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Abstract

We prove two new results on the K-polystability of Q-Fano varieties based on purely
algebro-geometric arguments. The first one says that any K-semistable log Fano cone has a
special degeneration to a uniquely determined K-polystable log Fano cone. As a corollary,
we combine it with the differential-geometric results to complete the proof of Donaldson-
Sun’s Conjecture which says that the metric tangent cone of any close point appearing on
a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds only depends on the algebraic
structure of the singularity. The second result says that for any log Fano variety with a
torus action, the K-polystability is equivalent to the equivariant K-polystability, that is, to
check K-polystability, it is sufficient to check special test configurations which are equivariant
under the torus action.
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1 Introduction

We work over the field C of complex numbers. This paper is a sequel to the works in
[Li17b, LX16, LX17]. Together with the previous works, we complete the proof of Donaldson-
Sun’s Conjecture [DS17, Conjecture 3.22] (see Theorem 1.1), which says that as an affine
variety, the metric tangent cone C := Co(M∞, d∞) of any point o on a Gromov-Hausdorff
(GH) limit (M∞, d∞) of a sequence of Kähler-Einstein Fano manifolds only depends on the
algebraic structure of the singularity and is independent of the metric structure. Previously
in [LX17] we proved that the intermediate construction W in Donaldson-Sun’s work (see
[DS17]) only depends on the algebraic structure.

Our strategy is to systematically use minimizers of the normalized volume functional
(defined in [Li18]) to characterize valuations associated to metric tangent cones. Aiming
at a vast generalization of the original differential geometric approach, we try to algebraize
the construction of [DS17] by giving a completely local definition of a two-step degeneration
process for an arbitrary klt singularity. This has been done under suitable assumptions
about the minimizer of the normalized volume. In fact, these assumptions are posted to
make the first step of the degeneration possible and our current note draws a complete
picture of the second step. In particular, with the help of the metric structures to verify
the assumptions, we now have a rather satisfactory understanding of this process for those
singularities appearing on the GH-limit M∞. In below, we will give more details.
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1.1 Main results

For the first step of the degeneration, in [LX17], we showed that the valuation considered
in [DS17], whose original definition depends on the metric, is a minimizer of the normalized
volume and such a minimizer is uniquely determined by the underlying algebraic structure.
This allows us to recover W using the minimizing valuation and hence gives the first part of
[DS17, Conjecture 3.22].

Recall that the cone W degenerates to the metric tangent cone C and is K-semistable
(see [DS17] and [LX17, Theorem 5.5]). In the current paper, we complete the picture by
showing that the metric tangent cone C is the unique K-polystable degeneration of W . In
particular, this implies that C depends only on the algebraic structure of W , which itself
only depends on the algebraic structure of o ∈M∞.

Theorem 1.1 ([DS17, Conjecture 3.22]). The metric tangent cone C of o ∈M∞ on the GH-
limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of o ∈M∞.

As in [DS17], the assumption of M∞ can be weakened, e.g. M∞ is a GH-limit of a se-
quence of projective manifolds X with fixed volumes, bounded Ricci curvature and diameter.
All argument verbatim extends. One can expect Theorem 1.1 will significantly simplify the
determination of metric tangent cones in examples (see e.g. [HS17]).

Since a Fano cone singularity (C, ξ) with a Ricci-flat Kähler cone metric is aways K-
polystable (see [CS15, Theorem 7.1] and also Corollary A.3), once knowing that W depends
only on the algebraic structure of o ∈ M∞, Theorem 1.1 is a consequence of the following
more general result by letting (X,D, ξ0) = (W, ∅, ξ0):

Theorem 1.2 (Existence and uniqueness of K-polystable degenerations: log Fano cones).
Given a K-semistable log Fano cone singularity (X,D, ξ0), there always exists a special test
configuration (X ,D, ξ0; η) that degenerates (X,D, ξ0) to a K-polystable log Fano cone singu-
larity (X0, D0, ξ0). Furthermore, such (X0, D0, ξ0) is uniquely determined by (X,D, ξ0) up
to isomorphism.

If we restrict ourselves to the quasi-regular case of log Fano cones, then we obtain the
following result for log Fano varieties.

Theorem 1.3 (Existence and uniqueness of K-polystable degenerations: log Fano varieties).
Given a K-semistable log Fano variety (S,B), there always exists a special test configuration
(S,B) that degenerates (S,B) to a K-polystable pair (S0, B0). Furthermore, such (S0, B0) is
uniquely determined by (S,B) up to isomorphism.

We note that for the special case of Q-Gorenstein smoothable Fano varieties, this was
proved in [LWX14, 7.1] based on an analytic results on the existence and uniqueness of
Gromov-Hausdorff limit for a flat family of Fano Kähler-Einstein manifolds (see also [SSY16]).
Our current proof of Theorem 1.2 uses only algebro-geometric arguments and thus can re-
move the ‘smoothable’ assumption. Moreover, our techniques also give rise to an equivariant
criterion for testing K-polystability.

Theorem 1.4 (T -equivariant K-stability=K-stability). Let (S,B) be a log Fano variety
with an action by a torus group T ∼= (C∗)d. Then (S,B) is K-polystable if and only if it is
T -equivariantly K-polystable, that is for all T -equivariant special test configuration (S,B),
the generalized Futaki invariant Fut(S,B) ≥ 0, and the equality holds only when the test
configuration is a product, i.e. (S,B) ∼= (S,B)× A1.

Note that Theorem 1.4 is proved for smooth Fano manifolds in [DS16] for general reductive
group actions using analytic approach. Our result works for any singular Q-Fano varieties.
This combined the work [IS17] allows one to effectively check the K-stability of Q-Fano
T -varieties of complexity one.

1.2 Sketch of the proof

Now we briefly outline our proof of Theorem 1.2 and 1.3. We will first concentrate on the
case of log Fano varieties, corresponding to the quasi-regular case of log Fano cones. Let
(S(i),B(i))(i = 1, 2) be two special test configurations of the log Fano variety (S,B) with

the central fiber (S
(i)
0 , B

(i)
0 ). The main technical result Theorem 3.2 easily implies Theorem
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1.3, says that if Fut(S(i),B(i)) = 0, (i = 1, 2), then there exist special test configurations

(S ′(i),B′(i)) of (S
(i)
0 , B

(i)
0 ) such that (S ′(i),B′(i)) have isomorphic central fibers.

Similar to [Li17b, LL19, LX16], we consider the normalized volume function v̂ol(X,D,x)(·)
defined on the valuation space ValX,x over the vertex x of the cone (X,D) = C(S,B;−λ(KS+

B)) for a sufficiently divisible λ > 0 (see Section 2.1 for the definitions of v̂ol(X,D,x)(·)
and ValX,x). Then (S(1),B(1)) determines a “ray” of valuations, temporarily denoted by
{wε}0≤ε�1, emanating from the canonical valuation w0 = ordS (S also denotes the divisor
obtained by blowing up the vertex) and we know that the generalized Futaki invariant
Fut(S(1),B(1)) is the derivative of the normalized volume at w0 along this ray. When k � 1,
w1/k = ak · ordEk , where ak > 0 and Ek is a Kollár component over (X,D, x) (see Definition
2.6).

By taking cones similar as before, {(S(i),B(i))}i=1,2 induce special degenerations of
(X,D), which will be denoted by {(X (i),D(i))}i=1,2. Our key observation is that Ek can

be degenerated along (X (2),D(2)) to obtain a model Y(2)
k → X (2) with a unique exceptional

divisor E(2)
k satisfying (Y(2)

k , E(2)
k )×CC∗ ∼= (Yk, Ek)×C∗ where the isomorphism is compatible

with the equivariant isomorphism of the second special test configuration. Note that Ek×C∗
determines a divisorial valuation over X × C∗ and hence over (X (2),D(2)). So the goal is
to show that this divisorial valuation can be extracted as the only exceptional divisor over
X (2). Based on the results from the minimal model program (MMP) (see [BCHM10]), this
would be true if we could find a graded sequence of ideals A• and a positive real number c′k
such that the following two conditions are simultaneously satisfied:

(X (2),D(2) + c′kA•) is klt and A(Ek × C;X (2),D(2) + c′kA•) < 1, (_)

where A(Ek × C;X (2),D(2) + c′kA•) is the log discrepancy of (the birational transform of)
Ek ×C with respect to the triple (X (2),D(2) + c′kA•). Note that this way of applying MMP
is also a major ingredient in the study of some related problems in [Blu18, LX16, LX17] .

To construct such a graded sequence A• of ideals, we look at the graded sequence of
valuative ideals {a•} of ordEk and its equivariant degeneration along the second special
test configuration (X (2),D(2)). The resulting graded sequence of ideals over X (2) will be
denoted by A•, which we claim is exactly what we are looking for. Indeed, as we will
show (see Claim 3.6), the assumptions that (S,B) is K-semistable and Fut(S(1),B(1)) = 0
guarantee the existence of c′k satisfying the two conditions in (_). This is possible thanks to
the interaction between K-semistability and minimization of normalized volumes/normalized
multiplicities.

Applying the relative Rees algebra construction to E(2)
k ⊂ Y(2)

k /C, and then taking a
quotient by the natural rescaling C∗-action, one can obtain a family over C2, whose restriction

to C × {t} for t 6= 0 is the same as (S(1),B(1)) and it gives a degeneration of (S
(1)
0 , B

(1)
0 )

when restricted to C × {0}. On the other hand, over {0} × C, one get a degeneration of

(S
(2)
0 , B

(2)
0 ). Therefore, we obtain that the two log Fano varieties (S

(i)
0 , B

(i)
0 ) (i = 1, 2),

which are special fibers of the two special test configurations (S(i),B(i)) (i = 1, 2) with
Fut(S(i),B(i)) = 0 (i = 1, 2), indeed admit degenerations with isomorphic special fibers (see
Theorem 3.2).

To confirm Donaldson-Sun’s Conjecture (see [DS17, Conjecture 3.22]), it is necessary to
also treat the case of a general log Fano cone, i.e. including the irregular case. We first estab-
lish the condition (_) using an approximation argument to get common degenerations as in
the quasi-regular case. However, the common degenerations are a priori only weakly special
(Definition 2.17). So we extend [LX14, Theorem 4] to (possibly irregular) log Fano cones.
In other words, we reproduce the last step of [LX14] for a log Fano cone (see Section 4.2).
We also apply [CS15] to obtain the K-polystability of a Ricci-flat Kähler cone singularity.

We now outline the organization of the paper. More details will be given at the beginning
of each section. In Section 2.1, we recall some basic tools needed in our arguments including
normalized volumes, normalized multiplicities and Kollár components. In Section 2.2, we
recall the notions of log Fano cones, their test configurations and K-stability. We also
discuss how to construct test configurations using models over log Fano cones. In the quasi-
regular case, we are reduced to the K-stability of log Fano pairs. In Section 3, we prove
our main results in the case of log Fano pairs. In Section 3.1, we prove a lemma about
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special degenerations of K-semistable log Fano pairs with zero Futaki invariants. In Section
3.2, we prove the main technical result (Theorem 3.2) on the existence of a common special
degenerations of special degenerations with zero Futaki invariants. In Section 3.3, we finish
the proof of main results for log Fano pairs. In Section 4, we deal with the general case of
log Fano cones. In Section 4.1, we obtain common weakly special degenerations for log Fano
cones with vanishing generalized Futaki invariants. In Section 4.2, we show that these weakly
special test configurations are indeed special test configurations. we generalize the last step
of results in [LX16] to the case of log Fano cones. We complete the proof of Theorem 1.2 and
Donaldson-Sun’s conjecuture in Section 4.3. In Appendix A, we prove the analytic result
that Ricci-flat Kähler cones are Ding-polystable among Q-Gorenstein test configurations.
This result could substitute results in Section 4.2 to complete the proof of Theorem 1.1.
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Notation and Conventiones: We follow the standard notation in [KM98, Kol13]. We
call a pair (S,B) a log Fano variety if (S,B) has klt singularities, and −(KS +B) is ample.

We will use the following terminology introduced in [Kol18]. We consider a f : (X,D)→
C where X is normal flat over a smooth projective curve C, D is an effective Q-divisor on
X. We say (X,D) is locally stable over C if (X,D +Xt) is log canonical for any t ∈ C.

2 Preliminaries

2.1 Normalized volumes

In this section, we recall the definition of the normalized volume of valuations centered at a
klt singularity x ∈ (X,D). This is introduced in [Li18]. For readers’ convenience, in below
we discuss some basic properties which will be needed later.

Definition 2.1. Let X = SpecC(R) be an affine variety and x ∈ X be a closed point. We
denote by ValX,x the space of real valuations v : R→ R≥0 ∪ {+∞} that satisfy the following
conditions: for any f, g ∈ R:
(1) v(fg) = v(f) + v(g); (2) v(f + g) ≥ min{v(f), v(g)}; (3) v(0) = +∞, v(C∗) = 0; (4)
v(f) > 0 if f(x) = 0.

For any v ∈ ValX,x and m ∈ R, its valuative ideal (at level m) is defined as am(v) :=
am(v,X) = {f ∈ R; v(f) ≥ m}.

We remark that ValX,x is also called the ‘non-archimedean link’ around x ∈ X in some
literatures.

For any m > 0, am(v) is a primary ideal associated to the maximal ideal mx. We will
denote its Hilbert-Samuel multiplicity by mult(am). If Λ = v(R) ⊂ R≥0 denotes the valuative
semigroup of v, then {am(v); m ∈ Λ} is a Λ-graded sequence of ideals. In other words, they
satisfy, for any m,m′ ∈ Γ, (i) : am′(v) ⊆ am(v) if m′ ≥ m and (ii) : am(v) · am′(v) ⊆
am+m′(v). Note that {am(v);m ∈ Z} is also a Z-graded sequence of ideals.

Definition-Proposition 2.2 ([ELS03, Mus02]). For any v ∈ ValX,x, the volume of v is the
following well-defined quantity:

vol(v) = lim
m→+∞

dimC(R/am(v))

mn/n!
= lim
m→+∞

mult(am)

mn
=: mult(a•). (1)

Now we assume (X,D) is a log pair such that KX + D is Q-Cartier. For any divisorial
valuation v = ordS where S is a divisor of Y for a birational morphism µ : Y → X, the log
discrepancy of ordS is defined as A(X,D)(ordS) = ordS(KY − µ∗(KX + D)) + 1. By [JM12]
and [BFFU15], there is a canonical way to extend the log discrepancy to become a lower
semicontinuous function A(X,D) : ValX,x → R ∪ {+∞}.
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Definition-Proposition 2.3 (see [Li18, Theorem 1.1]). Assume x ∈ (X,D) is a klt singu-

larity. For any v ∈ ValX,x, its normalized volume v̂ol(X,D,x)(v) is defined as:

v̂ol(X,D,x)(v) =

{
A(X,D)(v)n · vol(v), if A(X,D)(v) < +∞;
+∞, if A(X,D)(v) = +∞. (2)

For simplicity, we will just write v̂ol(v) if the singularity x ∈ (X,D) is clear. This quantity

is a rescaling invariant: v̂ol(λv) = v̂ol(v) for any λ > 0.
The volume of a klt singularity x ∈ (X,D) is defined to be the following positive number

vol(x,X,D) = inf
v∈ValX,x

v̂ol(X,D,x)(v). (3)

It has been shown that there always exists a minimizer v of v̂ol(X,D,x) among all v ∈ ValX,x
in [Blu18]. The expected properties of the minimizers are formulated in the Stable Degener-
ation Conjecture ([Li18, Conjecture 6.1], [LX17, Conjecture 1.2]). The case of cone singular-
ities over Fano varieties was studied in [Li17b, LL19]. The general case was systematically
studied in [LX16] under the assumption that the minimizer is a divisorial valuation and in
[LX17] under the assumption that the minimizer is a higher rank quasi-monomial valuation.

We will need a relation between the normalized volume and the normalized multiplicity
of a graded sequence of ideals.

Proposition 2.4 ([Liu18]). If x ∈ (X,D) is an n-dimensional klt singularity, then we have

vol(x,X,D) = inf
b•

mult(b•) · lctn(X,D; b•),

where b• runs over all graded sequence of primary ideals cosupported at x.

We now state some central results from our previous works and refer to the next section for
the notations of log Fano cones (see Definition 2.12) and their K-stability (see e.g. Definition
2.23).

Theorem 2.5 ([Li17b, LL19, LX16, LX17]). Let (X,D, ξ) be a log Fano cone singularity.
Then it is K-semistable if and only if the valuation wtξ induced by ξ is a minimizer of

v̂ol(X,D,x) on ValX,x.

We will also use the following notion frequently:

Definition 2.6. Let (X,D, x) be a klt singularity. A divisor S over (X,D, x) is called a
Kollár component over (X,D, x), if there exists a birational morphism µ : Y → X such that
(i) µ is an isomorphism over X \ {x} and the exceptional divisor S = µ−1(x) is irreducible
and Q-Cartier; (ii) −S is µ-ample; (iii) (Y, µ−1

∗ D + S) is plt.

The relevance of Kollár components to the minimization of normalized volume is con-
tained in the following result:

Theorem 2.7 ([LX16]). Let (X,D, x) be a klt singularity. Assume that v0 ∈ ValX,x is

a minimizer of v̂ol(X,D,x). Then we can find a sequence of Kollár components Sk and a
constant ck > 0, such that

ck · ordSk → v0 and v̂ol(ordSk)→ v̂ol(v0) as k → +∞.

Moreover, if v0 is divisorial, then v0 is given by a K-semistable Kollár component.

Proof. See [LX16, Theorem 1.2 and Theorem 1.3].

In the above theorem, when v0 is a divisorial minimizer, then [Blu18] also shows it yields
a Kollár component. In the case of K-semistable log Fano cones, the approximation stated in
the above theorem can be realized concretely by perturbing the Reeb vector field to rational
ones.

2.2 K-stability of log Fano cones

In this section, we recall the definition of a log Fano cone singularity and its K-stability, by
essentially following [CS18, CS15] and [LX17, Section 2.5]. Denote by T a complex torus
which is isomorphic to (C∗)r.
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Test configurations

Definition 2.8. Let X be an n-dimensional reduced affine variety which is not necessarily
irreducible. We say that a T -action on X is good if it is effective and there is a closed T -fixed
point x ∈ X (called the vertex) that is in the closure of any T -orbit. By a T -singularity in
this paper, we always mean an affine variety X with a good T -action. If D is a T -invariant
R-divisor on X we say that (X,D) is a pair with a good T -action.

Let N = Hom(C∗, T ) be the co-weight lattice and M = N∗ the weight lattice. If X =
SpecC(R) is a T -variety, then there is a weight space decomposition:

R =
⊕
α∈Γ

Rα where Γ = {α ∈M | Rα 6= 0} ⊂M. (4)

The action being good implies R0 = C. We will call any element ξ in the Lie algebra
tR := N ⊗ R a coweight vector (or abbreviated as a vector). We will denote by 〈ξ〉 the
sub-torus of T generated by ξ, i.e. the sub-torus corresponds to the minimal linear Q-linear
subspace V ⊂ N ⊗Q such that V ⊗ R contains ξ.

If T acts on a smooth variety X, then ξ will give a vector field on X. For example, if we
consider the multiplication of C∗ on C, then the coweight vector 1 ∈ Z yields the vector field
t∂t.

Definition 2.9. The Reeb cone of X with respect to a good T -action is the following set:

t+R := {ξ ∈ NR | 〈α, ξ〉 > 0 for any α ∈ Γ\{0}} . (5)

Any vector ξ ∈ t+R will be called a Reeb vector on the T -variety X.

Definition 2.10. For any ξ ∈ t+R , we define its volume as:

volX(ξ) := volX,x(ξ) = lim
k→∞

∑
〈ξ,α〉≤k dimC(Rα)

kn/n!
.

One key property of the volume function is the following.

Lemma 2.11 (see [CS18, LX17]). The function ξ 7→ volX,x(ξ) is smooth and strictly convex
on t+R .

Proof. The smoothness was proved in [CS18, Theorem 4.10] where volX(ξ) was interpreted
as the leading coefficient of the expansion of the so-called index character (see [MSY08]).

The convexity of volX,x follows from [LX17, Section 3.2]. In fact, if we let Y → X be the
normalization of X, the T -action can be lifted to Y . Denote the preimage of x to be {yi}i,
then we know yi are on pairwisely distinct components Yi of Y , and the T -action on each Yi
is good with

volX,x(ξ) =
∑
i

volY,yi(ξ).

Thus we may assume X to be normal. Then [LX17, Proposition 3.10], which generalizes
the convexity result from [MSY08], says that ξ 7→ volX,x(ξ) is a strictly convex function for
ξ ∈ t+R .

If (X,x) is a normal affine T -variety, then each ξ ∈ t+R corresponds to a valuation wtξ ∈
ValX,x which is defined as:

wtξ(f) = min

{
〈α, ξ〉; f =

∑
α

fα with fα 6= 0 ∈ Rα

}
. (6)

Definition 2.12 (Log Fano cone singularity). Let (X,D) be an affine pair with a good T
action. Assume (X,D) is a normal pair with klt singularities. Then for any ξ ∈ t+R , we
call the triple (X,D, ξ) a log Fano cone structure that is polarized by ξ. If 〈ξ〉 ∼= C∗ which
is equivalent to saying that ξ is a multiple of a vector in t+Q , then we call (X,D, ξ) to be
quasi-regular. Otherwise, we call it irregular.
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Definition 2.13 (Quotient in the quasi-regular case). In the quasi-regular case, we can take
the quotient (S,B) of (X \ {x}, D \ {x}) by the C∗-group 〈ξ〉 generated by ξ in the sense of
a Seifert C∗-bundle, and we will denote by (X,D)/〈ξ〉. More precisely, assume ξ ∈ 1

lN , and
we write

R =
⊕
k=0

 ⊕
〈ξ,α〉=k/l

Rα

 :=
⊕
k=0

Rξk.

Then we take S = Proj(
⊕

k=0R
ξ
k). By [Kol04, Section 4], π : X \ {x} → S is a Seifert

C∗-bundle, with the quotient X \ {x} → (S,B1) where B1 is the branch divisor. Write
D =

∑
i aiDi. Since each Di is Gm-invariant, Di is the pull back of a divisor Ei on S

and the multiplicity of Di along π∗(Ei) is denoted by mi. Define B2 =
∑
i
ai
mi
Ei. Let

B = B1 + B2. Then π∗(KS + B) = (KX + D)|X\{x} since π∗(KX + B1) = KX\{x} (see
[Kol04, Corollary 41]) and π∗(B1) = D|X\{x}.

The quotient (S,B) is a log Fano variety, because we assume that (X,D) is klt at x (see
[Kol04, 42] or [Kol13, Lemma 3.1]).

Definition 2.14 (Test configuration). Let (X,D, ξ0) be a log Fano cone singularity. A
T -equivariant test configuration (or simply called a test configuration) of (X,D, ξ0) is a
quadruple (X ,D, ξ0; η) with a map π : (X ,D)→ C satisfying the following conditions:

(1) π : X → C is a flat family where X = Spec(R) is normal affine (thus R is a finitely
generated flat C[t]-algebra), D is a divisor on X with Supp(D) not containing any
component of the fiber, and there is an isomorphism φ : (X ,D)×CC∗ ∼= (X,D)×C∗.The
torus T acts on (X ,D)→ C fiberwisely, and coincides with the action on the first factor

when restricted to (X ,D)×CC∗
φ∼= (X,D)×C∗. We write R =

⊕
αRα as decomposition

into weight spaces.

(2) A C∗-action on (X ,D) such that π is C∗-equivariant where C∗ acts on the base C by
the multiplication and φ : (X ,D) ×C C∗ ∼= (X,D) × C∗ is C∗-equivariant. We denote
the coweight vector of C∗ by η.

(3) The torus T -action commutes with the C∗-action.

Condition (1) implies that each weight piece Rα is a flat C[t]-module. So X and X0 have
the same weight cone and Reeb cone with respect to the fiberwise T -action. In particular, ξ0
is contained in the Reeb cone of X0 under the T -action.

A test configuration (X ,D, ξ0; η) is called a product one if there is a T -equivariant iso-
morphism (X ,D) ∼= (X,D)×C and η = η0 + t∂t where η0 is a coweight vector of T and t∂t
is the canonical lifting of t∂t on C through the second projection. In this case, we will denote
(X ,D, ξ0; η) by

(X × C, D × C, ξ0; η) =: (XC, DC, ξ0; η).

A normal test configuration (X ,D, ξ0; η) is called Q-Gorenstein if KX +D is Q-Cartier.

Remark 2.15. Our Definition 2.14, by the argument in [LX16, Section 6], implies that there
exists an embedding

(x ∈ X) ⊂ (0 ∈ CN ),

such that X is obtained by a one parameter group of the ambient space 0 ∈ CN which also
corresponds to a weighted blow up of CN . The latter was used in the definition in [CS18].
So our definition of test configurations is indeed equivalent to the one in [CS18].

Because KX+D is Q-Cartier, by the structure theory of T -varieties, there exists a T×C∗-
equivariant nowhere-vanishing section s ∈ |m(KX+D)| (see [LS13, Proposition 4.4], and also
[MSY08, 2.7]). For any b ∈ R and ξ + bη ∈ tR ⊕ Rη ∼= NR ⊕ R, define:

A(ξ + bη) :=
1

m

Lξ+bηs
s

,

where Lξ+bη is the Lie derivative of s with respect to the vector field associated to ξ + bη.
Note that this is a linear function. We remark that when ξ + bβ is in the Reeb cone, then it
yields a valuation wξ+bβ and we have A(ξ + bη) = AX ,D(wξ+bβ) (see [LX17, Lemma 2.18]).
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If (X ,D, ξ0; η) is any Q-Gorenstein test configuration of an n-dimensional log Fano cone
(X,D, ξ0), we will denote:

Tξ0(η) =
A(ξ0)η −A(η)ξ0

n
. (7)

Definition 2.16 (Special test configuration). Notation as above. A special test configuration
of (X,D, ξ0) is a Q-Gorenstein test configuration (X ,D, ξ0; η) with central fiber (X0, D0)
satisfying moreover that:

(4) (X0, D0) has klt singularities.

In this case, we say that (X0, D0) is a special degeneration of (X,D).

We need also consider a larger class of test configurations than special ones.

Definition 2.17 (Weakly special test configuration). Notation as above. A weakly special
test configuration of (X,D, ξ0) is a Q-Gorenstein test configuration (X ,D, ξ0; η) with central
fiber (X0, D0) satisfying moreover that:

(5) (X ,D +X0) has log canonical singularities.

In this case, we say that (X0, D0) is a weakly special degeneration of (X,D).

For simplicity, we will just say that (X ,D) is a Q-Gorenstein (or weakly special, special)
test configuration if ξ0 and η are clear. We also say that (X,D, ξ0) degenerates to (X0, D0, ξ0)
(or simply to (X0, D0)).

Test configuration and filtration

In [BHJ17, Section 2.5], a filtration viewpoint for test configurations is developed. Here we
will mainly work with data over the vertex of the cone which brings more flexibility when
applying the minimal model program. In this section, we will discuss these ideas and modify
them to fit into our context.

Lemma 2.18. Given a normal T -equivariant test configuration (X ,D, ξ0; η) of (X,D), we
can find a Z-graded sequence of ideals {a•} of R such that

1. ak = R for k ≤ 0;

2. ak is a homogeneous ideal for any k ∈ Z: ak =
⊕

α ak ∩Rα for any k ∈ Z;

3. the extended Rees algebra Rees :=
⊕

k∈Z t
−kak satisfies Spec(Rees) = X .

Moreover, if η is in the Reeb cone of X0, then ak is primary for k > 0.

Proof. Recall by the definition of the test configuration, X = Spec(R) where R =
⊕
Rα

and each Rα is a flat C[t]-module. For any f ∈ OX , we could denote by f̄ its pull back
from the first factor of X ×C∗. Since X ×C C∗ ∼= X ×C∗, we could mimic the construction
in [BHJ17, Section 2.5] by defining ak =

⊕
α

{
f ∈ Rα |t−kf̄ ∈ Rα

}
, and then we form the

extended Rees algebra Rees =
⊕

k∈Z akt
−k.

Then it is clear by the definition we have R ∼= Rees. (In particular, this implies that
Rees is finitely generated.)

Since R is a flat C[t]-algebra, that means a0 = R which implies that ak = R for k ≤ 0.
This is the first property. The second property follows from that the C∗-action generated by
η commutes with T .

Finally, if η is in the Reeb cone, then 〈η, α〉 > 0 for any α ∈ Γ\{0} (see (4)). Thus for
any α 6= 0 and f ∈ Rα, the order of f vanishing along (t = 0) is 〈η, α〉 > 0, which implies
for any k, fm ∈ ak for m� 0.

Remark 2.19. Since the Reeb cone with respect to T is open, for any given test configuration,
one can always perturb ξ0 to a rational Reeb vector and modify η accordingly so that for
m � 1 sufficiently divisible, mξ0 + η is an integral vector in the Reeb cone with respect to
T̃ := T × C∗.

We give a way of obtaining test configurations using models. It generalizes the construc-
tion of special test configurations via Kollár components as discussed in [LX17, 3.1].
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Definition 2.20. Let (X,D, ξ0) be a log Fano cone singularity. Let µ : Y → X be an
isomorphism outside X \ {x} with a T -equivariant integral Weil divisor E supported on
Ex(µ) such that −E is ample. Denote by R :=

⊕
k∈Z t

−kbk, where bk = µ∗(OY (−kE)).
Then (X ,D, ξ0; η) is a test configuration associated to the model µ : Y → X, where X :=

Spec(R) and D is the cycle (with Q-coefficients) degeneration of D. More precisely, if we
write D =

∑
aiDi, where Di are prime divisors with the corresponding ideal IDi , then we can

define Di on X to be the divisor corresponding to the ideal IDi :=
⊕

k∈Z(bk ∩ IDi)t−k ⊂ R,
and let D =

∑
aiDi.

Conversely, starting with a test configuration (X ,D, ξ0; η) and assuming η is in the Reeb
cone of X0, we take the primary ideals ak as in Lemma 2.18, and then take the normalized
filtered blow up (see [TW89, Chapter 1] for the definition) µ : Y → X induced by a• =
{ak}k∈Z. Then the pull back of Proj

⊕
k=0 ak/ak+1 on Y gives us the divisor E.

Lemma 2.21. The above two constructions give equivalence between normal test configura-
tions (X ,D, ξ0; η) with η in the Reeb cone and models µ : Y → X satisfying the conditions
in Definition 2.20. Moreover,

1. (X ,D, ξ0; η) is a special test configuration if and only if µ : Y → X yields a Kollár
component; and

2. (X ,D, ξ0; η) is weakly special if and only if (Y,E + µ−1
∗ D) is log canonical.

Proof. If we start with a normal test configuration (X ,D, ξ0; η), then we get a graded se-
quence of primary ideals {a•} by Lemma 2.18. If we take the filtered blow up of {a•} and
get E as above, then we claim it is normal and the algebra {bk = µ∗(OY (−kE))} is the same
as the algebra

⊕
k=0 ak.

In fact,
⊕

k=0 ak ⊂
⊕

k=0 bk is a subalgebra, but the latter is integral over the former.
Thus it suffices to verify that the R-algebra

⊕
k=0 ak is integrally closed. Similar to the proof

of [Laz04, 9.6.6], this follows from the fact that to check whether a function f is contained
in ak suffices to only check it at the divisorial valuation along the the special fiber X0. More
precisely, let the special fiber X0 =

∑
miEi where Ei are the prime divisors, then

a homogeneous element f ∈ the normal closure
⊕
k=0

ak

⇔ f satisfies an equation fm + a1f
m−1 + · · ·+ am = 0 with ai ∈ aik,

which implies the vanishing order of f along Ei is at least kmi as the element in aj have
vanishing order along Ei at least jmi by the definition. Then we conclude f ∈ ak.

If we start with a normal model µ : Y → X and E as in Definition 2.20, then
⊕

k=0 bk
is a normal algebra where bk = µ∗(OY (−kE)), then we can easily show the Rees alge-
bra

⊕
k∈Z t

−kbk is normal, thus the induced test configuration (X ,D, ξ0; η) is normal. If
we take the filtered blow up then Y ∼= Proj(

⊕
k=0 bk) as −E is ample, and the divisor

Proj(
⊕

k=0 bk/bk+1) ⊂ Y yields E.

To prove the second part of the statement, let v : A1
C ⊂ X corresponds to the section

of vertices. Consider the C∗-action given by η in the data of the test configuration, then
(S = ProjC[t]Rees,B) is the base of the C∗-quotient of (X \ v(A1

C),D \ v(A1
C)) as a Seifert

bundle (see [Kol04]), i.e., we remember the codimension one orbifold structure and put it
into B. Over the special fiber, we have

S0
∼= Proj

⊕
k=0

ak/ak+1
∼= Proj

⊕
k=0

bk/bk+1
∼= E.

If (X ,D + X0) is log canonical, then X0 is reduced and (X0, D0) is semi-log-canonical.
Thus E = S0 is reduced and (S0, B0 := B|S0

) is semi-log-canonical. Moreover, if we write
KE +DE = (KY +E + µ−1

∗ D)|E , then DE is sent to B0 under the isomorphism between E
and S0. Thus by inversion of adjunction, (Y,E + µ−1

∗ D) is log canonical.
For the converse, assume (E,DE) is log canonical, it suffices to show that bk/bk+1 =

H0(E,OE(−kE)) for any positive integer k, as this implies that (X0, D0) is the orbifold
cone over (E,DE). First, since the test configuration is Q-Gorenstein, −KE −DE ∼Q λE|E
for some λ > 0 . Therefore, E and KY + E + µ−1

∗ D are anti-ample over X,

−(k + 1)E = KY + E + µ−1
∗ D − (k + 1)E − (KY + E + µ−1

∗ D),
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we conclude that R1µ∗OY (−(k + 1)E) = 0 by the Kawamata-Viehweg Vanishing Theorem,
then we can apply µ∗ to the following exact sequence

0→ OY (−(k + 1)|E)→ OY (−kE)→ OE((−kE)|E)→ 0.

If we specialize the argument to the plt case, we obtain that E is indeed a Kollár component.

Generalized Futaki invariants and K-stability

We define the generalized Futaki invariant for Q-Gorenstein test configuration using the
volume function. One can easily show this definition is the same as the one in [CS18].
However, the formula in Definition 2.22 more fits the argument in the current paper.

Definition 2.22 (Generalized Futaki invariant). For any Q-Gorenstein test configuration
(X ,D, ξ0; η) of (X,D, ξ0) with the central fiber (X0, D0, ξ0), its generalized Futaki invariant
is defined as

Fut(X ,D, ξ0; η) :=
D−Tξ0 (η)volX0

(ξ0)

volX0(ξ0)
.

Since generalized Futaki invariant defined above only depends on the data on the central fiber,
we will also denote it by Fut(X0, D0, ξ0; η).

In the above definition, we used the notation (7) and the directional derivative:

D−Tξ0(η)
volX0(ξ0) :=

d

dε

∣∣∣∣
ε=0

volX0(ξ0 − εTξ0(η)).

The negative sign in front of Tξ0(η) in the above formula is to be compatible with our later
computation.

Next, we will introduce the notions of K-stability. We note that in the definition, we only
look at special test configurations, in the spirit of [Tia97].

Definition 2.23 (K-stability). We say that (X,D, ξ0) is K-semistable, if for any special test
configuration (X ,D, ξ0; η), we have Fut(X ,D, ξ0; η) is nonnegative.

We say that (X,D, ξ0) is K-polystable, if it is K-semistable, and any special test config-
uration (X ,D, ξ0; η) with Fut(X ,D, ξ0; η) = 0 is a product test configuration.

If (X ,D, ξ0; η) is a special test configuration, we know A(ξ0) = A(X0,D0)(wtξ0) > 0. Then
we see the following identity holds:

D−Tξ0ηvolX0
(ξ0) =

d

dε

∣∣∣∣
ε=0

v̂olX0
(wtξ0−εη) · 1

nA(ξ0)n−1
, (8)

where we use the rescaling invariance of the normalized volume and A(ξ0) = A(ξ0 − t · Tξ0η)
for t � 1 (see (7)) As a consequence, we can rewrite the Futaki invariant of a special test
configuration in the following way:

Fut(X ,D, ξ0; η) := D−ηv̂olX0(wtξ0) · 1

nA(ξ0)n−1 · volX0(ξ0)
. (9)

This shows that it differs from the one in [LX17, Definition 2.26] by a positive constant. It
also differs from Collins-Székelyhidi’s definition by a constant.

Remark 2.24. Obviously to define the K-stability notions, we can also consider more general
test configurations than the special ones. In [LX14] we proved that for the K-stability of log
Fano varieties, to test on all test configurations is equivalent to only test on special test
configurations.

For log Fano cone singularities, results like [LX14] are not completely known. Neverthe-
less, later in this paper, we have to deal with weakly special test configurations, as they will
naturally appear in our argument. Thus we need to prove a statement (see Proposition 4.3)
similar to [LX14, Theorem 4], which says that for log Fano cone singularities, our definition
of K-semistability is also equivalent to test on all weakly special test configurations.

Compared to the other literatures, all test configurations are considered in [CS18], whereas
in [CS15, LX17] K-stability notions are only tested on special test configurations.
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We will need the following simple fact, which follows from the definition of the generalized
Futaki invariant applied to product test configurations:

Lemma 2.25. Assume that the log Fano cone (X,D, ξ0) admits a torus action by T ′ ∼= (C∗)r′

that commutes with 〈ξ0〉. Let t′ denotes the Lie algebra of T ′. Then the function

η 7→ Fut(XC, DC, ξ0; η)

is linear with respect to η ∈ t′.

Log Fano varieties

In the below, we will specialize previous definitions to the case of quasi-regular log Fano
cones, which correspond to Fano projective varieties.

Definition 2.26. Assume (S,B) is a log Fano variety. A test configuration of (S,B,−(KS+
B)) is a quadruple (S,B,L; η) with a map π : (S,B) → C that satisfies the following condi-
tions:

(1) L is a π-ample Q-line bundle and π : S → C is a flat family and Supp(B) does not
contain any component of the fiber. We denote the central fiber by (S0, B0, L0).

(2) There is a C∗-action (with coweight η) on (S,B) such that π is C∗-equivariant where
C∗ acts on the base C by multiplication and there is a C∗-equivariant isomorphism
φ : (S,B,L)×CC∗ ∼= (S,B,−(KS +B))×C∗, where C∗-trivially acts on the first factor
of (S,B,−(KS +B))× C∗.

Most of the time, as in the literature, we omit η in the quadruple and simply denote the test
configuration by (S,B,L).

Such a test configuration is called Q-Gorenstein if S is G1 and S2,

KS + B is Q-Cartier and L ∼Q −(KS + B).

In this case, we usually just write the test configuration as (S,B; η) or simply as (S,B).
A Q-Gorenstein test configuration is called special if (S0, B0) is a log Fano pair with klt

singularities. In this case, we say that (S0, B0) is a special degeneration of (S,B).
A test configuration(S,B,L; η) is called a product one if there is an isomorphism

(S,B,L) ∼= (S,B,−(KS +B))× C such that η = η0 + t∂t

where η0 is a coweight vector on some torus group T acting on (S,B) and t∂t is the coweight
corresponding to the C∗ factor. In this case, we will denote (S,B,L; η) simply by (SC, BC; η).

For a test configuration of a log Fano variety, by trivially adding a copy over {∞}, we
can take the intersection formula (see [Wan12, Oda13]) of the generalized Futak invariant
as the definition. More precisely, for any test configuration of (S,B), we can glue it with
a trivial family of (S,B) × P1 \ {0} along (S,B) × C∗ to get (S̄, B̄) over P1 and denote by
L̄ ∼Q −(KS̄/P1 + B).

Definition 2.27 (Generalized Futaki invariants). For any Q-Gorenstein test configuration
(S,B,L; η) of (S,B), we define the generalized Futaki invariant

Fut(S,B; η) := − L̄·n

n(−(KS +B))·n−1
.

By the intersection formula (see [Wan12, Oda13]), the above definition of the generalized
Futaki invariants coincides with the one in [Don02].

Definition 2.28 (K-stability, see [Tia97, Don02, LX14]). We say that (S,B) is K-semistable,
if the generalized Futaki invariant Fut(S,B; η) is nonnegative for any special test configura-
tions. We say that (S,B) is K-polystable, if it is K-semistable, and any special test configu-
ration (S,B,L; η) with Fut(S,B,L; η) = 0 is a product test configuration.

Remark 2.29. We choose to work specifically on Q-Gorenstein test configurations (S, B,L),
since it fits into our study on log Fano cones. By [LX14], we know for a log Fano variety,
working on this intermediate generality of test configurations yields the same stability notions
as working either only on special test configurations or on all test configurations.
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Given a Q-Gorenstein test configuration (S,B,L; η), by choosing λ such that λ(KS+B) is
Cartier, we can get a Q-Gorenstein test configuration (X ,D, ξ0; η) of (X,D) := C(S,B,−λ(KS+
B)) by letting (X ,D) = C(S,B;−λL), ξ0 = u∂u the canonical rescaling vector on X where
u is an affine coordinate on the line bundle λL, and letting η also denote its canonical lifting
from S to X that corresponds to the pull back of pluri-log-canonical forms (see [Li17b, Page
3186-3187].

Lemma 2.30 (see [CS18, Theorem 4] and [Li17b, Lemma 6.20]). Notations as above. If
(S,B; η) is a Q-Gorenstein test configurations, then

Fut(S,B; η) = Fut(X ,D, ξ0; η).

Proof. With the above choice of ξ0, A(ξ0) = λ−1. Since η is the canonical lifting, we have

A(η) = 0 so that Tξ0(η) = A(ξ0)
n η = λ−1

n η (see (7)). So we get:

D−Tξ0(η)
volX0

(ξ0) =
λ−1

n

dvolX0
(ξ0 − tη)

dt

∣∣∣∣
t=0

= λ−1 lim
m→+∞

wm
mNm

= −λ
n−1L̄·n

n
,

where wm is the weight of the 〈η〉 action on H0(S0,−mλ(KS0
+ B0)). The second identity

follows from [CS18, Theorem 4] (see also the calculation in [Li17b, Proof of Lemma 6.20]). For
the last identity, see [BHJ17, Theorem 5.3]. Dividing both sides by volX0(ξ0) = λn−1(−(KS+
B))·n−1 we get the identity.

The above lemma says that the definition 2.27 is compatible with the generalized Futaki
invariants for log Fano cones in Definition 2.22. Thus Definition 2.23 specializes to Definition
2.28. It is well known that if we have a product test configuration induced by a vector
field coming from a C∗-action on (S,B), then the generalized Futaki invariant defined above
becomes the classical Futaki invariant. It also follows from Lemma 2.25 that

Lemma 2.31. Assume a log Fano variety (S,B) admits a torus action by T ∼= (C∗)r. Let
t be the Lie algebra of T . Then the Futaki invariant η 7→ Fut(S × C, B × C; η) is a linear
function with respect to η ∈ t.

3 Case of log Fano pairs

In this section, we will focus on the stability of log Fano pairs. More concretely we will
construct common degenerations of two K-semistable degeneration of a log Fano variety, as
well as investigate the equivariant K-stability for a torus action. A point we want to note is
that even in this case of log Fano varieties, we find it more flexible to work on the associated
log Fano cones in order to use a combination of techniques from the minimal model program
and results on normalized volumes. The study will be generalized to log Fano cones later.
However, we believe that treating the case of log Fano pairs first will help the reader to more
easily get the main idea.

3.1 K-semistable degeneration of K-semistable log Fano pair

We will need the following lemma which allows us to reduce a two-step equvariant degener-
ation to a single equivariant degeneration. The idea of its proof is similar to the one used in
[LX16, Section 6]. In fact, the proof is a mimic of the argument in the classical GIT situation,
but replacing Kempf’s instability theorem [Kem78, Corollary 4.5] by [LX16, Theorem 1.4].

Lemma 3.1. Let (S,B, η) be a special test configuration of a K-semistable log Fano variety
(S,B) with the central fiber (S0, B0). Suppose that Fut(S,B) = 0. Then (S0, B0) is a K-
semistable log Fano variety.

Proof. Suppose (S0, B0) is not K-semistable, then by [LX16, Theorem 1.4] there is a special
test configuration (S ′,B′) := (S ′,B′, η′) with a central fiber (S′0, B

′
0) such that

Fut(S ′,B′, η′) < 0,

and (S ′,B′, η′) is equivariant with respect to the C∗-action corresponding by η.
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We can assume (S, B) (resp. (S ′, B′)) are C∗-equivariantly embedded into PN ×C×{0}
(resp. PN × {0} × C). By abuse of notations, we denote η : C∗ → SL(N + 1) (resp.
η′ : C∗ → SL(N + 1)) to be the 1-parameter subgroup (1-PS) generated by η (resp. η′).
Then η commutes with η′, or equivalently [η, η′] = 0. Let Θ = mB for some sufficiently
divisible positive integer m such that Θ is integral.

Hilb(S,Θ) ∈ HN,P,p := {(Hilb(S),Hilb(Θ)) ∈ Hilb(PN , P )×Hilb(PN , p) | Θ ⊂ S ⊂ PN}
(10)

where P (k) = h0(OS(k)) and p(k) = h0(OΘ(k)) for k � 1 are the Hilbert polynomials for
(S,Θ) ⊂ PN ×PN . The SL(N + 1)-action on PN induces an action on HN,P,p. We then have
the following convergence:

Hilb(S0,Θ
∗
0) = lim

t→0
η(t) ·Hilb(S,Θ).

We remark Θ0 := mB0 is not necessarily the same as the scheme Θ∗0 due to the possible
appearance of embedded points on Θ∗0. However, we have the inclusion of the ideal sheaves
IΘ∗0 ⊂ IΘ0

, with the support of the cokernel being of codimension at least two on S0. We
can similarly define p′(k) = h0(OΘ0

(k)) and have the following convergence:

Hilb(S′0,Θ
′
0) = lim

t→0
η′(t) ·Hilb(S0,Θ0) ⊂ HN,P,p

′

Hilb(S′0,Θ
′∗
0 ) = lim

t→0
η′(t) ·Hilb(S0,Θ

∗
0) ⊂ HN,P,p.

Therefore, we have the inclusion of the ideal sheaves IΘ′∗0 ⊂ IΘ′0 , and the codimension of the
support of the cokernel is at least two on S′0.

Our goal now is to construct a new test configuration (S ′′,B′′) of (S,B) with a special
fiber (S′0, B

′
0) such that Fut(S ′′,B′′) < 0, contradicting to our assumption that (S,B) is

K-semistable.
Notice that the action of C∗ × C∗ ∼= 〈η〉 × 〈η′〉 < SL(N + 1)2 on HN,P,p induces a

C∗ × C∗-equivariant maps f and φ̂ given as follows

G

f

��

φ̂

%%
C∗ τ //

τ̂

44

C∗ × C∗ �
� //

(η,η′)·Hilb(S,Θ)

88P1 × P1 φ // HN,P,p,

(11)

where G is the graph of φ and f is a (C∗×C∗)-equivariant blow-up and φ(0, 0) = Hilb(S′0,Θ
′∗
0 ).

Now we introduce the 1-PS
τ : C∗ −→ C∗ × C∗

t 7−→ (tk, t)
(12)

then for k � 1 its lift τ̂ satisfies

φ̂ ◦ τ̂(0) = lim
t→0

φ̂ ◦ τ̂(t) = φ(0, 0) = Hilb(S′0,Θ
′∗
0 ).

Let (S ′′, Θ̃′′) be the flat family obtained by pulling pack the universal family (SHilb,BHilb)→
HN,P,p via τ̂ , and let B′′ := 1

m Θ̃′′. Then (S ′′,B′′) is a special test configuration and we have

Fut(S ′′,B′′) = Fut(S′0, B
′
0; kη + η′)

= Fut(S′0, B
′
0; kη) + Fut(S′0, B

′
0; η′)

= Fut(S0, B0; kη) + Fut(S′0, B
′
0; η′)

= k · Fut(S,B) + Fut(S ′,B′)
= 0 + Fut(S ′,B′) < 0,

where we used the linearity of the Futaki invariant (cf. Lemma 2.31) in the second identity.
Hence (S ′′,B′′) is the test configuration we are looking for and our proof is completed.
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3.2 Common degenerations of log Fano pairs

The main technical theorem of this section is the following.

Theorem 3.2. Let (S,B) be an (n− 1)-dimensional K-semistable log Fano variety. If there

are special test configurations (S(i),B(i)) (i = 1, 2) of (S,B) with central fibers (S
(1)
0 , B

(1)
0 )

and (S
(2)
0 , B

(2)
0 ) such that Fut(S(i),B(i)) = 0, then there are two special test configura-

tions (S ′(i),B′(i)) of (S
(i)
0 , B

(i)
0 ) with isomorphic central log Fano fibers (S′0, B

′
0) such that

Fut(S ′(i),B′(i)) = 0.

We remark that Theorem 3.2 should be regarded as an analogy of a corresponding state-
ment in classical geometric invariant theory (GIT). As an immediate consequence we have
the following:

Corollary 3.3. In the above notion, if we assume further that (S
(1)
0 , B

(1)
0 ) is K-polystable,

then there is a special test configuration of (S
(2)
0 , B

(2)
0 ) with generalized Futaki invariant 0

and central fiber isomorphic to (S
(1)
0 , B

(1)
0 ).

Proof of Theorem 3.2. As (S(i),B(i)) (i = 1, 2) are special test configurations, (S
(1)
0 , B

(1)
0 )

and (S
(2)
0 , B

(2)
0 ) are log Fano varieties. Consider the cone (X,D) = C(S,B;−λ(KS+B)) over

S and similarly (X
(i)
0 , D

(i)
0 ) = C(S

(i)
0 , B

(i)
0 ;−λ(K

S
(i)
0

+ B
(i)
0 ))(i = 1, 2) for some sufficiently

divisble λ. Denote the corresponding degeneration of X to X
(i)
0 over C to be X (i), then we

get special test configurations (X (i),D(i), ξ0; η(i)) of (X,D, ξ0), where D(i) is the cone over
B(i) and ξ0 is from the natural C∗-action on the cone.

From [BHJ17, Definition 4.4], we know that the central fiber S
(1)
0 of the special degen-

eration S(1) induces a valuation w′ := q · ordF for some divisor F over S. Let ordS denote
the canonical divisorial valuation associated to the exceptional divisor, which is isomorphic
to S, obtained by blowing up the vertex. Assume µ : S̃ → S is a birational morphism such
that the divisor F is on S̃ and (S̃, F ) is log smooth. Let X̃ → X be the resolution given by
the total space of the line bundle of µ∗(λ(−KX − B)) over S̃. Then following [Li17b, Page

3181-3182], we denote by a1 = −λ(A(S,B)×C(S
(1)
0 ) − 1) and let wε be the quasi-monomial

valuation on the model (X̃, S̃ + F̃ ) with weight (1 + εa1, εq) with respect to S̃ and the pull
back F̃ of F by X̃ → S̃ (see [Li17b, Definition 6.12]). We choose ε∗ such that 1 + εa1 > 0
for any ε ∈ [0, ε∗). Then wε is centered at the vertex of X. By [Li17b, Proposition 6.16], we
have the identity:

A(X,D)(vk) = kA(X,D)(w1/k) = k ·A(X,D)(ordS) = k · λ−1. (13)

For N 3 k � 1, let vk = k ·w1/k. Then vk = d ·ordEk is a multiple of a divisorial valuation
ordEk for some d ∈ Z>0. As a valuation, we can describe vk explicitly as follows (see [Li17b,
(57)]). For any f ∈ H0(S,−mλ(KS +B)),

vk(f) = km+ ord
S

(1)
0

(f̄). (14)

where f̄ is the meromorphic section of mL → S obtained by pulling back f via the map

(S\S(1)
0 ,mL) ∼= (S × C∗,m · p∗1L)

p1−→ (S,mL).

Lemma 3.4. Notations as above, for k � 1, the divisor Ek corresponding to vk is a Kollár
component with an associated model Yk → (X,D). Moreover, the special test configuration
(X (1),D(1)) is given by the special test configuration associated to Ek (in the sense of Def-
inition 2.20) up to a base change. In particular (S(1),B(1)) can be recovered by the model
Ek → Yk → (X,D).

Proof. For simplicity, we denote L = −λ(KS + B). By [BHJ17, Proposition 2.15] (see also
Lemma 2.18), we know that X (1) is given by

SpecC[t]

⊕
m∈N

⊕
j∈Z

t−jF jH0(S,mL)

 =: SpecC[t](R(1))
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where F jH0(S,mL) is given by:

F jH0(S,mL) =
{
s ∈ H0(S,mL) | t−j s̄ ∈ H0(S,mL)

}
.

Therefore X
(1)
0 is isomorphic to

Spec

⊕
j∈N

(⊕
m∈N
F jH0(S,mL)/F j+1H0(S,mL)

) ,

and the (C∗)2-action on X
(1)
0 is induced by the two gradings.

On the other hand, f ∈ F jH0(S,mλ(−KS − B)) if and only if ord
S

(1)
0

(f̄) ≥ j which by

[Li17b, (57)] is equivalent to

vk(f) = mk + ord
S

(1)
0

(f̄) ≥ mk + j .

In other words, the valuative ideal ap(vk) of vk = d · ordEk is determined by:

f ∈ H0(S,mλ(−KS −B)) ∩ ap(vk) if and only if f ∈ Fp−mkH0(S,mλ(−KS −B)).

Since vk ∈ ValX,x is C∗-invariant, we have the identity:

grvkR =
⊕
p∈dZ

⊕
m

Fp−mkH0(S,mL)/Fp+1−mkH0(S,mL).

Let ξ 1
k

:= ξ0 − 1
kη. For an element

f̄ ∈ FjH0(S,mL)/F j+1H0(S,mL),

its weight vector is α = (m,−j) and 〈ξ 1
k
, α〉 = m+ j

k . Thus

Proj(grordEk
R) ∼= Proj(grvkR)

is the quotient of X
(1)
0 by the C∗-action generated by ξ 1

k
(see Definition 2.13). So we have:

(Ek, Bk) := (X
(1)
0 , D

(1)
0 )/〈ξ 1

k
〉 (where Bk includes the orbifold locus) and Ek can be extracted

over X. Since (X
(1)
0 , D

(1)
0 ) has klt singularities, (Ek, Bk) is a log Fano variety which has klt

singularities and hence is a Kollár component over X by the inversion of adjunction.
To see that last statement, note that we can rewrite R(1) as:

R(1) =
⊕
j∈Z

⊕
m∈N

t−jamk+j(vk) ∩H0(S,mL),

=
⊕
p∈Z

⊕
m∈N

t−p+mkap(vk) ∩H0(S,mL),

which is isomorphic to the extended Rees algebra of a•(vk):⊕
p∈Z

⊕
m∈N

t−pap(vk) ∩H0(S,mL) =
⊕
p∈Z

t−pap(vk). (15)

Indeed, it is easy to verify that the map t−p+mkf 7→ t−pf for any f ∈ ap ∩H0(S,mL) is an
isomorphism of the two algebras. On the other hand, the extended Rees algebra of ordEk is
given by: ⊕

q∈Z
u−qaq(ordEk) =

⊕
p∈dZ

u−
p
d ap(vk).

From this we see that X (1) = Y ×C,t7→td C where Y is the test configuration associated to
ordEk in the sense of Definition 2.20.
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In the proof of Lemma 3.4, there is a rank 2 torus (C∗)2 acting on X
(1)
0 , such that if we let

ξ0 be the coweight vector (1, 0), then X
(1)
0 /〈ξ0〉 ∼= S

(1)
0 , and the action by the coweight (0, 1)

is induced by the action on S
(1)
0 from the test configurational S(1) structure. We construct

a ray ξε = ξ0 − εη, where η corresponds the action with coweight (0, 1). Then any ξε gives

a quasi-monomial valuation wtε on X
(1)
0 (see (6)). Moreover, for ε ∈ [0, ε∗), it also induces

a sequence of quasi-monomial valuations wε in X which is contained in ValX,x (see [LX17,
Proof of Theorem 3.5]). Our proof in Lemma 3.4 just gives a verification of the divisorial
valuation, which can be easily extended to the general case.

Furthermore, as proved in [Li17b, Lemma 6.20] or [LX17, Section 2.4], if we define f(ε) :=

v̂ol(wε), then it is a smooth convex function on [0, ε∗) with 0 < ε∗ � 1 such that f(0) = v̂ol(v)
and

f ′(0) =
d

dε
v̂olX(wε)

∣∣∣∣
ε=0

=
d

dε
v̂olX0

(wtε)

∣∣∣∣
ε=0

=
d

dε

∣∣∣∣
ε=0

v̂olX0
(ξ0 − εη)

= C · Fut(X (1),D(1), ξ0; η(1)),

where the last identity follows from (9) and the constant

C = n ·AX0(wtξ0)n−1 · vol(ξ0) > 0.

Lemma 3.5. For k sufficiently large, the model Yk → X extracting Ek can be degenerated

along X (2) to obtain a model µ : Y(2)
k → X (2) over C with an exceptional divisor Ek such that

the following properties hold true:

1. There is the following isomorphism which is equivariant with respect to the C∗-action
generated by η(2):

(Y(2)
k , E(2)

k )×C C∗ ∼= (Yk, Ek)× C∗.

2. (Y(2)
k , µ−1

∗ D(2) + E(2)
k ) locally stable over C.

Proof. For a fixed sufficiently large k, denote by Ik the m-primary ideal over x ∈ X induced
by Ek which is the push forward of O(−mEk) for a fixed sufficiently divisible m. Let

ck = lct(Ik;X,D) =: lct(Ik)

be its log canonical threshold. Then because Ek is a Kollár component, we have:

f

(
1

k

)
= v̂ol(ordEk) = mult(Ik) · cnk .

Note that because of the rescaling invariance of the normalized multiplicities mult(Ik) ·
lctn(Ik), we can replace Ik by its powers and the normalized multiplicities do not change, so
we do not specifically denote m.

Since f ′(0) = C · Fut(X (1),D(1), ξ0; η) = 0, we have

f

(
1

k

)
= f(0) +O

(
1

k2

)
.

Fix k, for each l ≥ 1, as in [LX16, Lemma 4.1], we can construct a graded sequence of
ideals A• = {Al} on X (2) such that

Al ⊗C[t] C[t, t−1] ∼= I lk[t, t−1] and Al ⊗C[t] (C[t]/(t)) ∼= in(I lk),

where {in(I lk)} is the graded sequence of ideals consisting of initial ideals of the sequence

{I lk}l for the C∗-degeneration of X to X
(2)
0 . To simplify the notations, we just denote

bk,• = {bk,l}l = {in(I lk)}.
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Claim 3.6. For any ε > 0, we can find k sufficiently large and δ sufficiently small satisfying:

A(Ek;X,D + c′kIk) < ε/2 and c′k < lct(bk,•;X
(2)
0 , D

(2)
0 )

with c′k := ck(1− δ).

Proof of Claim 3.6. To prove the claim, we first note that, by using A(Ek, X,D+ ckIk) = 0
and identity (13):

A(Ek;X,D + (1− δ)ckIk) = δ ·A(X,D)(Ek) = δ · k ·A(X,D)(ordS).

On the other hand, since (X
(2)
0 , D

(2)
0 ) is K-semistable by Lemma 3.1, we know that f(0) =

vol(x(2), X
(2)
0 , D

(2)
0 ) (see Theorem 2.5), where x(2) is the vertex. Therefore,

f(0) ≤ lct(bk,•;X
(2)
0 , D

(2)
0 )n ·mult(bk,•)

≤ cnk ·mult(Ik)

= f

(
1

k

)
= f(0) +O

(
1

k2

)
,

where we have used Proposition 2.4 for the first inequality, and the non-increasing of log
canonical thresholds under specialization as well as mult(bk,•) = mult(Ik) for the second
inequality.

We get the inequality:

lct(bk,•;X
(2)
0 , D

(2)
0 )

ck
≥
(

f(0)

f(1/k)

)1/n

.

Since (1 +O( 1
k2 ))

1
n is also of the order (1 +O( 1

k2 )), for any fixed ε, there exists K0 � 0 such
that for any k ≥ K0, (

f(0)

f(1/k)

)1/n

≥ 1− ε

4k ·AX,D(ordS)
.

Now if we choose δ to be:
δ =

ε

2k ·A(X,D)(ordS)
,

then c′k = (1− δ) · ck < lct(bk,•;X
(2)
0 , D

(2)
0 ) and

A(Ek, X,D + (1− δ)ckIk) = ε/2. (16)

We may assume ε is less than 1. It follows from Claim 3.6 that

A(Ek × C;X (2),D(2) + c′kA•) < ε/2 and c′k < lct(A•;X (2),D(2) +X
(2)
0 ), (17)

where we used the inversion of adjunction for the second inequality. We can then apply

[BCHM10, Corollary 1.4.3] to precisely extract an irreducible divisor E(2)
k to obtain a bira-

tional morphism Y(2)
k → X (2) whose restriction over X×C∗ is the divisor Ek×C∗ and −E(2)

k

is ample over X (2).

Let µ : Y(2)
k → X (2) denote the family obtained above with an irreducible divisor E(2)

k

for which we may assume −KY(2)
k

− µ−1
∗ D(2) − E(2)

k is ample over X (2). Moreover, as

(Y(2)
k , µ−1

∗ D(2) + (1 − ε)E(2)
k + Y

(2)
0 ) is log canonical, by ACC of log canonical thresholds

([HMX14, Theorem 1.1]), we may choose ε to be sufficiently small and independent of k such

that (Y(2)
k , µ−1

∗ D(2) + E(2)
k + Y

(2)
0 ) is log canonical.

There is a C∗ × C∗ = 〈ξ0〉 × 〈η(2)〉-action on X
(2)
0 . Note that [ξ0, η

(2)] = 0. The ideals
{bk,•} is (C∗)2-equivariant. In fact, by definition it is clearly equivariant with respect to
〈η(2)〉. It is also equivariant with respect to the first factor because Ek is 〈ξ0〉-invariant and
X (2) is 〈ξ0〉-equivariant.
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(X
(2)
0 , D

(2)
0 )

(X ′(2),D′(2))

��

((

(X,D)
(X (2),D(2))←−Y(2)

k ←−E
(2)
koo

(X (1),D(1))←Yk←Ek=Ek×A1

��

vv

Yk ← Ekoo

(S
(2)
0 , B

(2)
0 )

(S′(2),B′(2))

��

(S,B)
(S(2),B(2))oo

(S(1),B(1))

��
(S′0, B

′
0) (S

(1)
0 , B

(1)
0 )

(S′(1),B′(1))

oo

(X ′0, D
′
0)

66

(X
(1)
0 , D

(1)
0 )

(X ′(1),D′(1))
oo

hh

Yk,0 ← Ek.oo

(18)

Now we apply the family version of the construction first introduced in [LX16, Section

2.4], to conclude that the model Y(2)
k → X (2) with relative anti-ample E(2)

k over X (2) yields a
degeneration of X (2) which gives a family (X,D) over C2, whose restriction over (C∗)2 ⊂ C2

is isomorphic to (X,D) × (C∗)2. More precisely, if we assume X (2) = SpecC[t](R(2)) and
define the extended Rees algebra:

R =
⊕
m∈Z

am(ordEk)s−m ⊂ R(2)[s, s−1], (19)

where as before am(ordEk) = {f ∈ R(2), ordEk(f) ≥ m}. Then X = SpecC[t,s](R) and D is

the divisor on X induced by D(2). Using the fact that (Y(2)
k , µ−1

∗ D(2) + E(2)
k ) is locally stable

over C (see Lemma 3.5.2), we know that (X,D)×C2 ({0} ×C) is a locally stable family (see
Lemma 2.21).

Using the basic property of the Rees algebra (see e.g. [LX16, Section 4.1]), we see that

(X,D)×C2 (C× {1}) ∼= (X (2),D(2)).

Moreover, we claim that:

(X,D)×C2 ({1} × C) ∼= (X (1),D(1)).

This holds true if the morphism am(ordEk) = µ∗O(−mEk)→ am(ordEk) = (µ|Yk)∗O(−mEk)

is surjective and the surjectivity is indeed true by using the vanishing R1µ∗(−mEk) = 0.
The restrictions of (X,D) over the two axes C × {0} and {0} × C respectively give test

configurations (X
(1)
0 , D

(1)
0 ) and (X

(2)
0 , D

(2)
0 ) with the same central fiber (X ′0, D

′
0). We know

these two test configurations are indeed weakly special because of the local stability of of
(X,D).

The 〈ξ0〉-action on (X,D) extends naturally to (X,D) over C2. Moreover, KX + D is
Q-Cartier and admits a (C∗)2-equivariant nowhere-vanishing section s ∈ |m(KX +D)|. Then
we can take the quotient of the action (X,D) by the 〈ξ0〉-action to get a pair (S,B). Its
restrictions over the two axes C × {0} and {0} × C respectively give test configurations

(S
(1)
0 , B

(1)
0 ) and (S

(2)
0 , B

(2)
0 ) with the same central fiber (S′0, B

′
0). Because the generalized

Futaki invariants are defined by the intersection numbers, we know the generalized Futaki

invariant of the test configuration (S,B)×C2 (C×{0}) degenerating (S
(1)
0 , B

(1)
0 ) to (S′0, B

′
0) is

0 since the nearby fibers (S,B)×C2 (C×{t}) (t 6= 0) all have generalized Futaki invariants 0,

and the same is true for the test configuration (S,B)×C2 ({0}×C) degenerating (S
(2)
0 , B

(2)
0 )

to (S′0, B
′
0).

Then the central fiber (S′0, B
′
0) will automatically be a log Fano variety since otherwise

it follows from [LX14, Theorem 7] that we can construct a special test configuration of

(S
(1)
0 , B

(1)
0 ) with a strictly negative Futaki invariant, which contradicts to the K-semistability

of (S
(1)
0 , B

(1)
0 ) by Lemma 3.1.

Thus this completes the proof of Theorem 3.2.

Combining the idea in the proof of Theorem 3.2 with the argument in [LX17, Proposition
4.17], we have the following fact.
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Lemma 3.7. Assume (S,B) is an (n − 1)-dimensional K-semistable log Fano pair. Let
(S,B, η) be a special test configuration with the central fiber (S0, B0) such that Fut(S,B, η) =
0. If S admits a torus T ∼= (C∗)d-action, then S admits a fiberwise (C∗)d-action over C
which commutes with the C∗-action generated by η and extends the (C∗)d action on S. In
particular, S0 indeed admits a torus T̃ = T × C∗ ∼= (C∗)d+1-action.

Proof. By Lemma 3.1, we know (S0, B0) is K-semistable. Fix a sufficiently divisible λ. By
Lemma 3.4, for k � 1, the special degeneration induces a Kollár component Ek over the
cone

Ek → Yk → (X,D) = C(S,B;−λ(KS +B)).

The cone (X,D) is T̃ ∼= T × C∗-equivariant, where the first factor T -action is induced from
the T -action on (S,B) and the second factor C∗-action comes from the natural rescaling on
the cone (X,D). Then it suffices to show that Ek is T̃ -equivariant.

Pick an arbitrary integral coweight vector η′, which generates a subgroup 〈η′〉 ∼= C∗ ⊂ T̃ .
Consider the valuative ideal Ik = am(ordEk) for m � 1, and its equivariant degeneration
{bk,l}l of {I lk} on the fiber of X × A1 over 0 with respect to 〈η′〉. Then as before, we know
there is a smooth function f on [0, ε∗) with 0 < ε∗ � 1 such that

f

(
1

k

)
= mult(Ik) · lct(Ik)n and f ′(0) = 0.

Then by exactly the same argument as in Claim 3.6, we know that for k � 1, we can pick a
c′k such that

A(Ek, X,D + c′kIk) < 1 and c′k < lct(bk,•;X0, D0).

Considering the 〈η′〉-action on X×C induced by the diagonal action, it degenerates I lk to bk,l.
Applying [BCHM10, Corollary 1.4.3], we can construct a 〈η′〉-equivariant model Yk → X×C
which extracts an exceptional divisor E ′k such that

(Y ′, E ′k)×C C∗ ∼= (Yk, Ek)× C∗.

But then Yk × C and Yk are isomorphic in codimension one and both are the anti-ample
models of the same divisorial valuation over X × C. This implies Yk ∼= Yk × A1 and hence
Ek are 〈η′〉-invariant.

Lemma 3.8. Assume (S,B) is a K-semistable log Fano pair and it has a special degeneration
to (S0, B0) given by a test configuration (S,B) with Fut(S,B) = 0; and (S0, B0) has a special
degeneration to (S′0, B

′
0) given by a test configuration (S ′,B′) with Fut(S ′,B′) = 0. Then

there is a special degeneration of (S,B) to (S′0, B
′
0) given by a test configuration (S ′′,B′′)

with Fut(S ′′,B′′) = 0.

Proof. By Lemma 3.7, (S ′,B′) is automatically C∗-equivariant with respect to the action on
(S0, B0) coming from (S,B). Then this is proved in the proof of Lemma 3.1.

3.3 Proof of main results for log Fano pairs

Proof of Theorem 1.3. Given a K-semistable log Fano pair (S(0), B(0)) := (S,B). If it is
not K-polystable, then by [LX14] we know it has a special degeneration to a log Fano pair
(S(1), B(1)) which is not isomorphic to (S,B), with the generalized Futaki invariant being 0.
Furthermore, (S(1), B(1)) is also K-semistable by Lemma 3.1. It follows from Lemma 3.8 that
any special degeneration (S(2), B(2)) of (S(1), B(1)) with the generalized Futaki invariant 0
will be a special degeneration of (S,B) with the generalized Futaki invariant 0. By Lemma
3.7, if S(i) and S(i+1) are not isomorphic, then the dimension of the maximal torus effectively
acting on S(i+1) is strictly larger than that for S(i). Thus this degeneration process has to
terminate after r ≤ dimS steps. Then the end product is K-polystable and is also a special
degeneration of (S,B).

The uniqueness directly follows from Theorem 3.2, as any test configuration (S,B)
which degenerates (S,B) to a K-polystable log Fano pair (S0, B0) automatically satisfies
Fut(S,B) = 0.
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Proof of Theorem 1.4. It is known from [LX16] that to check K-semistablity, we only need
to check the T -equivariant special test configurations. Then from K-semistability to K-
polystability, it follows from Lemma 3.7.

Remark 3.9. In the above discussion, we indeed prove that if there is a linear algebraic group
G generated by subtori, e.g. connected reductive groups, then the polystable degeneration of a
K-semistable G-equivariant Q-Fano variety is always G-equivariant. However, our approach
does not cover other cases, e.g. G is a finite group.

4 General case of log Fano cones

In Section 4.1, we will generalize the techniques in Section 3 to the case of log Fano cones.
This allows us to get weakly special test configurations with isomorphic central fibres and
zero Futaki invariants, under similar assumption as in Theorem 3.2. In Section 4.2, we
prove that these weakly special test configurations are indeed special. We prove this fact
by generalizing the proof of [LX14, Theorem 4] to the setting of log Fano cone singularities,
including the irregular case. Combining with [CS15], we complete the proof of Donaldons-
Sun’s conjecture (Theorem 1.1) and Theorem 1.2 on existence/uniqueness of K-polystable
degenerations in Section 4.3.

4.1 Common degenerations of log Fano cones

Fix a K-semistable log Fano cone (X,D, ξ0) with a torus action by T ∼= (C∗)r. Then wtξ0
is a minimizer of v̂olX,D by Theorem 2.5. Assume that (X (i),D(i), ξ0; η(i)) (i = 1, 2) are two

special degenerations of (X,D, ξ0) to (X
(i)
0 , D

(i)
0 , ξ0), (i = 1, 2) respectively. Recall that ξ0

on X (i) is just given by the natural extension of ξ0 on X × C∗. By assumption η(i) has an
integral coweight which can be written as the form (·, 1) with respect to the decomposition

of T̃ := T ×C∗ ∼= (C∗)r+1. Note that the central fibers (X
(i)
0 , D

(i)
0 ) (i = 1, 2) admit T̃ -actions

generated by T and 〈η(i)〉.

Theorem 4.1. Let (X,D, ξ0) be a K-semstable log Fano cone. With the notations in the
above paragraph, assume Fut(X (1),D(1), ξ0; η(1)) = 0 and Fut(X (2),D(2), ξ0; η(2)) = 0. Then

there are weakly special test configurations (X ′(i),D′(i), ξ0; η′(i)) of
(
X

(i)
0 ,D(i)

0 , ξ0

)
(i = 1, 2)

with isomorphic central fibers such that Fut(X ′(i),D′(i), ξ0; η′(i)) = 0 for i = 1, 2.

We follow a similar strategy as in Section 3.1.

Proof. We first claim that (X
(1)
0 , D

(1)
0 , ξ0) is K-semistable. If not, then there is a special test

configuration (X ′′(1)
0 ,D′′(1)

0 , ξ0; η′′(1)) with

Fut(X ′′(1)
0 ,D′′(1)

0 , ξ0; η′′(1)) < 0,

which degenerates (X
(1)
0 , D

(1)
0 , ξ0) to (X

′′(1)
0 , D

′′(1)
0 , ξ0). Then we claim there is a test configu-

ration (X̃ ′′(1)
0 , D̃′′(1)

0 , ξ0; kη(1)+η′′(1)) for some k � 0 degenerating (X,D, ξ0) to (X
′′(1)
0 , D

′′(1)
0 , ξ0)

with the generalized Futaki invariant

Fut(X̃ ′′(1)
0 , D̃′′(1)

0 , ξ0; kη(1) + η′′(1))

= k · Fut(X (1),D(1), ξ0; η(1)) + Fut(X ′′(1)
0 ,D′′(1)

0 , ξ0; η′′(1))

< 0,

which is contradictory to our assumption (X,D, ξ0) is K-semistable. Here we used the
linearity of the generalized Futaki invariant from Lemma 2.25 as in the log Fano variety
case. To see the existence of such test a configuration we fix a rational vector ξ′0 ∈ t+R , and
take the quotient, we get

(S(1)
0 ,B(1)

0 ) := (X̃ (1)
0 , D̃(1)

0 )/〈ξ′0〉 and (S ′′(1)
0 ,B′′(1)

0 ) := (X̃ ′′(1)
0 , D̃′′(1)

0 )/〈ξ′0〉 .
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Since [η(1), η′′(1)] = 0, the proof of Lemma 3.1 shows that there is a test configuration

(S̃ ′′(1)
0 , B

′′(1)

0 ) that degenerates (X,D)/〈ξ′0〉 to (X
′′(1)
0 , D

′′(1)
0 )/〈ξ′0〉. Then we can take the

cone back to get (X̃ ′′(1)
0 , D̃′′(1)

0 , ξ0). (Also see [LX17, Section 4.2] for a direct construction.)

Applying the diophantine approximation (cf. [LX17, Lemma 2.7]) of the coordinates of
ξ0, we can choose a sequence of integral vectors {ξ̃k} such that |ξ̃k−kξ0| ≤ A for any constant
A > 0 where k is an infinite sequence of increasing positive integers. Consider the Kollár

component Ek determined by ξ̃k − η(1) over x(1) ∈ (X
(1)
0 , D

(1)
0 , ξ0) (it is a Kollár component

by Lemma 3.4). Let Ik = am(ordEk) for a sufficiently divisible m depending on k. Let
ck = lct(Ik;V,B) and consider:

f(
1

k
) = v̂ol(ordEk) = mult(Ik) · cnk .

Let T̃ = 〈ξ0, η(1)〉 ∼= (C∗)r+1 be the torus generated by ξ0 and η(1), and Ñ = Hom(C∗, T̃ ) be
the coweight lattice of T̃ .

Since (X
(1)
0 , D

(1)
0 , ξ0) is K-semistable,

v̂ol(ξ) := v̂ol
(X

(1)
0 ,D

(1)
0 )

(wtξ)

is a smooth function of ξ ∈ t̃+R and obtains the minimum at ξ0 (see Theorem 2.5). By (9),

this also implies that for any rational vector η1 ∈ ÑR,

d v̂ol(wtξ0−tη1)

dt
= C · Fut(X

(1)
0 × C, D(1)

0 × C, ξ0; η1) = 0 (20)

By Taylor’s Remainder Theorem there is a neighborhood U of ξ0 ∈ ÑR and a positive
constant C > 0 (independent of ξ) such that, for any ξ ∈ U , we have the inequality:

v̂ol(ξ0) ≤ v̂ol(ξ) ≤ v̂ol(ξ0) + C|ξ − ξ0|2.

Note that f( 1
k ) = v̂ol( 1

k ξ̃k −
1
kη

(1)) by the rescaling invariance of the normalized volume.

Because
∣∣∣ 1k ξ̃k − 1

kη
(1) − ξ0

∣∣∣ ≤ C ′k−1 for C ′ > 0 independent of k, there exists K0 � 1 such

that for any k ≥ K0, f( 1
k ) = f(0) +O( 1

k2 ).
Then the same argument as in the case of the log Fano varieties using [BCHM10, Corollary

1.4.3], shows that we can find µ(2) : Y(2)
k → X (2) a morphism over C with a divisor E(2)

k such

that −E(2)
k is ample over X (2) and (Y(2)

k , E(2)
k )×CC∗ = (Yk, Ek)×C∗ where the isomorphism is

equivariant with respect to the C∗-action generated by η(2). Moreover, fixed any arbitrarily
small ε, we can choose k sufficiently large such that the log discrepancy of Ek with respect to

(X,D+ (1− δ) · Ik) is less than ε (see (16)). Then it follows from [HMX14] that (Y(2)
k , E(2)

k +
(µ(2))−1

∗ D2) is locally stable over C.
The relative extended Rees algebra gives a family (X,D) over C2, such that over C ×

{t} (resp. {t} × C) (t 6= 0), it gives a family which is isomorphic to (X (1),D(1)) (resp.
(X (2),D(2))). The family (X,D) admits a (C∗)r+2-action.

By Lemma 2.21, we get weakly special test configurations

(X ′(i),D′(i), ξ0; η′(i)) of (X
(i)
0 , D

(i)
0 , ξ0) (i = 1, 2)

with an isomorphic central fiber (X ′0, D
′
0, ξ0).

We claim that the generalize Futaki invariants Fut(X ′(i),D′(i), ξ0; η′(i)) are 0. Indeed, by
the construction,

(X,D, ξ0; η(1))
∣∣∣
C×{t}

∼= (X (1),D(1), ξ0; η(1)).

It follows from our assumption that

Fut(X (1),D(1), ξ0; η(1)) = Fut(X
(1)
0 , D

(1)
0 , ξ0; η(1)) = 0.

By the flatness of the weighted piece and (C∗)2 equivariance, we get for any t,

vol
X

(1)
0

(ξ0 − tη(1)) = volX′0(ξ0 − tη(1)),

which implies that Fut(X ′0, D
′
0, ξ0; η(1)) = 0 (see (20)). Similarly, we have Fut(X ′0, D

′
0, ξ0; η(2)) =

0.
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By the above result, we obtain two weakly special test configurations (X ′(i),D′(i), ξ0; η′(i))

with isomorphic central fibres (X
′(1)
0 , D

′(1)
0 , ξ0) ∼= (X

′(2)
0 , D

′(2)
0 , ξ0) and zero generalized Futaki

invariants. In the next subsection, we are going to show that (X ′(i),D′(i), ξ0; η′(i)) are indeed
special test configurations.

4.2 Vanishing Futaki invariants and special degenerations

We will prove Proposition 4.3, which says to test K-(semi, poly)stability of a log Fano cone,
although in our definition we only require to test on all special degenerations, it is indeed
the same to test on all weakly special test configurations. A tool we will use is to write the
generalized Futaki invariant of a weakly special configuration as the derivative of the leading
coefficient of the index character (see [MSY08, CS18, CS15]).

If there are two T -equivariant weakly special test configurations

(X (i) = Spec(R(i)),D(i), ξ0; η) of a K-semistable log Fano cone (X,D, ξ0),

with Fut(X (i),D(i), ξ0; η) = 0, by Lemma 2.18, we know X (i) is associated to a graded

sequence of ideals a
(i)
• which we can assume to be primary (see Remark 2.19) as

Fut(X (i),D(i), ξ0;mξ′0 + η)

= Fut(X (i),D(i), ξ0;mξ′0) + Fut(X (i),D(i), ξ0; η)

= 0,

where Fut(X (i),D(i), ξ0; ξ′0) = 0 follows from the K-semistability of (X,D). Moreover, since
the test configuration is weakly special, by Lemma 2.21 there is indeed a birational morphism
µi : Y → X with a reduced exceptional divisor Ei such that (Y i, Ei+(µi)−1

∗ D) is log canoni-

cal and a
(i)
k = µi∗(−kEi). Therefore, we can take a normalized graph µg : Y g → X of Y 1 99K

Y 2 over X with pi : Y
g → Y i. Then for any pair (a, b) such that

(
−ap∗1(E1)− bp∗2(E2)

)
is

integral, by Definition 2.20, we can consider the test configuration Ya,b of (X,D, ξ0) induced
by
(
−ap∗1(E1)− bp∗2(E2)

)
.

We apply the T -equivariant index character (see [CS18, Section 4] for more details) for
any ξ ∈ t̃+R ⊂ ÑR ∼= Rr+1 where t̃+R is the Reeb cone of the T̃ = T × C∗-action and t ∈ C
with the real part <(t) > 0, and define:

F (a, b; ξ, t) =
∑
α∈t̃+R

e−tα(ξ) dimRa,bα (v), (21)

where Ra,b is the ring of the special fiber of Ya,b.
Now if we fix a prime integral vector ξ ∈ t+R ∩N such that

(X (i),D(i))/〈ξ〉 = (S(i), B(i),L(i)) (i = 1, 2)

give test configurations of (X,D)/〈ξ〉 = (S,B) with polarizations Li. Then the quotient of
Ya,b by 〈ξ〉 is given by the normalized graph Sa,b of S(1) 99K S(2) with morphisms φi : Sa,b →
S(i) and the polarization is given by aφ∗1L(1) + bφ∗2L(2).

The following statement essentially follows from [CS18, Theorem 4.10].

Proposition 4.2. For a fixed ξ ∈ t̃ the index character F (a, b; ξ, t) has a meromorphic
extension to C with poles along the imaginary axis. Near t = 0 it has a Laurent series
expansion:

F (a, b; ξ, t) =
a0(a, b; ξ)n!

tn+1
+
a1(a, b; ξ)(n− 1)!

tn
+ · · · , (22)

where a0(a, b; ξ) is a polynomial of (a, b) whose coefficients depends smoothly on ξ ∈ t̃+R .

Proof. It follows from [CS18, Proposition 4.3] that when ξ is rational, then a0 coincides
with the leading term of the total weight on the test configuration Sa,b constructed from the
quotient log Fano pair. Since it can be represented by an intersection formula, in particular,
it is a polynomial of a and b by [Wan12, Oda13].

22



Denote by s = r + 1. By the proof of [CS18, Theorem 4.10], we know

F (a, b; ξ, t) =
e−t(ξ1α1+···ξsαs) ·HNa,b(e−tξ1 , ...e−tξs)

ΠN
j=1(1− e−t(ξ1w1j+···+ξswsj))

,

where ξ = (ξ1, ..., ξs) ∈ t̃+R , (α1, ..., αs) ∈ Zs and wij (1 ≤ i ≤ s, 1 ≤ j ≤ N) are real numbers.
The leading term of the Laurent expansion is the same as the leading term of

HNa,b(1, ..., 1)

ΠN
j=1(1− e−t(ξ1w1j+···+ξswsj))

.

Since a, b only appear in the part HNab(1, ..., 1) which does not depend on ξ, and from the
case that ξ is rational, we know that HNa,b(1, ..., 1) is a polynomial of (a, b), which implies
a0 is a polynomial of (a, b).

With all these preparations, we can prove Proposition 4.3 which is a generalization of
[LX14, Theorem 4] from the quasi-regular case to the general case of an arbitrary log Fano
cone singularity. Although we expect the full results of special degeneration in [LX14] can
be extended, here we only need the last step of the argument.

Proposition 4.3. Let (X ,D, ξ0; η) be a weakly special test configuration of a log Fano cone
singularity (X,D, ξ0). Then we can find a special test configuration (X ′,D′, ξ0; η′) and a
positive integer m such that

Fut(X ′,D′, ξ0; η′) ≤ m · Fut(X ,D, ξ0; η),

and the strict inequality holds if (X ,D, ξ0; η) is not a special test configuration.

Proof. By Lemma 2.21, the weakly special test configuration is induced by a T -equivariant
morphism µ : Y → X, such that the reduced exceptional divisor E is anti-ample over X and
(Y,E+µ−1

∗ D) is log canonical. Suppose (X ,D, ξ0; η) is not special, then (Y,E+µ−1
∗ D) is not

plt. Therefore, by [LX16, Proposition 2.10], we can find a T -equivariant Kollár component S
over x ∈ (X,D) such that its log discrepancy with respect to (Y,E +µ−1

∗ D) is 0. Denote by
µ′ : Y ′ → X the plt blow extracting precisely S. So by Lemma 2.21 again, it gives a special
test configuration (X ′,D′, ξ0; η′) and the base change factor m (which we omit from now on)
corresponds to a multiple such that the coefficient of S in the pull back of mE is integral.

Let Y g be the normalized graph Y 99K Y ′ and p : Y g → Y , p′ : Y g → Y ′ the natural
morphisms. Then for any pair of positive integers (a, b), the divisor bp∗E + ap′∗S are anti-
ample, and therefore induces a test configuration Xa,b by Lemma 2.21. We take a0(a, b, ξ)
as in Proposition 4.2.

Now we claim that

D−Tξ0ηa0(1, 0, ξ0) = Fut(X ,D, ξ0; η) > Fut(X ′,D′, ξ0; η′) = D−Tξ0ηa0(0, 1, ξ0).

To see this we write:

p∗(KY + E + µ−1
∗ D) = p′∗(KY ′ + S + (µ′∗)

−1D) +G,

and since the log discrepancy AY,E+µ−1
∗ D(S) = 0, the negativity lemma implies that G ≥ 0.

For any irreducible component Ei in Supp(G), denote by ci its coefficient in G. In par-
ticular, from our assumption that X is not a special test configuration, for some component
E0 contained in Supp(E), its coefficient c0 is positive. Let Fi be divisor on X0 given by the
orbifold cone C(Ei,−E|Ei).

We take the previous construction for the two test configurations X and X ′. By Propo-
sition 4.2, for a fixed ξ0, if we define

f(t; ξ0) = D−Tξ0ηa0(1− t, t; ξ0),

then the difference of the generalized Futaki invariant is of the form

Fut(X ′,D′, ξ0; η′)− Fut(X ,D, ξ0; η) =

∫ 1

0

d

dt
f(t; ξ0) dt.
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The integrand is smooth in [0, 1], and the proof of [LX14, Proposition 5] shows that it is
non-positive when ξ0 is rational. Thus it is non-positive. We claim its value at 0 is

d

dt
f(t; ξ0)

∣∣∣∣
t=0

= − 1

2 · volX(wtξ0)

∑
i

ci · volFi(wtξ0) < 0. (23)

In fact to see (23), when ξ0 is rational, we can compute on the quotient log Fano pair, and
this is given in [LX14, Page 217]. Since both sides are smooth functions on ξ0, we know that
they must be equal to each other.

An immediate consequence is the following.

Corollary 4.4. For a K-semistable log Fano cone singularity (X,D, ξ), if it has a weakly
special test configuration (X ,D, ξ0; η) with the generalized Futaki invariant being 0, then it
is a special test configuration, i.e., the central fiber is klt.

4.3 Completion of proof of main theorems for log Fano cones

Proof of Theorem 1.2. The proof follows the same structure as the proof of Theorem 1.3.
We first prove the existence of K-polystable degenerations. In the proof of Theorem

4.1 we have shown that for any special test configuration (X ,D, ξ0; η) of (X(0), D(0), ξ0) :=
(X,D, ξ0) with Fut(X ,D, ξ0; η) = 0, the special fiber (X(1), D(1), ξ0) is K-semistable. Fur-
thermore, any special degeneration of (X(1), D(1), ξ0) can be indeed written as a special
degeneration of (X(0), D(0), ξ0). Similar to the proof of Theorem 1.3, if the K-semistable
degeneration (X(1), D(1), ξ0) is not isomorphic to (X ,D, ξ0; η), then (X(1), D(1), ξ0) admits
an effective action by a torus T̃ one dimensional larger than dim(T ). Therefore such step
has to terminate, namely when we have the central fiber being K-polystable.

By Corollary 4.4, we can replace the words “weakly special” by “special” in the statement
of Theorem 4.1. Recall that by definition special degenerations of K-polystable log Fano cone
with zero generalized Futaki invariants must be product. So the uniqueness of K-polystable
degeneration follows.

Proof of Theorem 1.1. It is shown in [DS17] that there is a special test configuration (W, ξ0; η)
of of the intermediate cone (W, ξ0) with the central fiber (C, ξ0). Because C admits a Ricci-
flat Kähler cone metric, we know C is K-polystable (see [CS15, Theorem 1.1]). In particular,
Fut(W, ξ0; η) = 0. Moreover by [LX17, Theorem 1.4], we know that W is K-semistable and
is uniquely determined by the algebraic germ (M∞, o).

Assume W specially degenerates to another K-polystable Fano cone C ′ by a special test
configuration (W ′, ξ0; η′) with Fut(W ′, ξ0; η′) = 0. Then Theorem 4.1 implies that C and
C ′ degenerates to a Fano cone C ′′ by special test configurations with generalized Futaki
invariants 0. This implies C ∼= C ′′ ∼= C ′ by the polystability of C and C ′.

A Ding-polystability of Ricci-flat Kähler cones

In the proof of Theorem 1.1 above, we rely on the result proved in [CS15] which says that that
for a log Fano cone singularity with a Ricci-flat Kähler cone metric, the generalized Futaki
invariant Fut(X ,D, ξ0; η) > 0 for any non-product special test configuration. However, as
we have seen, in our argument (see e.g. the proof of Theorem 4.1), more general test
configuration will show up. Therefore in this appendix, we want to discuss the proof of a
more general statement, namely for any non-product Q-Gorenstein test configuration, the
corresponding Ding invariant is positive (see Theorem A.2). This can be used to slightly
modify the proof of Theorem 1.1 (see Remark A.4). We point out that our proof of Theorem
A.2 follows the general strategy in [Ber15] and is slightly different from [CS15].

Definition A.1 (Ding-stability). We say that (X,D, ξ0) is Ding-semistable, if for any Q-
Gorenstein test configuration (X ,D, ξ0; η) of (X,D, ξ0) with the central fiber (X0, D0, ξ0), its
Berman-Ding invariant, denoted by DNA(X ,D, ξ0; η) is nonnegative, where

DNA(X ,D, ξ0; η) :=
D−Tξ0 (η)volX0

(ξ0)

vol(ξ0)
− (1− lct(X , D;X0)).
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We say that (X,D, ξ0) is Ding-polystable, if it is Ding-semistable, and any Q-Gorenstein test
configuration (X ,D, ξ0; η) with DNA(X ,D, ξ0; η) = 0 is a product test configuration.

We immediately see that DNA(X ,D, ξ0; η) = Fut(X ,D, ξ0; η) if and only if the test con-
figuration is weakly special, and Ding-semistability (resp. Ding-polystability) implies K-
semistability (resp. K-polystability). It is proved that in the log Fano pair case, they are
equivalent [BHJ17, Fuj16]. Following [Ber15], it will become clear that the notions of Ding-
stability fit better into our calculation.

Theorem A.2. Assume (X, ξ0) admits a Ricci-flat Käler cone metric. Then (X, ξ0) is
Ding-polystable among Q-Gorenstein test configurations.

Corollary A.3. Assume (X, ξ0) admits a Ricci-flat Kähler cone metric. Then (X, ξ0) is
K-polystable among all weakly special test configurations.

Remark A.4. Corollary A.3 could yield an alternative argument in one step of the proof of
Theorem 1.1. More precisely, with notations in the proof of Theorem 1.1, let C and C ′ be
two K-polystable degenerations of W . Then the degenerations of C and C ′ to C ′′ obtained
via Theorem 4.1 are weakly special with zero Futaki invariant. We can skip Proposition
4.3 but replace [CS15, Theorem 1.1] by the stronger statement Corollary A.3, which directly
implies there is no non-product weakly special test configurations of C and C ′ with zero Futaki
invariant. Then we conclude immediately that C ∼= C ′′ ∼= C ′.

Let (X, ξ0) be a Fano cone singularity with the vertex point o. Recall that this implies
that X is a normal affine variety with at worst klt singularities. Moreover there is a good T
action where T ∼= (C∗)r and ξ0 ∈ t+R . On X there exists a T -equivariant nowhere-vanishing
holomorphic m-pluricanonical form s ∈ | − mKX |. Such holomorphic form can be solved
uniquely up to a constant as in [MSY08, 2.7]. In the following, we will use the following
volume form on X associated to s:

dVX =

(√
−1

mn2

s ∧ s̄
)1/m

. (24)

Assume that (X, ξ0) is equivariantly embedded into (CN , ξ0) with ξ0 =
∑
i aizi

∂
∂zi

with

ai ∈ R>0. Fix a reference smooth Kähler cone metric on CN whose associated Reeb vector
field r∂r − iJ(r∂r) = 2ξ0. By its rescaling property such a radius function is C0-comparable

to
∑N
i=1 |zi|2/ai . The restriction ωX := ωCN |X is a Kähler cone metric on X. Moreover

2Im(ξ0) = J(r∂r) is the Reeb vector field of ωCN and ωX . Since T acts on X, T also acts on
the set of functions on X by τ ◦ f(x) = f(τ−1x) for any τ ∈ T and x ∈ X. For convenience,
we denote X◦ = X \ {o} where o is the vertex of X and define:

Definition A.5. Denote by PSH(X, ξ0) the set of bounded real functions ϕ on X◦ that
satisfies:

(1) τ ◦ ϕ = ϕ for any τ ∈ 〈ξ0〉;
(2) r2

ϕ := r2eϕ is a proper plurisubharmonic function on X.

We can think of functions in PSH(X, ξ0) as transversal Kähler potentials as in [DS17].
More precisely, because ∂r generates a R+-action (R+ = {a ∈ R; a > 0}) on X◦ without fixed
points, if the link of X is defined as Y := {r = 1}∩X, then Y = X◦/R+ and X◦ ∼= Y ×R+.
We denote:

χ =

√
−1

2
(∂̄ − ∂) log r2 = −1

2
Jd log r2, (25)

and define:

Definition A.6. Denote by PSH(Y, ξ0) the set of bounded real function ϕ on Y that satisfies:

(1) τ ◦ ϕ = 0 for τ ∈ exp(R · Im(ξ0)).

(2) ϕ is upper semicontinuous on Y and (dχ+
√
−1∂∂̄ϕ)

∣∣
Y
≥ 0, where the positivity is in

the sense of currents.

Here we identify the function on Y with its pull back to X◦ ∼= Y ×R+ via the projection
to the first factor. There is an isomorphism PSH(X, ξ0) ∼= PSH(Y, ξ0) by sending ϕ 7→ ϕ|Y .
We will use these two equivalent descriptions in the following discussion.
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Definition A.7. We say that r2
ϕ := r2eϕ where ϕ ∈ PSH(X, ξ0) is a radius function of a

Ricci-flat Kähler cone metric on (X, ξ0) if ϕ is smooth on Xreg and there exists a constant
C > 0 such that

(
√
−1∂∂̄r2

ϕ)n = C · dVX . (26)

If we take Lr∂r on both sides, we get: Lr∂rdVX = 2ndVX , which is also equivalent to
Lξ0s = mns. If we write

dVX = 2r2n−1dr ∧ ΩY , or equivalently ΩY := 2−1r1−2ni∂rdVX , (27)

then L∂rΩY = 0. On the other hand, a direct computation shows that:

√
−1∂∂̄r2

ϕ = r2
ϕ(dχ+

√
−1∂∂̄ϕ) + dr2

ϕ ∧
(
χ− 1

2
Jdϕ

)
, (28)

Then it is easy to verify that the equation (26) is equivalent to:

(dχ+
√
−1∂∂̄ϕ)n−1 ∧ χ =

C

n
· e−nϕΩY . (29)

The equation (26) is the Euler-Lagrange equation for the following Ding-type functional:

Definition A.8 (see [CS15, LX17]). For any function ϕ ∈ PSH(X, ξ0), define:

D(ϕ) = E(ϕ)− log

(∫
X

e−r
2
ϕdV

)
=: E(ϕ) +G(ϕ) (30)

where E(ϕ) is defined by its variations:

δE(ϕ) · δϕ = − 1

(n− 1)!(2π)nvolX(ξ0)

∫
X

(δϕ)e−r
2
ϕ(
√
−1∂∂̄r2

ϕ)n.

Using the identity (28), one can verify that:

δE(ϕ) · δϕ = − n

(2π)nvol(ξ0)

∫
Y

(δϕ)(dχ+
√
−1∂∂̄ϕ)n−1 ∧ χ. (31)

As in the standard Kähler case, a consequence of this description is the following explicit
expression of E(ϕ) (see [DS17]):

E(ϕ) = − 1

(2π)nvol(ξ0)

n−1∑
i=0

∫
Y

ϕ(dχ+
√
−1∂∂̄ϕ)i ∧ (dχ)n−1−i ∧ χ. (32)

In the similar vein, using (27) we have the identity:

G(ϕ) = − log

(∫
Y

e−nϕΩY

)
− log(n− 1)!. (33)

We will study the asymptotic of E(ϕt). In the following we will denote D := {z ∈ Z; |z| ≤ 1},
D∗ = D \ {0} and S1 = {z ∈ D; |z| = 1}. We will always identify the functions on X with
functions on X × D or X × D∗ by pulling back via the projection to the first factor.

Proposition A.9 (see [LX17, Lemma 5.10]). Let ϕ(x, t) = ϕ(x, |t|) : X×D∗ → R be a upper
semicontinuous function such that ϕt := ϕ(·, |t|) ∈ PSH(X, ξ0) for each t ∈ D∗. Assume√
−1∂∂̄(r2eϕ) ≥ 0 over X × D∗ in the sense of currents. Then the following identity holds:

√
−1

∂2

∂t∂t̄
E(ϕt)dt ∧ dt̄ = − 1

(n+ 1)!(2π)nvol(ξ0)

∫
X×D∗/D∗

(
√
−1∂∂̄(r2eϕ))n+1e−r

2
ϕ

= − 1

(2π)nvol(ξ0)

∫
Y×D∗/D∗

(dχ+
√
−1∂∂̄ϕ)n ∧ χ.

In particular, E(ϕt) is concave in − log |t|2.
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Proof. The proof of the first identity is the same as the proof as in [LX17, Lemma 5.10].
The second identity follows from the first one and using the following identity on X ×D∗ to
calculate: √

−1∂∂̄r2
ϕ = r2

ϕ(dχ+
√
−1∂∂̄ϕ) + dr2

ϕ ∧ (χ− 1

2
Jdϕ).

Now assume that (X , ξ0; η) is a Q-Gorenstein test configuration of X. Because η com-
mutes with ξ0 and generates a C∗-action, we can assume that X is embedded into CN × C
and the embedding is equivariant with respect to the T ×C∗-action generated by {ξ0, η}. If
we write η =

∑
i bizi

∂
∂zi

with bi ∈ Z and let σ(t) : C∗ → GL(N,C) be the one-parameter

subgroup generated by the vector field η. Then σ(t)(zi) = tbizi and we let

r(t)2 := σ(t)∗(r2) =: r2eϕ̃(t).

The asymptotic of E(ϕ̃t) can be easily calculated:

Proposition A.10 (see [LX17, Proposition 5.13]). We have the following identity:

lim
t→0

E(ϕ̃t)

− log |t|2
=
D−ηvol(ξ0)

vol(ξ0)
. (34)

Proof. We refer to [LX17] for details. Here we just sketch the key ingredients. Let ξε =
ξ − εη =

∑
i(ai − εbi)zi

∂
∂zi

and rε be a radius function for ξε. Then we have:

vol(ξε) =
1

n!(2π)n

∫
X0

e−r
2
ε (
√
−1∂∂̄r2

ε )
n. (35)

Taking derivative with respect to ε in the above volume formula, we can derive:

D−ηvol(ξ0) =
1

(2π)n(n− 1)!

∫
X0

θe−r
2

(
√
−1∂∂̄r2)n,

where we have denoted θ := η(log r2). We can then calculate (see [MSY08, Appendix C] or
[LX17, Lemma 5.11]):

d

d(− log |t|2)
E(ϕ̃t) =

1

(n− 1)!(2π)nvol(ξ0)

∫
X

˙̃ϕe−r(t)
2

(
√
−1∂∂̄r(t)2)n

=
1

(n− 1)!(2π)nvol(ξ0)

∫
X

σ(t)∗(θ)e−σ
∗r2σ∗(

√
−1∂∂̄r2)n

=
1

(n− 1)!(2π)nvol(ξ0)

∫
Xt

θe−r
2

(
√
−1∂∂̄r2)n.

As explained in [LX17, Proof of Proposition 5.12], the last expression converges as t→ 0 to
D−ηvol(ξ0)/vol(ξ0).

By Proposition A.9 E(ϕ̃t) is concave in − log |t|2. So the statement follows from the
above discussion and the following identity for concave functions:

lim
t→0

d

d(− log |t|2)
E(ϕ̃t) = lim

t→0

E(ϕ̃t)

− log |t|2

We need the following basic result from [DS17] which generalizes Berndtsson’s result to
the Kähler cone setting.

Theorem A.11 ([DS17], see also [BBEGZ11, Ber15]). Let ϕ(x, t) = ϕ(x, |t|) : X ×D∗ → R
be an upper semicontinuous function such that ϕt := ϕ(·, t) ∈ PSH(X, ξ0) for each t ∈ D∗.
Assume

√
−1∂∂̄(r2eϕ) ≥ 0 over X × D∗ in the sense of currents. Then G(ϕt) is convex in

− log |t|2. Moreover, if G(ϕt) is affine in − log |t|2, then there exists a holomorphic vector
field η0 on X commuting with ξ such that rϕt = σ∗t rϕ0

where σt = exp(log |t| · η0).
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Let (X , ξ0; η) be a Q-Gorenstein test configuration of X with the projection map π :
X → C. Let Xt := π−1(t) be the fiber over {t} and ot the vertex point of Xt. Denote
X ◦ = X \ {ot; t ∈ C}. In the following discussion, we denote by R2 the function obtained by
restricting r2, considered as a function on CN×C, to X via a fixed the equivariant embedding
X → CN × C: R2 = r2

∣∣
X .

Definition A.12. Denote by PSH(X|D , ξ0) the set of bounded real functions Φ on X ◦|D
that satisfies:

(1) τ ◦ Φ = Φ for any τ ∈ T ;

(2) R2
Φ := R2eΦ is a proper plurisubharmonic function on X|D.

As before, we can treat functions in PSH(X|D, ξ0) as transversal Kähler potentials on

X|D. If we also denote by χ the restriction of χ =
√
−1
2 (∂̄ − ∂) logR2 = − 1

2Jd logR2 to
Y := {R = 1} ∩ X , then we can similarly define PSH(Y, ξ0) as Definition A.6.

Moreover, using the equivariant isomorphism ι : X|D∗ ∼= X ×D∗, we can associate to any
Φ ∈ PSH(X|D) plurisubharmonic function ϕ on X×D∗ and hence a path ϕt ∈ PSH(X, ξ0)
such that R2

Φ = ι∗(r2
ϕ). As an example, the path asssociated to Φ = 0 and is given by ϕ̃t.

Proposition A.13. Assume Φ ∈ PSH(X , ξ0) and let ϕt ∈ PSH(X, ξ0) be the associated
path. Then G(ϕt) is subharmonic in t and its Lelong number at t = 0 is given by 1 −
lct(X ,X0).

Proof. Since R2
Φ = ι∗(r2eϕ) is plurisubharmonic over X|D∗ ∼= X × D∗. Applying Theorem

A.11, we get G(ϕt) is subharmonic in t. To see that it’s subharmonic over D, we just need
to show that G(ϕt) is uniformly bounded from above. Because Φ bounded, we know that

|G(ϕt)−G(ϕ̃t)| ≤ C.

So we just need to show that G(ϕ̃t) is uniformly bounded from above.
Because η preserves the global section s ∈ |mKX |: Lηs = 0. As a consequence, dVXt =(√
−1

mn2

s ∧ s̄
)1/m

∣∣∣∣
Xt

satisfies σ∗t dVXt = dVX1
= dVX . So we have:

G(ϕ̃t) = − log

(∫
X

e−σ(t)∗r2(σ∗dVXt)

)
= − log

(∫
Xt

e−r
2

dVXt

)
.

Because Lr∂rdVXt = 2ndVXt , we can write dVXt = 2r2n−1dr ∧ ΩYt and calculate:∫
Xt

e−r
2

dVXt = (n− 1)!

∫
Yt

ΩY

= Cn ·
∫
{r≤1}∩Xt

e−r
2

dVXt ≤ Cn
∫
{r≤1}∩Xt

dVXt , (36)

where Cn = (n−1)!∫ 1
0
e−r2r2n−1dr2

.

Now the upper boundedness of G(ϕ̃t) can be seen in two ways. For one way, one can
resolve the singularity of {r ≤ 1} ∩ (X|D) and estimate the integral using the method as in
[Li17a, Proof of Lemma 3.7] or [BJ17]. The other approximation approach is the following.
Recall that r2 is the radius function associated to the vector field ξ0 =

∑
i aizi

∂
∂zi

. Now

we choose a sequence of vector fields ξ(k) =
∑
i a

(k)
i zi

∂
∂zi

with a
(k)
i ∈ Q and a

(k)
i → ai as

k → +∞. Choose a sequence of new radius function r(k) = rξ(k) such that r(k) is uniformly

C0-comparable to the functions
∑N
i=1 |zi|2/(a

(k)
i ). Then there exist C1, C2 > 0 such that, for

any ε > 0, we have: C1(r(k))1−ε ≤ r ≤ C2(r(k))1+ε for k � 1. So we get:∫
{r≤1}∩Xt

dVXt ≤
∫
{
r(k)≤C(1−ε)−1

1

}
∩Xt

dVXt .

Because a
(k)
i is rational, we can taking quotient of X by the C∗-action generated by ξ(k) =∑

i a
(k)
i ∂zi and reduces to the log Fano case considered in [Ber15] in which case the upper

boundedness of G(ϕ̃t) was shown.
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Finally we need to calculate the Lelong number of G(ϕ̃t) with respect to t. According to
[Ber15], the Lelong number of G(t) is equal to the infimum of c such that∫

U

e−G−(1−c) log |t|2idτ ∧ dτ̄ =

∫
X|D

e−r
2−(1−c) log |t|2dVX < +∞.

We have the following identity:∫
X|D

e−r
2−(1−c) log |τ |2dVX = Cn ·

∫
X|D∩{r≤1}

e−r
2−(1−c) log |τ |2dVX . (37)

Because e−1 ≤ e−r
2 ≤ 1 is a bounded function, the right-hand-side of (37) is integrable if

and only if 1− c < lct(X ∩ {r ≤ 1},X0 ∩ {r ≤ 1}). Using the rescaling symmetry as used in
(36), we see that lct(X ∩ {r ≤ 1},X0 ∩ {r ≤ 1}) = lct(X ,X0). So we are done.

Assume r2eϕKE with ϕKE ∈ PSH(X, ξ0) is a radius function of a Ricci-flat Kähler cone
metric on (X, ξ0). Let (X , ξ0; η) be a test configuration of (X, ξ0). We construct geodesic
ray associated to (X , ξ0; η) by solving the homogeneous Monge-Ampère equation:

(
√
−1∂∂̄(R2eΦ))n+1 = 0 on X|D, Φ|X×S1 = ϕKE. (38)

Using transversal point of view, this equation is equivalent to the following equation:

(dχ+
√
−1∂∂̄Φ)n ∧ χ = 0 on Y|D, Φ|Y×S1 = ϕKE|Y . (39)

By considering the envelope (or its equivalent formulation on X|D)

Φ := sup
{

Ψ ∈ PSH(Y|D, ξ0) : Ψ ≤ ϕKE|Y on ∂(Y|D) = Y × S1
}
,

then the following result can be proved in exactly the same way as in [Ber15, Proposition
2.7] by using the transversal Kähler structures of (Y, ξ0). Note that this kind of extension
has also been used in [DS17] (see also [CS15, HL18]).

Proposition A.14 (see [Ber15, Proposition 2.7]). Φ is locally bounded such that R2eΦ has
positive curvature current and satisfies (

√
−1∂∂̄(R2eΦ))n+1 = 0 on X|D.

Finally we can give the proof of Theorem A.2.

Proof of Theorem A.2. Let Φ be the geodesic ray emanating from ϕKE that is determined by
(X , ξ0). Let ϕt be the associated path in PSH(X, ξ0). Then because (

√
−1∂∂̄(R2eΦ))n+1 =

0, E(ϕt) is affine in t by Proposition A.9. G(ϕt) is subharmonic in t by Proposition A.13.
So D(t) := D(ϕt) is subharmonic over D. Because D(t) depends only |t|, D(t) is convex in
− log |t|2. Because D(ϕt) ≥ D(ϕKE) for any t ∈ D, we see that D(t) is a non-decreasing
function in − log |t|2.

By Proposition A.10 and Proposition A.13, we have:

lim
t→0

D(t)

− log |t|2
=
D−ηvol(ξ0)

vol(ξ0)
− (1− lct(X ,X0)) = DNA(X , ξ0; η).

If DNA(X , ξ0; η) = 0, then because D(t) is convex and non-decreasing in − log |t|2, we see
that D(t) is affine and hence G(ϕt) is affine. So by Theorem A.11, there exists holomorphic
vector field η0 such that ϕt = (σt)

∗ϕKE where σt = exp(log |t|η0). The rest of the argument
is the same as [Ber15, Proposition 3.3] as extended to the Ricci-flat cone setting in [CS15].
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