJ18]).

For a log Fano pair (S,B) and a cone x ∈ (X,D) = C(S,B;−r(KS +B)), if
(S,B) is not K-semistable, or equivalently δ = δ(S,B) < 1, then we have

v̂ol(x,X,D) ≥ δn · (−KS −B)n−1

rn
.

This follows from our second proof by looking at (X̄, D̄+(1−β)S∞) and applying
the inequality [BJ17, Theorem D] which can be written as

(KX̄ + D̄ + (1− β)S∞)n ≤ (n+ 1)n

nn
· v̂ol(x,X,D) · δ̄n,

where δ̄ := δ(X̄, D̄+(1−β)S∞). We claim min{δ̄, 1} = δ. In fact, by the argument
in [BJ17, Section 7], we know that δ̄ is computed by a C∗-invariant valuation and
the claim follows from the calculation in the proof of Lemma 4.4.

4.2.2. Log Fano cone in general. We proceed to investigate a log Fano cone o ∈
(X,D, ξ) where the torus T could have dimension larger than one. However, we
consider not only the valuations in t+R (X) coming from the torus as in [MSY08]
(see Section 3.1) but all valuations in ValX,o. Compared to the proof of Theorem
4.2, for the higher rational rank case, we rely more on the construction of Kollár
components coming from the birational geometry. More explicitly, we use the re-
lation between special test configurations and Kollár components (see [LX16, 2.3]
and [LX17a, 3.1]).

By the results from the MMP (see (27) and the explanation below), to show
a valuation is a minimizer in ValX,x, we only need to show its normalized volume
is not greater than that of any T -invariant Kollár component. On the other hand,
any T-equivariant Kollár component E in ValX,o yields a special test configuration
of (X ,D, ξ; η) of (X,D) such that −η ∈ t+R (X0) and the valuation associated to −η
coincides with ordE . We denote by (X0, D0) the fiber with a cone vertex o. Then
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we can compare the volumes as v̂olX(ξ) = v̂olX0
(ξ) and v̂olX(E) = v̂ol(−η). Since

ξ,−η ∈ t+R (X0) we reduce the question to the set up of [MSY08] on X0. Then we
only need to each time treat one degeneration X0 and try to understand how to
pass properties between X0 and X.

With this strategy, we can show the following generalization of Theorem 4.2.

Theorem 4.6 ([LX17a]). Let x ∈ (X,D, ξ) be a log Fano cone singularity. Then vξ

is a minimizer of v̂ol(X,D),x if and only if (X,D, ξ) is K-semistable. In such case,

v̂ol(vξ) < v̂ol(v) for any quasi-monomial valuation v if v is not a rescaling of vξ.

If (X,D, ξ) is K-semistable, then for each special test configuration (X ,D, ξ; η),
on X0, we can consider the ray ξt = ξ − tη for t ∈ [0,∞). We know

d

dt
v̂ol(X0,D0),o(vξt)|t=0 = c · Fut(X ,D, ξ; η) ≥ 0.

Moreover, when (X0, D0, o) = (X0, ∅, o) is an isolated singularity, it was shown in

[MSY08] that v̂ol(vξt) is a convex function. We obtain a stronger result for any log

Fano cone (X0, D0, ξ0) (see Section 4.2.3). In particular, we conclude that v̂ol(vξt)

is an increasing function of t, and its limit is v̂ol(−η), thus the inequality in the
following relation holds true:

v̂ol(X,D),x(ξ) = v̂ol(X0,D0),o(ξ) ≤ v̂ol(X0,D0),o(−η) = v̂ol(X,D),x(E).

The first identity consists of two identities: A(X,D)(vξ) = A(X0,D0)(vξ) and
volX(vξ) = volX0(vξ), which essentially follow from the flatness of T -equivariant
test configuration (see [LX17a, Lemma 3.2]). The last identity is because v−η =
ordE .

This argument is reversible since we can indeed attach to any special test
configuration such a set of valuations (see Remark 4.3): if we consider the valuation
wt obtained by considering the vector field ξt as a valuation on K(X ) and then
take its restriction on K(X). The corresponding degeneration induces the test
configuration. See [LX16, 6] and [LX17a, 4.2] for more details.

4.2.3. Uniqueness. We have seen the convexity of the normalized volume function
in the Reeb cone plays a key role. In [MSY08], the strict convexity on the nor-
malized function is established for the valuation varying inside the Reeb cone for
an isolated singularity. This is the kind of property we need for the uniqueness of
the minimizer of a K-semistable Fano cone singularity (X,D, ξ). However, as we
do not know the associated graded ring of other minimizer is finitely generated,
we can not degenerate two minimizers into the Reeb cone. Thus we need develop
a technique to deal with valuations outside the Reeb cone.

The idea of the argument in [LX17a, Section 3.2] is to use the theory of
Newton-Okounkov bodies which was first developed in [LM09,KK12]) and in the
local setting in [Cut13, KK14]. This is a theory which realizes the volumes in al-
gebraic geometry with an asymptotic nature to the Euclidean volumes of some
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convex bodies in Rn. So our aim is to apply the Newton-Okounkov body construc-
tion to translate the normalized volume of valuations into the volume of convex
bodies, and then invoke a convexity property of the volumes functions known in
the latter setting.

To start, we first need to set a valuation V with Zn-valued valuation, which
sends the elements in R to the lattice points inside a convex region σ̃, so that later
we can realize the normalized volumes of valuations as the volume of subsets in σ̃.

For any fixed T ∼= (C∗)r-equivariant quasi-monomial valuation µ, we know
it is of the form (ξµ, v

(0)) where ξµ ∈ MR and v(0) is a quasi-monomial valuation
over K(Y ), such that for any function f ∈ Ru,

µ(f) = 〈ξµ, u〉+ v(0)(f)

(see Theorem 3.5(1)). We fix a lexicographic order on Zr and define for any f ∈ R,

V1(f) = min{u; f =
∑
u

fu with fu 6= 0} = V1(f),

i.e., the first factor V1 comes from the toric part of µ.
We extend this Zr-valuation V1 to become a Zn-valued valuation in the fol-

lowing way: Denote uf = V1(f) ∈ σ∨ and fuf the corresponding nonzero compo-

nent. Define V2(f) = v(0)(fuf ). Because {βi} are Q-linearly independent, we can

write V2(f) =
∑s
i=1m

∗
i βi for a uniquely determined m∗ := m∗(fuf ) = {m∗i :=

m∗i (fuf )}. Moreover, the Laurent expansion of f has the form:

fuf = z
m∗1
1 . . . z

m∗s
s χm∗(z

′′) +
∑
m6=m∗

zm1
1 . . . zmss χm(z′′). (25)

Then χm∗(z
′′) in the expansion of (25) is contained in C(Z), where on some model

of Y , we have Z = {z1 = 0} ∩ . . . {zs = 0} = D1 ∩ · · · ∩Ds is the center of v(0).
Extend the set {β1, . . . , βs} to d = n− r Q-linearly independent positive real

numbers {β1, . . . , βs; γ1, . . . , γd−s}. Define V3(f) = wγ(χm∗(z
′′)) where wγ is the

quasi-monomial valuation with respect to the coordinates z′′ and the (d− s) tuple
{β1, . . . , βs; γ1, . . . , γd−s}.

Now we assign the lexicographic order on

G := Zr ×G2 ×G3
∼= Zr × Zs × Zn−r−s

and define G-valued valuation:

V(f) = (V1(f),V2(fuf ),V3(χm∗)). (26)

Let S be the valuative semigroup of V. Then S generates a cone σ̃ which
is the one we are looking for. We also let P1 : Rn → Rr, P2 : Rn → Rs and
P = (P1, P2) : Rn → Rr+s be the natural projections. Then P1(σ̃) = σ ⊂ Rr.

To continue, we consider how to construct some subsets ∆Ξ̃t
⊂ σ̃ whose

Euclidean volume is the same as the normalized volumes of the valuations. For
any ξ ∈ int(σ), denote by wtξ the valuation associated to ξ. We can connect wtξ
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and µ by a family of quasi-monomial valuations: µt = ((1− t)ξ+ tξµ, tv
(0)) defined

as

µt(f) = tv(0)(f) + 〈u, (1− t)ξ + tξµ〉 for any f ∈ Ru.
So the vertical part of µt corresponds to the vector Ξt := ((1−t)ξ+tξµ, tβ) ∈ Rr+s.
Extend Ξt to Ξ̃t := (Ξt, 0) ∈ Rn and define the following set:

∆Ξ̃t
=
{
y ∈ σ̃; 〈y, Ξ̃t〉 ≤ 1

}
= {y ∈ σ̃; 〈P (y),Ξt〉 ≤ 1} .

Because v̂ol is rescaling invariant, we can assume A(X,D)(v) = A(X,D)(ξ) = 1.
Then by the T -invariance of vt, we easily get:

A(vt) = tA(v(0)) +A(X,D)((1− t)ξ + tζ) = tA(X,D)(v) + (1− t)A(X,D)(ξ) ≡ 1.

The Newton-Okounkov body theory implies that we have

v̂ol(vt) = vol(vt) = vol(∆Ξ̃t
).

To finish the uniqueness argument, now we only need to look at the convex
geometry of ∆Ξ̃t

. We note that Ξ̃t is linear with respect to t, and each region ∆Ξ̃t
is

cut out by a hyperplane Ht on the convex cone σ̃. Moreover, all Ht passes through
a fixed point. A key result from convex geometry then shows that φ(t) := vol(∆Ξ̃t

)

is strictly convex as a function of t ∈ [0, 1] (see [MSY06,Gig78]). By the assumption

φ(0) = vol(v0) = v̂ol(wtξ) is a minimum. So the strict convexity implies

φ(1) = vol(∆Ξ̃1
) = v̂ol(v) > v̂ol(wtξ) = φ(0).

4.3. Results on the general case

To treat the general case, the key idea, suggested by the degeneration conjecture,
is to understand how an arbitrary klt singularity can be degenerated to a K-
semistable Fano cone singularity. In [LX16], by localizing the setting of [LX14],
the following approach of using Kollár components is developed.

From each ideal a, we can take a dlt modification of

f : (Y,DY )→ (X,D + lct(X,D; a) · a),

where DY = f−1
∗ D + Ex(f) and for any component Ei ⊂ Ex(f) we have

AX,D(E) = lct(X,D; a) ·multEf
∗a.

There is a natural inclusion D(DY ) ⊂ Val=1
X,x, and using a similar argument as in

[LX14], we can show that there exists a Kollár component S whose rescaling in
Val=1

X,x contained in D(DY ) satisfies that

v̂ol(ordS) = volloc(−AX,D(S) · S) ≤ volloc(−KY −DY ) ≤ mult(a) · lctn(X,D; a).

Here volvol(·) is the local volume of divisors over X as defined in [Ful13]. Then
Theorem 2.6 immediately implies that

v̂ol(x,X,D) = inf{v̂ol(ordS)| S is a Kollár component over x}. (27)
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Moreover, if x ∈ (X,D) admits a torus group T -action, then by degenerating to
the initial ideals, as the colengths are preserved and the log canonical thresholds
may only decrease, the infimum of the normalized multiplicities in Theorem 2.6
can be only run over all T -equivariant ideals. Then the equivariant MMP allows
us to make all the above data Y and S be T -equivariant.

In case a minimizer is divisorial, then the above discussion shows that

Lemma 4.7 ([LX16,Blu18]). A divisorial minimizer of v̂olX,D yields a Kollár com-
ponent.

In general, we know that the minimizer is a limit of a rescaling of Kollár
components (see [LX16]). So understanding the limiting process is crucial. When
the minimizer is quasi-monomial v of rational rank r, i.e., the valuation v is étale
locally a monomial valuation with respect to a log resolution (Y,E)→ X, then a
natural candidates will be the valuations given by taking rational approximations
of the monomial coordinates α ∈ Rr>0.

Our first observation in [LX17a] is using MMP results including the ACC
of log canonical thresholds, we could construct a weak log canonical model which
extracts divisors whose coordinates are good linear Diophantine approximations
of the coordinates of v.

Proposition 4.8. For any quasi-monomial valuation v computing a log canonical
threshold of a graded sequence of ideals, we can find a sequence of divisors S1,...,
Sr, such that

1. there is a model Y → X which precisely extracts S1,..., Sr over x,
2. there exists a component Z of ∩ri=1Si such that (Y,E :=

∑r
i=1 Si) is toroidal

around the generic point η(Z),
3. v is étale locally a monomial valuation over η(Z) with respect to (Y,E) (see

Section 2.1),
4. (Y,E) is log canonical, and −KY − E is nef.

Fix the first model Y0 = Y , then one can construct a sequence of models
(Yj , Ej) satisfying Proposition 4.8 such that a suitable rescaling of the components
of Ej become closer and closer to v. To make the notation easier, we rescale v into

Val=1
X,x. Similarly, we can embed the dual complex of a dlt modification of (Yj , Ej)

into Val=1
X,x (see [dFKX17]). Our construction moreover satisfies that

DR(Y0, E0) ⊃ DR(Y1, E1) ⊃ · · ·

Then the above discussion indeed implies that

Lemma 4.9. A quasi-monomial minimizer v ∈ Val=1
X,x can be written as a limit of

cj · ordSj ∈ DR(Yj , Ej) where Si are Kollár components.

It would be natural to expect that cj ·ordSj is indeed contained in the simplex

ση(Z) ⊂ Val=1
X,x which corresponds to all the monomial valuations in Val=1

X,x over
η(Z) with respect to (Y,E). However, for now we can not show it.
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If we further assume R0 = grv(R) is finitely generated, then we have the
following

Proposition 4.10. If R0 = grv(R) is finitely generated, then grv(R) ∼= grvi(R) for
any vi ∈ ση(Z) sufficiently close to v.

This immediately implies that (X0 := Spec(R0), D0) is semi-log-canonical
(slc). The final ingredient we need is the following,

Proposition 4.11. Under the above assumptions on (X,D) and its quasi-monomial
minimizer v, then ξv is a minimizer of (X0, D0). In particular,

v̂ol(x,X,D) = v̂ol(o,X0, D0).

Proof. We claim that ξv is indeed a minimizer of v̂olX0,D0
. If not, we can find

a degeneration (Y,DY , ξY ) induced by an irreducible anti-ample divisor E over
o′ ∈ X0 with

v̂olY (ξE) = v̂olX0
(ordE) < v̂olX0

(ξv) = v̂olY (ξY ).

This is clear by our discussion when (X0, D0) is klt. The same thing still holds
when the model extracting Sj is only log canonical but not plt, which implies that
(X0, D0) is semi-log-canonical but not klt. In fact, denote by (Xn

0 , D
n
0 )→ (X0, D0)

the normalization, then Lemma 4.13 implies that

v̂ol(o′, X0, D0) :=
∑
oi→o′

v̂ol(oi, X
n
0 , D

n
0 ) = 0

in this case. The argument in [LX17a, Lemma 4.13] then says in this case, we
can still extract an equivariant anti-ample irreducible divisor E over o′ ∈ X0 with

v̂ol(ordE) arbitrarily small.
Then Lemma 4.12 shows that we can construct a degeneration from (X,D) to

(Y,DY ) and a family of valuations vt ∈ ValX,x for t ∈ [0, ε] (for some 0 < ε� 1),
with the property that

v̂olX(vt) = v̂olY (ξY − tη) < v̂olY (ξY ) = v̂olX0(ξv) = v̂olX(v),

where for the second inequality, we use again the fact that v̂olY (ξY − t · η) is a
convex function in this setting as well. But this is a contradiction. �

Lemma 4.12. Let (x ∈ X) ⊂ (0 ∈ CN ) be a closed affine variety. If λ1 ∈ NN is
a coweight of (C∗)N which gives an action degenerating X to X0 when t → 0,
and λ2 ∈ NN degenerates X0 to Y when t → 0, then for k ∈ N sufficiently large,
kλ1 + λ2 degenerates X to Y0.

The proof was essentially given in [LX16, section 6] (see also [LWX18, Lemma
3.1]) and uses some argument in the study of toric degenerations (see e.g. [And13,
Section 5]).

Lemma 4.13. If o ∈ (X,D) is an lc but not klt point, then

v̂ol(o,X,D) := inf
v∈ValX,o

v̂ol(v) = 0.
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Proof. Let πdlt : (Xdlt, Ddlt)→ (X,D) be a dlt modfication and pick o′′ a preim-

age of o under πdlt, then v̂ol(o′′, Xdlt, Ddlt) ≥ v̂ol(o,X,D), thus we can assume
(Xdlt, Ddlt) is dlt Q-factorial.

By specialing a sequence of points, and applying Theorem 2.11, we can as-
sume o ∈ (X,D) is a point on a smooth variety with a smooth reduced divisor
D. Now we can take a weighted blow up of (1, ε, ...., ε) where the first coordinate
yields D. Then the exceptional divisor E has its normalized volume

v̂ol(E) =
(n− 1)nεn

εn−1
= (n− 1)nε→ 0 as ε→ 0.

�

This implies that (X0, D0) is klt and (X0, D0, ξv) is a K-semistable Fano cone.
To summarize, we have shown Part (a) in the following theorem which characterize
what we know about the Stable Degeneration Conjecture 4.1 for a general klt
singularity.

Theorem 4.14 ([LX17a, Theorem 1.1]). Let x ∈ (X,D) be a klt singularity. Let v

be a quasi-monomial valuation in ValX,x that minimises v̂ol(X,D) and has a finitely
generated associated graded ring grv(R) (which is always true if the rational rank
of v is one by Lemma 4.7). Then the following properties hold:

(a) The degeneration
(
X0 =defn Spec

(
grv(R)

)
, D0, ξv

)
is a K-semistable Fano

cone, i.e. v is a K-semistable valuation;

(b) Let v′ be another quasi-monomial valuation in ValX,x that minimises v̂ol(X,D).
Then v′ is a rescaling of v.

Conversely, any quasi-monomial valuation that satisfies (a) above is a minimiser.

Proof. We first show the uniqueness in general, under the assumption that it ad-
mits a degeneration (X0, D0, ξv) given by a K-semistable minimiser v. For another
quasi-monomial minimiser v′ of rank r′, by a combination of the Diophantine ap-
proximation and an MMP construction including the application of ACC of log
canonical thresholds (see Proposition 4.8), we can obtain a model f : Z → X
which extracts r′ divisors Ei (i = 1, ..., r′) such that (Z,DZ =defn

∑
Ei + f−1

∗ D)
is log canonical. Moreover, the quasi-monomial valuation v′ can be computed at
the generic point of a component of the intersection of Ei, along which (Z,DZ) is
toroidal. Then with the help of the MMP, one can show Z → X degenerates to a
birational morphism Z0 → X0. Moreover, there exists a quasi-monomial valuation
w computed on Y0 which can be considered as a degeneration of v′ with

v̂olX0
(w) = v̂olX(v′) = v̂olX(v) = v̂olX0

(ξv).

Thus w = ξv by Section 4.2.3 after a rescaling. Since w(in(f)) ≥ v′(f) and
vol(w) = vol(v′), we may argue this implies

ξv(in(f)) = v′(f)

(see [LX17a, Section 4.3]). Therefore, v′ is uniquely determined by ξv.
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To show the last statement, we already know it for a cone singularity. For
a valuation v on a general singularity X such that the degeneration (X0, D0, ξv)
is K-semistable, since the degeneration to the initial ideal argument implies that

v̂ol(x,X,D) ≥ v̂ol(o,X0, D0), then

v̂olX(v) = v̂olX0
(ξv) = v̂ol(o,X0, D0)

is equal to v̂ol(x,X,D). �

So in other words, the stable degeneration conjecture precisely predicts the
following two sets coincide:{

Minimizers of v̂ol
}
←→

{
K-semistable valuations

}
.

Theorem 2.8 and Theorem 4.14 together imply the existence of left hand side and
the uniqueness of the right hand side, as well as the direction that any K-semistable
valuation is a minimizer.

Finally, let us conclude this section with the two dimensional case.

Theorem 4.15. Let (X,D, x) be a two-dimensional log terminal singularity. The
Stable Degeneration Conjecture 4.1 holds for (X,D). Moreover, if D is a Q-divisor,

then the minimizer of v̂ol(X,D) is always divisorial.

Proof. We first consider the case when X = C2. Let v∗ be a minimizer and de-
note a• = {am(v∗)}m∈N. Then it was known that v∗ computes the log canonical
threshold of (X,D + a•). By similar argument as [JM12], we know that v∗ must
be quasi-monomial.

If v∗ is divisorial, then we know that the associated divisor is a Kollár com-
ponent. Otherwise, v∗ satisfies rat.rk.(v∗) = 2 and tr.deg.(v∗) = 0. From the
description of valuations on C2 using sequences of key polynomials (SKP), it was
showed that the valuative semigroup Γ of v∗ is finitely generated (see [FJ04, The-
orem 2.28]). Since the residual field of v∗ is C, we know that grv∗R

∼= C[Γ], which
is finitely generated. By [LX17a], we know that v∗ is indeed the unique minimizer

of v̂ol (up to scaling) which is a K-semistable valuation.
If D is a Q-divisor and v∗ is not divisorial, then the pair (X0, D0) is a Q-

Gorenstein toric pair with Q-boundary toric divisor and the associated Reeb vector
field ξv∗ solves the convex geometric problem. But in dimension 2 case (i.e. on
the plane), it is easy to see that the corresponding convex geometric problem as
discussed in section 4.2.3 for toric valuations always has a rational solution. This
is a contradiction to v∗ being non-divisorial.

More generally, we know that X = C2/G where G is a finite group acting

on C2 without pseudo-reflections. Consider the covering (C2, D̃, 0) → (X,D, x).

Then by the above discussion, there exists a unique minimizer v∗ of v̂ol(C2,D̃,0).

In particular, v∗ is invariant under the G-action. So it descends to a minimizer of

v̂ol(X,D,x) which is quasi-monomial and has a finitely generated associated graded
ring.
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�

5. Applications

In this section, we give some applications of the normalized volume. We have seen
that the normalized volume question of a cone singularity is closely related the K-
semistability of the base. Another situation where singularities naturally appear
is on the limit of smooth Fano manifolds.

5.1. Equivariant K-semistability of Fano

An interesting application of the minimizing theory is to treat the equivariant
K-semistability.

Definition 5.1. A log Fano pair (S,B) with a G-action is called G-equivariant K-
semistable, if for any G-equivariant test configuration (S,B), the generalized Fu-
taki invariant Fut(S,B) ≥ 0. We can similarly defineG-equivariant K-polystability.

The notion of usual K-(semi,poly)stability trivially implies the equivariant
one. It is a natural question to ask whether they are equivalent, and if it is con-
firmed it will reduce the problem of verifying K-stability into a much simpler ones
if the log Fano pair carries a large symmetry. When S is smooth and B = 0, this
is proved in [DS16], using an analytic argument. Here we want to explain how our
approach can give a proof of such an equivalence when G = T is a torus group.

The key is the fact we obtain in (22) and (27) : let x ∈ (X,D) be a klt
singularity which admits a T action for a torus group T , then

inf
v∈ValX,x

v̂ol(v) = {inf(v̂ol(ordS))| T -equivariant Kollár components S}. (28)

So if (S,B) is not K-semistable, by Theorem 4.2, we know that over the
cone x ∈ (X,D), the valuation ordS∞ obtained by the canonical blow up does
not give a minimizer. By (28), there exists a T -equivariant valuation v such that

v̂ol(v) < v̂ol(ordS∞). So we can find a T -equivariant Kollár component S such that

v̂ol(ordS) < v̂ol(ordS∞). Then arguing as before, we can find a T -equivariant test
configuration (S,B) with Fut(S,B) < 0.

To prove a similar statement for K-polystability is more delicate. Assume a
K-semistable log pair (S,B) admits a test configuration (S,B) with Fut(S,B) = 0.
We still take the cone construction of a K-semistable log Fano pair as before. The
special test configuration determines a ray vt of valuations in ValX,x, emanating
from the canonical component v0 = ordS∞ . Using the fact that the Futaki invariant
is 0, a minimal model program argument shows that this implies for t � 1, vt is
automatically C∗-equivariant, which immediately implies the test configuration
is C∗-equivariant. Therefore we show the following result (also see [CS16] for an
earlier attempt).
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Theorem 5.2 ([LX16,LWX18]). The K-semistability (resp. K-polystability) of a log
Fano pair (S,B) is equivalent to the T -equivariant K-semistablity (T -equivariant
K-polystablity) for any torus group T acting on (S,B).

For other groups G, e.g. finite groups or general reductive groups, we haven’t
proved the corresponding result as (28). It is a consequence of the uniqueness
part of the stable degeneration conjecture. We also note that in [LX17a], it is
proved that quasi-monomial minimizers over a T -equivariant klt singularity are
automatically T -invariant.

5.2. Donaldson-Sun’s Conjecture

One major application of what we know about the stable degeneration conjec-
ture, formulated in Theorem 4.14, is the solution of [DS17, Conjecture 3.22] (see
Conjecture 5.3), which predicts that for a singularity appearing on a Gromov-
Hausdorff limit of Kähler-Einstein metrics, its metric tangent cone only depends
on the algebraic structure of the singularity. In this section, we briefly explain the
idea.

5.2.1. K-semistable degeneration. Let (Mk, gk) be a sequence of Kähler-Einstein
manifolds with positive curvature. Then possibly taking a subsequence, (Mk, gk)
converges in the Gromov-Hausdorff topology to a limit metric space (X, d∞). By
the work of Donaldson-Sun and Tian, X is homeomorphic to a Q-Fano variety.
For any point x ∈ X, a metric tangent cone CxX is defined as a pointed Gromov-
Hausdorff limit:

CxX = lim
rk→0

(
X,x,

d∞
rk

)
. (29)

By Cheeger-Colding’s theory, CxX is always a metric cone. By [CCT02], the real
codimension of singularity set of CxX is at least 4 and the regular part admits
a Ricci-flat Kähler cone structure. In [DS17], it is further proved that CxX is an
affine variety with an effective torus action. They proved that CxX is uniquely
determined by the metric structure d∞ and can be obtained in the following steps.
In the first step, they defined a filtration {Fλ}λ∈S of the local ring R = OX,o
using the limiting metric structure d∞. Here S is a set of positive numbers that
they called the holomorphic spectrum which depends on the torus action on the
metric tangent cone C. In the second step, they proved that the associated graded
ring of {Fλ} is finitely generated and hence defines an affine variety, denoted by
W . In the last step, they showed that W equivariantly degenerates to C. Notice
that this process depends crucially on the limiting metric d∞ on X. They then
made the following conjecture.

Conjecture 5.3 (Donaldson-Sun). Both W and C depend only on the algebraic
germ structure of X near x.

We made the following observations:



A guided tour to normalized volume 37

1. {Fλ} comes from a valuation v0. This is due to the fact that W is a normal va-
riety. More explicitly, since the question is local, we can assume X = Spec(R)
with the germ of x ∈ X, by the work in [DS17], one can embed both X and C
into a common ambient space CN , and v0 on X is induced by the monomial
valuation wtξ0 where ξ0 is the linear holomorphic vector field with 2Im(ξ0)
being the Reeb vector field of the Ricci flat Kähler cone metric on C. By this
construction, it is clear that the induced valuation by v0 on W is nothing but
wtξ0 .

2. v0 is a quasi-monomial valuation. This follows from Lemma 2.7.

More importantly we conjectured in [Li18a] that v0 can be characterized as

the unique minimizer of v̂olX,x. As a corollary of the theory developed so far, we
can already confirm [DS17, Conjecture 3.22] for W .

Theorem 5.4 ([LX17a]). The semistable cone W in Donaldson-Sun’s construction
depends on the algebraic structure of (X,x).

The proof consists of the following steps consisting of analytic and algebraic
arguments:

1. By Theorem 3.17, (C, ξ0) is K-polystable and in particular K-semistable. By

Theorem 4.6, wtξ0 is a minimizer of v̂olC .
2. By Proposition 5.5, (W, ξ0) is K-semistable. By Theorem 4.6 again, wtξ0 is a

minimizer of v̂olW . Moreover, by Theorem 4.14, v0 is a minimizer of v̂olX .

3. v0 is a quasi-monomial minimizer of v̂olX with a finitely generated associated
graded ring. By Theorem 4.14, such a v0 is indeed the unique minimizer of

v̂ol among all quasi-monomial valuations.

The following is an immediate consequence of Theorem 4.6.

Proposition 5.5. Assume there is a special degeneration of a log-Fano cone (X,D, ξ0)
to (X0, D0, ξ0). Assume that (X0, D0, ξ0) is K-semistable, then (X,D, ξ0) is also

K-semistable, or equivalently, wtξ0 is the minimizer of v̂ol(X,D,x).

Asssume (X,x) lives on a Gromov-Hausdorff limit of Kähler-Einstein Fano
manifold. Then we can define the volume density in the sense of Geometric Measure
Theory as the following quantity:

Θ(x,X) = lim
r→0

Vol(Br(x))

r2nVol(B1(0)
. (30)

Note that nn = v̂ol(0,Cn). The normalized volumes of klt singularities on Gromov-
Hausdorff limits have the following differential geometric meaning:

Theorem 5.6 ([LX17a]). With the same notation as above, we have the identity:

v̂ol(x,X)

nn
= Θ(x,X). (31)
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Proof. From the standard metric geometry, we have Θ(x,X) = Θ(oC , C). Because
C admits a Ricci-flat Kähler cone metric, by Theorem 3.17, (C, ξ0) is K-semistable.

v̂ol(x,X) = v̂ol(oC , C).

On the other hand, since C is a metric cone, from the definition of the volume
of ξ0 = 1

2 (r∂r − iJ(r∂r)) is equal to:

Θ(oC , C) =
Vol(C ∩ {r = 1})

Vol(S2n−1)
= vol(ξ0).

By Theorem 3.16, A(wtξ0) = n and v̂ol(oC , C) = nnvol(ξ0) = nnΘ(oC , C).

�

5.2.2. Uniqueness of polystable degeneration. To confirm Donaldson-Sun’s con-
jecture, we also need to prove the uniqueness of polystable degenerations for K-
semistable Fano cones.

Since a Fano cone singularity (C, ξ) with a Ricci-flat Kähler cone metric
is aways K-polystable (see [CS15, Theorem 7.1] and also Theorem 3.17), once
knowing that W only depends on the algebraic structure of o ∈M∞, an affirmative
answer to Conjecture 5.3 follows from the following more general result by letting
(X,D, ξ0) = (W, ∅, ξ0):

Theorem 5.7 ([LWX18]). Given a K-semistable log Fano cone singularity (X,D, ξ0),
there always exists a special test configuration (X ,D, ξ0; η) which degenerates (X,D, ξ0)
to a K-polystable log Fano cone singularity (X0, D0, ξ0). Furthermore, such (X0, D0, ξ0)
is uniquely determined by (X,D, ξ0) up to isomorphism.

For the special case of smooth (or Q-Gorenstein smoothable) Fano varieties,
this was proved in [LWX14, 7.1] based on analytic results which also show the
uniqueness of Gromov-Hausdorff limit for a flat family of Fano Kähler-Einstein
manifolds. Our proof of Theorem 5.7 is however a completely new algebraic argu-
ment.

We briefly discuss the idea to prove Theorem 5.7 in [LWX18], which heavily
depends on the study of normalized volumes as discussed in Section 4.2.

Let (X (i), D(i), ξ0, η
(i)), (i = 1, 2), be two special test configurations of the log

Fano cone (X,D, ξ0) with the central fibre (X
(i)
0 , D

(i)
0 , ξ0). To show Theorem 5.7,

the main step is to show that if Fut(X (i),D(i), ξ0; η(i)) = 0, (i = 1, 2), then there

exists special test configurations (X ′(i),D′(i)) of (X
(i)
0 , D

(i)
0 ) such that (X ′(i),D′(i))

have isomorphic central fibres, which we will describe below.

We consider the normalized volume functional defined on the valuation space
ValX,x over the vertex x of the cone X. Then (X (1),D(1), ξ0; η(1)) determines a
“ray” of valuations emanating from the toric valuation wtξ0 and the generalized

Futaki invariant Fut(X (1),D(1), ξ0; η(1)) is the derivative of the normalized volume
at wtξ0 along this ray.
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(X
(2)
0 , D

(2)
0 )

(X ′(2),D′(2))

��

(X,D)
(X (2),D(2))←−Y(2)

k ←−E
(2)
koo

(X (1),D(1))←Yk←Ek=Ek×C1

��

Yk ← Ekoo

(X ′0, D
′
0) (X

(1)
0 , D

(1)
0 )

(X ′(1),D′(1))oo Yk,0 ← Ekoo

(32)

We can approximate ξ0 by a sequence of integral vectors ξ̃k such that |ξ̃k −
kξ0| ≤ C. For k � 1, the vector ξ̃k−η corresponds to a Kollár component Ek over
X. Our key argument is to show that Ek can be degenerated along (X (2),D(2)) to

get a model Y(2)
k → X (2) with an exceptional divisor E(2)

k such that (Y(2)
k , E(2)

k )×C
C∗ ∼= (Yk, Ek) × C∗ where the isomorphism is compatible with the equivariant
isomorphism of the second special test configuration. Note that Ek×C∗ determines
a divisorial valuation over X × C∗ and hence over (X (2),D(2)). So the goal is to
show that this divisorial valuation can be extracted as the only exceptional divisor
over X (2). By the work in the minimal model program (MMP) (see [BCHM10]),
this would be true if there is a graded sequence of ideals A• and a positive real
number c′k such that two conditions are satisfied:

(X (2),D(2) + c′kA•) is klt and A(Ek × C;X (2),D(2) + c′kA•) < 1,

where A(Ek×C;X (2),D(2) + c′kA•) is the log discrepancy of (the birational trans-

form of) Ek × C with respect to the triple (X (2),D(2) + c′kA•).
To find such a A•, we look at the graded sequence of valuative ideals {a•}

of ordEk and its equivariant degeneration along the second special test config-
uration (X (2),D(2)). The resulting graded sequence of ideals over X (2) will be
denoted by A•. Using the study in Section 4.2 one can show the assumptions that
(X (1),D(1); ξ0) is K-semistable and Fut(X (1),D(1), ξ0; η) = 0 implies

f(k) := v̂ol(Ek) is of the order f(0) +O(k−2).

This in turn guarantees that we can find c′k satisfying the above two conditions.

Applying the relative Rees algebra construction to E(2)
k ⊂ Y(2)

k /C, we get

a family over C2, which over C × {t} is the same as (X (1),D(1)) for t 6= 0 and

gives a degeneration of (X
(1)
0 , D

(1)
0 ) for t = 0. On the other hand, over {0} × C,

we get a degeneration of (X
(2)
0 , D

(2)
0 ). Therefore, we indeed show that the two

special fibers of two special test configurations (X (i),D(i), ξ0; η(i)) (i = 1, 2) with
Fut(X (i),D(i), ξ0; η(i)) = 0 will have a common degeneration.

5.3. Estimates in dimension three and K-stability of threefolds

In general, it is not so easy to find the minimizer of v̂ol(·) for a given singularity.
A number of cases have been computed in [Li18a, LL19, LX16, LX17a, LX17b]
including quotient singularities, ADE singularities in all dimensions (except 4-
dimensional D4) etc.
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Here we study normalized volumes of threefold klt singularities, and then
give a global application where we show that all GIT semi-stable (resp. polystable)
cubic threefolds are also K-semi-stable (resp. K-polystable). Our main estimate is
in Theorem 5.8, which heavily depends on classifications of canonical threefold
singularities.

Theorem 5.8 ([LX17b]). Let x ∈ X be a 3-dimensional non-smooth klt singularity.

Then v̂ol(x,X) ≤ 16 and the equality holds if and only if it is an A1 singularity;

The proof of Theorem 5.8 heavily relies on the classification theory of three
dimensional canonical and terminal singularities, developed in the investigation of
explicit three dimensional MMP.

The idea goes as follows. Firstly, we reduce to the case of Gorenstein canonical

singularity. If x ∈ X is not Gorenstein, let us take the index one cover x̃ ∈ X̃ of

x ∈ X. Hence x̃ ∈ X̃ is a Gorenstein canonical singularity. If x̃ ∈ X̃ is smooth, then

v̂ol(x,X) = 27/ind(x,KX) ≤ 13.5 < 16. If x̃ ∈ X̃ is not smooth, the a weak version

of finite degree formula (Proposition 5.10) implies that v̂ol(x,X) < v̂ol(x̃, X̃).
Next, let us assume that x ∈ X is Gorenstein canonical. By [KM98, Propo-

sition 2.36], there exist only finitely many crepant exceptional divisors over X.
By [BCHM10], we can extract these divisors simultaneously on a birational model
Y1 → X. If none of these exceptional divisors are centered at x, then [KM98, The-
orem 5.34] implies that x ∈ X is a cDV singularity, hence lct(mx) ≤ 4−mult(mx)
which implies

v̂ol(x,X) ≤ lct(mx)3mult(mx) ≤ (4−mult(mx))3mult(mx) ≤ 16.

The equality case can be characterized using the volume of birational models
approach in [LX16]. If some crepant exceptional divisor E1 ⊂ Y1 is centered at x,
then let us run (Y1, εE1)-MMP over X for 0� ε < 1. By [Kol13, 1.35], this MMP

will terminate as Y1 99K Y
g−→ Y ′, where Y1 99K Y is the composition of a sequence

of flips, and g : Y → Y ′ contracts the birational transform E of E1. If g(E) is
a curve, then Y ′ has cDV singularities along g(E) by [KM98, Theorem 5.34]. By
choosing a point y′ ∈ g(E), we have

v̂ol(x,X) < v̂ol(y′, Y ′) ≤ 16.

If g(E) = y′ is a point, then we still have v̂ol(x,X) < v̂ol(y′, Y ′). Thus it suffices

to show v̂ol(y′, Y ′) < 16.
If Y has a singular point y ∈ E, then we know that y ∈ Y is a cDV singularity.

Hence

v̂ol(y′, Y ′) < v̂ol(y, Y ) ≤ 16.

So we may assume that Y is smooth along E. In particular, E is a (possibly non-
normal) reduced Gorenstein del Pezzo surface. If E is normal, then classification
of such surfaces show that (−KE)2 ≤ 9. Thus

v̂ol(y′, Y ′) ≤ AY ′(ordE)3vol(ordE) = (−KE)2 ≤ 9 < 16.
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If E is non-normal, then from Reid’s classification [Rei94] either (−KE)2 ≤ 4
or the normalization of E is a Hirzebruch surface. In the former case, we have

v̂ol(y′, Y ′) ≤ 4. In the latter case, we need to take a general fiber l of E and argue

that v̂olY ′,y′(ordl) ≤ 16.
Here are some intermediate results in proving Theorem 5.8.

Proposition 5.9. Let φ : (Y, y)→ (X,x) be a birational morphism of klt singulari-

ties such that y ∈ Ex(φ). If KY ≤ φ∗KX , then v̂ol(x,X) < v̂ol(y, Y ).

See Conjecture 6.4 for more discussions about the following Proposition.

Proposition 5.10. Let π : (X̃, x̃) → (X,x) be a finite quasi-étale morphism of klt
singularities of degree at least 2. Then we have

v̂ol(x,X) < v̂ol(x̃, X̃) ≤ deg(π) · v̂ol(x,X).

As mentioned [SS17], one main application of the local volume estimate The-
orem 5.8 is to the K-stability question of cubic threefolds.

Theorem 5.11 ([LX17b]). A cubic threefold is K-(poly/semi)stable if and only if it
is GIT (poly/semi)stable. In particular, any smooth cubic threefold is K-stable.

The general strategy to prove Theorem 5.11 is via the comparison of moduli
spaces which has first appeared in [MM93] built on the work of [Tia90]. Later it
was also applied in [OSS16,SS17].

First, one can construct a proper algebraic space which is a good quotient
moduli space with closed points parametrizing all smoothable K-polystable Q-
Fano varieties (see e.g. [LWX14, Oda15]). Let M be the closed subspace whose
closed points parametrize KE cubic threefolds and their K-polystable limits. By
[Tia87], we know that at least one cubic threefold, namely the Fermat cubic three-
fold, admits a KE metric. Hence M is non-empty. By the Zariski openness of K-
(semi)stability of smoothable Fano varieties (cf. [Oda15, LWX14]), the K-moduli
space M is birational to the GIT moduli space MGIT of cubic threefolds.

Next, we will show that any K-semistable limit X of a family of cubic three-
folds {Xt} over a punctured curve is necessarily a cubic threefold. The idea is to
control the singularity of X use an inequality from [Liu18] (see Theorem 5.12) be-
tween the global volume of a K-semistable Fano variety and the local normalized
volume. Since the volume of X is the same as the volume of a cubic 3-fold which
is 24, Theorem 5.12 immediately implies that v̂ol(x,X) ≥ 81

8 for any closed point
x ∈ X. The limit X carries a Q-Cartier Weil divisor L which is the flat limit of
hyperplane sections in the cubic threefolds Xt. It is clear that −KX ∼Q 2L and
(L3) = 3, thus once we show that L is Cartier, we can claim that X is a cubic
threefold using a result of T. Fujita.

Assume to the contrary that L is not Cartier at some point x ∈ X, then

we may take the index 1 cover (x̃ ∈ X̃) → (x ∈ X) of L. From the finite degree
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formula Theorem 6.5,

v̂ol(x̃, X̃) = ind(L) · v̂ol(x,X) ≥ 81/4.

Hence x̃ ∈ X̃ is a smooth point and ind(L) = 2 by Theorem 5.8. Thus x ∈ X is a
quotient singularity of type 1

2 (1, 1, 0) from the smoothable condition. Then using
the local Grothendieck-Lefschetz theorem, we can show that L is indeed Cartier
at x ∈ X which is a contradiction.

So far we have shown that any K-polystable point X in M is a cubic threefold.
By an argument of Paul and Tian in [Tia94], we know that any K-(poly/semi)stable
hypersurface is GIT (poly/semi)stable. Thus we obtain an injective birational mor-
phism M → MGIT between proper algebraic spaces. This implies that M is iso-
morphic to MGIT which finishes the proof.

Theorem 5.12 ([Liu18]). Let X be an n-dimensional K-semistable Fano variety.
Then for any closed point x ∈ X, we have

(−KX)n ≤
(

1 +
1

n

)n
v̂ol(x,X).

When X is smooth, the above result was first proved in [Fuj18].

6. Questions and Future research

6.1. Revisit stable degeneration conjecture

The following two parts of stable degeneration conjecture, proposed in [Li18a], are
still missing.

Conjecture 6.1 (Quasi-monomial). Let x ∈ (X,D) be a klt singularity. Any mini-

mizer of v̂ol(X,D),x is quasi-monomial.

Conjecture 6.2 (Finite generation). Let x ∈ (X = Spec(R), D) be a klt singularity.

Any minimizer of v̂ol(X,D),x has its associated graded ring grv(R) to be finitely
generated.

Due to the fundamental role of the stable degeneration conjecture, it im-
plies many other interesting properties. We discuss a number of special cases or
consequences, with the hope that some of them might be solved first.

One interesting consequence of the uniqueness of the minimizer is the follow-
ing

Conjecture 6.3 (Group action). If there is a group G acting on the klt singularity
x ∈ (X,D) such that x is a fixed point, then there exists a G-invariant minimizer.

Applying this conjecture to a cone singularity, it implies that to test the
K-semistability of a log Fano (S,B) with a G-action, we only need to test on
G-equivariant test configurations, a fact known for a Fano manifold X and G-
reductive.
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There are two special cases naturally appearing in contexts. The first one
is that when G is a torus group T . It follows the argument in [Blu18] and the
techniques of degenerating ideals to their initials, that there is a T -equivariant
minimizer. This is the philosophy behind Section 5.1. It also follows from [LX17a]
that any quasi-monomial minimizer is T -equivariant.

A more challenging case is when G is a finite group. Indeed, Conjecture 6.3
for finite group G implies the following finite degree formula.

Conjecture 6.4 (Finite degree formula). If π : (y ∈ Y,D′) → (x ∈ X,D) is a
dominant finite morphism between klt singularities, such that KY +D′ = π∗(KX +
D), then

deg(π) · v̂ol(x,X,D) = v̂ol(y, Y,D′).

This is useful when we want to bound the klt singularities x ∈ (X,D) with a
large volume.

Theorem 6.5 ([LX17a]). Conjecture 6.4 is true when (X,x) is on a Gromov-
Hausdorff limit of Kähler-Einstein Fano manifolds.

Proof. Let π = πX : (Y, y) → (X,x) be a quasi-étale morphism, i.e. πX is étale
in codimension one. Then πX induces a quasi-étale morphism along the 2-step
degeneration of X.

Y //
πX��

WY
//

πW��

CY
πC��

X //W //C

(33)

We can use the above diagram to prove the degree multiplication formula. Roughly
speaking, because C admits a Ricci-flat Kähler cone metric ωC with radius function
r2 and πC is quasi-étale, we can pull back it to get π∗Cr

2 which is also a potential
for a weak Ricci-flat Kähler cone metric ωCY . By Theorem 3.17, Theorem 4.6 and
Theorem 4.14, we know that the Reeb vecotor field associated to ωC (resp. ωCY )

induces minimizing valuations of v̂olX (resp. v̂olY ). So we get

v̂ol(y, Y ) = v̂ol(oCY , CY ) = deg(πC) · v̂ol(oC , C) = deg(πC) · v̂ol(x,X).

�

Another consequence of the stable degeneration conjecture is the following
strengthening of Theorem 2.11.

Conjecture 6.6. Let π : (X ,D)→ T together with a section t ∈ T 7→ xt ∈ Xt be a

Q-Gorenstein flat family of klt singularities. Then the function t 7→ v̂ol(xt,Xt,Dt)
is construtible with respect to the Zariski topology.

Besides the stable degeneration conjecture, to prove Conjecture 6.6, we also
need to know the well expected speculation that K-semistability is an open con-
dition. It is also natural to consider the volume of non-closed point. However,
the following conjecture says after the right scaling, it does not contribute more
information.
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Conjecture 6.7. If a klt pair (X,D) has a non-closed point η, and let Z = {η} has
dimension d. Pick a general closed point x ∈ Z, then

v̂ol(x,X,D) = v̂ol(η,X,D) · nn

(n− d)n−d
.

In fact, combining the argument in [LZ18], for any valuation v ∈ ValX such
that its center Z = CenterX(v) on X is of dimension d and x ∈ Z, denoted by η
is the generic point of Z, one can show that

v̂ol(X,D),η(v) · nn

(n− d)n−d
≥ v̂ol(x,X,D).

i.e.,

v̂ol(x,X,D) = inf
v

{
nn · v̂ol(X,D),η(v)

(n− d)n−d
| x ∈ Z = {η} = CenterX(v),dim(Z) = d

}
.

6.2. Birational geometry study

A different invariant attached to a klt singularities, called the minimal log discrep-
ancy has been intensively studied in the minimal model program, though there are
still many deep questions unanswered. We can formulate many similar questions

for v̂ol.

6.2.1. Inversion of adjunction. One could look for a theory of the change of the
volumes when the klt pair is ‘close’ to a log canonical singularities, using the
inversion of adjunction. We have some results along this line.

Proposition 6.8. Let x ∈ (X,∆) be an n-dimensional klt singularity. Let D be a
normal Q-Cartier divisor containing x such that (X,D+ ∆) is plt. Denote by ∆D

the different of ∆ on D. Then

lim
ε→0+

v̂ol(x,X, (1− ε)D + ∆)

nnε
=

v̂ol(x,D,∆D)

(n− 1)n−1
.

Proof. Using the degeneration argument in [LZ18], we know that

ε−1v̂ol(x,X, (1− ε)D + ∆) ≥ nn

(n− 1)n−1
v̂ol(x,D,∆D).

Hence it suffices to show the reverse inequality is true after taking limits. Let us
pick an arbitrary Kollár component S over x ∈ (D,∆D) with valuation ideals
am := am(ordS). Choose m sufficiently divisible so that aim = aim for any i ∈ N.
Then we know that lct(D,∆D; am) = AX(ordS)/m =: c. Let bm be the pull-
back ideal of am on X. By inversion of adjunction, we have lct(X,D + ∆; bm) =
lct(D,∆D; am) = c.

Let E be an exceptional divisor over X computing lct(X,D + ∆; bm). Then
E is centered at x ∈ X since (X,D + ∆) is plt. For ε1 > 0 sufficiently small, we
have that (X,∆ + (1 − ε1)(D + c · bm)) is a klt pair over which the discrepancy
of E is negative. Thus [BCHM10] implies that there exists a proper birational
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model µ : Y → X which only extracts E. Moreover, µ : Y → X is a log canonical

modification of (X,∆ + D + c · bm). Let D̃ be the normalization of µ−1
∗ D. Then

by adjunction, the lifting morphism µ̃ : D̃ → D is a log canonical (in fact plt)
modification of (D,∆D+c ·am). Since BlamD → D provides a model of the Kollár
component S, this is the only log canonical modification of (D,∆D+c ·am). Hence

E|D̃ = S and (D̃, µ̃−1
∗ ∆D+E|D̃) is plt. Then by inversion of adjunction, (Y, µ−1

∗ ∆+

µ−1
∗ D + E) is qdlt and µ−1

∗ D = D̃ is normal. Note that all the constructions so
far are independent of the choice of ε.

Over the qdlt model (Y, µ−1
∗ ∆ + µ−1

∗ D + E), we consider a quasi-monomial

valuation vλ of weights 1 and λ along divisors D̃ and E respectively. By adjunction,
we know that A(X,∆)(ordE) = A(D,∆D)(ordS) + ordE(D). Hence computation
shows that

A(X,∆+(1−ε)D)(vλ) = λA(D,∆D)(ordS) + λε · ordE(D) + ε.

Then using the Okounkov body description of the volume (see [LM09,KK12]), we
easily see that vol(vλ) ≤ λ1−nvol(ordS). Hence

v̂ol(X,∆+(1−ε)D)(vλ) ≤ λ1−n((A(D,∆D)(ordS) + ε · ordE(D))λ+ ε)nvol(ordS)

=: φ(λ).

It is easy to see that φ(λ) reaches its minimum at

λ0 =
(n− 1)ε

AD,∆D
(ordS) + ε · ordE(D)

.

Hence computation shows

ε−1v̂ol(X,∆+(1−ε)D)(vλ0
) ≤ nn

(n− 1)n−1
(A(D,∆D)(ordS)+ ε ·ordE(D))n−1vol(ordS).

Thus

lim sup
ε→0

ε−1v̂ol(x,X,∆ + (1− ε)D) ≤ nn

(n− 1)n−1
v̂ol(D,∆D)(ordS)

Since this inequality holds for any Kollár component S over x ∈ (D,∆D), the
proof is finished. �

When the center is zero dimensional, we also have

Proposition 6.9. Let x ∈ (X,∆) be a klt singularity. Let D ≥ 0 be a Q-Cartier
divisor such that (X,∆ + D) is log canonical with {x} being the minimal non-klt
center. Then there exists ε0 > 0 (depending only on the coefficient of ∆, D and n)
and a quasi-monomial valuation v ∈ ValX,x such that v computes both lct(X,∆;D)

and v̂ol(x,X,∆ + (1− ε)D) for any 0 < ε < ε0. In particular,

v̂ol(x,X,∆ + (1− ε)D) = v̂olx,(X,∆)(v) · εn for any 0 < ε < ε0.
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Proof. Let Y dlt → X be a dlt modification of (X,∆ +D). Let KY dlt + ∆dlt be the
log pull back ofKX+∆+D. Then by [dFKX17], the dual complex DR(∆dlt) form a
natural subspace of Val=1

X,x. Any divisorial valuation ordE computing lct(X,∆;D)

corresponds to a rescaling of a valuation in DR(∆dlt). Consider the function volX :
DR(∆dlt) → R>0 ∪ {+∞}. Denote by DR◦(∆dlt) the open subset of DR(∆dlt)
consisting of valuations centered at x. Since {x} is the minimal non-klt center
of (X,∆ + D), we know that DR◦(∆dlt) is non-empty. By [BFJ14] the function
vol is continuous on DR(∆dlt), so we can take a vol-minimizing valuation v ∈
DR◦(∆dlt). Hence v is a minimizer of v̂ol restricted to DR◦(∆dlt).

Assume S is an arbitrary Kollár component over (X,∆ + (1− ε)D). Then we
have a birational morphism µ : Y → X such that KY + µ−1

∗ (∆ + (1 − ε)D) + S
is plt, and µ is an isomorphism away from x with S = µ−1(x). Then by ACC of
lct [HMX14], we know that there exists ε0 such that KY + µ−1

∗ (∆ + D) + S is
log canonical whenever 0 < ε < ε0. Let v′ be an arbitrary divisorial valuation in
DR◦(∆dlt). Since KY +µ−1

∗ (∆+D)+S ∼Q µ
∗(KX +∆+D)+A(X,∆+D)(ordS)S,

we have

0 ≤ A(Y,µ−1
∗ (∆+D)+S)(v

′) = A(X,∆+D)(v
′)−A(X,∆+D)(ordS) · v′(S).

Since A(X,∆+D)(v
′) = 0 and v′(S) > 0 since {x} is the only lc center, we know

that A(X,∆+D)(ordS) = 0. Thus a rescaling of ordS belongs to DR(∆dlt). Then by
[LX16] we see that

v̂ol(x,X,∆ + (1− ε)D) = min
v′∈DR(∆dlt)

v̂ol(X,∆+(1−ε)D)(v
′)

= εn min
v′∈DR(∆dlt)

volX(v′) = v̂olx,(X,∆)(v) · εn.

�

One should be able to solve the following question using the above techniques.

Question 6.10. Let x ∈ (X,∆) be an n-dimensional klt singularity. Let D be an
effective Q-Cartier Q-Weil divisor through x. Let c = lct(X,∆;D), and let W
be the minimal log canonical center of (X,∆ + cD) containing x. By Kawamata’s
subadjunction, we have (KX+∆+cD)|W = KW +∆W +JW , where (W,∆W +JW )
is a generalized klt pair. Denote by k := codimXW , then is it true that

lim
ε→0+

ε−k
v̂ol(x,X,∆ + (1− ε)cD)

nn
≥ v̂ol(w,X,∆)

kk
· v̂ol(x,W,∆W + JW )

(n− k)n−k

where w is the generic point of W in X and v̂ol(x,W,∆W +JW ) is similarly defined
as for the usual klt pair case in Definition 2.3?

6.2.2. Uniform bound. The following is conjectured in [SS17] (see also [LX17b]).

Conjecture 6.11. Let x ∈ X be an n-dimensional singular point, then v̂ol(x,X) ≤
2(n− 1)n.
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The constant 2(n−1)n is the volume of a rational double point. When n = 3,
it is proved in Theorem 5.8. The implication to the K-stability question of cubic
hypersurfaces as in the argument of Theorem 5.11 holds in any dimension.

We also ask whether the following strong property of the set of local volumes
holds.

Question 6.12. Fix the dimension n, and a finite set I ⊂ [0, 1]. Is it true that the

set Volloc
n,I consisting of all possible local volumes of n-dimensional klt singularities

x ∈ (X,D) with (coefficients of D) ⊂ I has the only accumulation point 0?

Next we give a comparison between local volumes and minimal log discrep-
ancies.

Theorem 6.13. Let x ∈ (X,∆) be an n-dimensional complex klt singularity. Then

there exists a neighborhood U of x ∈ X such that (U,∆|U ) is (v̂ol(x,X,∆)/nn)-lc.

Moreover, mld(x,X,∆) > v̂ol(x,X,∆)/nn.

Proof. If x ∈ X is not Q-factorial then we may replace X by its Q-factorial
modification under which the local volume will increase by [LX17b, Corollary
2.11]. Let ∆i be any component of ∆ containing x. Then [BL18, Theorem 33]

implies that A(X,∆)(∆i) ≥ v̂ol(x,X,∆)/nn. Let E be any exceptional divisor over
X such that x is contained in the Zariski closure of cX(E) and a(E;X,∆) <
0. Then by [Kol13, Corollary 1.39], there exists a proper birational morphism
µ : Y → X such that Y is normal, Q-factorial and E = Ex(µ) ⊃ µ−1(x). Since
KY +µ−1

∗ ∆−a(E;X,∆)E = µ∗(KX +∆), we know that (Y, µ−1
∗ ∆−a(E;X,∆)E)

is klt. Let y ∈ µ−1(x) be a point, then y lies on E. Hence by [LX17b, Corollary
2.11] and [BL18, Theorem 33] we have

v̂ol(x,X,∆) < v̂ol(y, Y, µ−1
∗ ∆− a(E;X,∆)E) ≤ A(X,∆)(E)nn.

Thus A(X,∆)(E) > v̂ol(x,X,∆)/nn which finishes the proof. �

Next we will discuss application to boundedness generalizing a result by C.
Jiang [Jia17, Theorem 1.6].

Corollary 6.14. Let n be a natural number and c a positive real number. Then the
projective varieties X satisfying the following properties:

• (X,∆) is a klt pair of dimension n for some effective Q-divisor ∆,
• −(KX + ∆) is nef and big,
• α(X,∆)n(−(KX + ∆))n ≥ c,

form a bounded family.

Proof. By [BJ17, Theorem A and D] (generalizing [Liu18]), for any closed point
x ∈ X we have

c ≤ α(X,∆)n(−(KX + ∆))n ≤ δ(X,∆)n(−(KX + ∆))n ≤
(

1 +
1

n

)n
v̂ol(x,X,∆).

Hence Theorem 6.13 implies (X,∆) is (c/(n+1)n)-lc. Therefore, the BAB Conjec-
ture proved by Birkar in [Bir16, Theorem 1.1] implies the boundedness of X. �
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Remark 6.15. In the conditions of Corollary 6.14 if we also assume that the co-
efficients of ∆ are at least ε for any fixed ε ∈ (0, 1), then such pairs (X,∆) are
log bounded. This partially generalizes [Che18, Theorem 1.4]. Besides, all results
should hold for R-pairs.

Question 6.16. Is it true that for any n-dimensional klt singularity x ∈ X, we have

mld(x,X) ≥ v̂ol(x,X)/nn−1?

6.3. Miscellaneous Questions

6.3.1. Positive characteristics. In this section, we consider a variety X over an
algebraically closed field k of characteristic p > 0. From [Har98,HW02], we know
that klt singularities are closely related to strongly F -regular singularities in pos-
itive characteristic. Moreover, log canonical thresholds (lct) correspond to F -pure
thresholds (fpt) in positive characteristic (see [HW02]). In spirit of Theorem 2.6,
we define the F -volume of singularities in characteristic p as follows.

Definition 6.17 ([Liu19]). Let X be an n-dimensional strongly F -regular variety
over an algebraically closed field k of positive characteristic. Let x ∈ X be a closed
point. We define the F -volume of (x ∈ X) as

Fvol(x,X) := inf
a : mx-primary

fpt(X; a)nmult(a).

Similar to [dFEM03], Takagi and Watanabe [TW04] showed that if x ∈ X is
a smooth point, then Fvol(x,X) = nn.

Another interesting invariant of a strongly F -regular singularity x ∈ X is
its F -signature s(x,X), see [SVdB97, HL02, Tuc12]. In [Liu19], we estabilish the
following comparison result between the F -volume and the F -signature.

Theorem 6.18 ([Liu19]). Let x ∈ X be an n-dimensional strongly F -regular singu-
larity. Then

n! · s(x,X) ≤ Fvol(x,X) ≤ nn min{1, n! · s(x,X)}.

It would be interesting to study the limiting behavior of F -volumes of mod-p
reductions of a klt singularity over characteristic zero when p goes to infinity.

Conjecture 6.19. Let x ∈ (X,∆) be a klt singularity over characteristic 0. Let
xp ∈ (Xp,∆p) be its reduction mod p� 0, then

v̂ol(x,X,∆) = lim
p→∞

Fvol(xp, Xp,∆p).

Remark 6.20. Together with Theorem 6.18, this will imply that for the reductions
(Xp,∆p), the F-signature s(xp, Xp,∆p) has a uniform lower bound as p→∞, as
asked in [CRST18, Question 5.9].
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6.3.2. Relation to local orbifold Euler numbers. In [Lan03], Langer introduced
local orbifold Euler numbers for general log canonical surface singularities and
used it to prove a Miyaoka-Yau inequality for any log canonical surface. In an
attempt to understand Langer’s inequality using the Kähler-Einstein metric on
a log canonical surface, Borbon-Spotti conjectured recently in [BS17] that the
volume densities of the singular Kähler-Einstein metrics should match Langer’s
local Euler numbers (at least for log terminal surface singularities). They verified
this in special examples by comparing the known values of both sides. On the
other hand, from Theorem 5.6, we know that the normalized volume is equal to
the volume density up to a factor (dimX)dimX for any point (X,x) that lives on
a Gromov-Hausdorff limit of smooth Kähler-Einstein manifolds ([HS17, LX17a]).
In view of this connection, one can formulate a purely algebraic problem about
two algebraic invariants of the singularities. This problem was already posed by
in [BS17] at least in the log terminal case. We formulate the following form by
including one of Langer’s expectations (see [Lan03, p.381]):

Conjecture 6.21 (see [BS17, p.37]). Let (X,D, x) be a germ of log canonical surface
singularity with Q-boundary. Then we have

eorb(x,X,D) =

{
1
4 v̂ol(x,X,D), if (X,D) is log terminal ;
0, if (X,D) is not log terminal.

(34)

In [Li18b], it was proved that the above conjecture is true when (X,D, x)
is a 2-dimensional log-Fano cone or a log-CY cone. In particular, combined with
Langer’s calculation, one gets the local orbifold Euler numbers of line arrange-
ments.

Proposition 6.22 ([Lan03,Li18b]). Let L1, . . . , Ln be m distinct lines in C2 passing
through 0. Let D =

∑m
i=1 δiLi, where 0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δm ≤ 1. Denote

δ =
∑m
i=1 δi. Then we have:

eorb(0,C2, D) =


0 if (C2, D, 0) is not klt ;
(1− δ + δm)(1− δm) if δ < 2δm;
(2−δ)2

4 if 2δm ≤ δ ≤ 2.

(35)

Here we point out a possible application of Theorem 4.15 (i.e. 2-dimensional
case conjecture 4.1) for studying Conjecture 6.21 for any log terminal singularity
(x,X,D). First, by Theorem 4.15 there exists a unique Kollár component S ∼= P1

which minimizes the normalized volume. Let µ : Y → X be the extraction of
S and ∆ = DiffS(D). By Theorem 4.14 we know that (S,∆) ∼= (P1,

∑
i δipi) is

indeed K-semistable (see [LX16, section 6]). Then F := Ω1(log(S + D)) (defined
using ramified coverings as in [Lan03]) restricted to S fits into an exact sequence
of orbifold sheaves:

0 −→ Ω1
S(log(∆))→ F |S → OS → 0. (36)

By [Li18b, Theorem 1.3], we know that E := F |S is slope semistable. Then the
generalization of [Wah93, Proposition 3.16] to the logarithmic/orbifold setting
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combined together with Langer’s work should imply that eorb(x,X,D) = c1(E )2

4(−S·S)Y

which is indeed equal to v̂ol(ordS)
4 .

6.3.3. Normalized volume function. We have mainly concentrated on the mini-
mizer of the normalized volume function. We can also ask questions on the general
behavior of the normalized volume function. For example:

Question 6.23 (Convexity). Let σ ⊂ ValX,x be a simplex of quasi-monomial valua-

tions. Is it true that v̂ol(·) is always convex on σ? Is there a more general convexity

property for v̂ol on ValX,x?

Question 6.24. Is the normalized volume a lower semicontinuous function on ValX,x?

If this is true, then it would directly imply the existence of minimizer of v̂ol using
the properness estimate in Theorem 2.5.
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