GRÖBNER BASES BOUNDS FOR MODULES

YIHUI LIANG

Abstract. Let F be a non-negatively graded free module over a polynomial ring $K[x_1, \ldots, x_n]$ generated by m basis elements. Let M be a submodule of F generated by elements with degrees bounded by D and $\dim F/M = r$. We prove that if M is graded, the degree of the reduced Gröbner basis of M for any term order is bounded by $2 \left[\frac{1}{2} (Dm)n - r \right]^{2^{d-1}}$. If M is not graded, the bound is $2 \left[\frac{1}{2} ((Dm - 1)(n - r) + 1)n - r \right]^{2^{d}}$. This is a generalization of Dubé and Mayr-Ritscher’s bounds for ideals in a polynomial ring.

1. Introduction

Gröbner bases play an important role in computational commutative algebra and computational algebraic geometry. To analyze the complexity of Gröbner bases computation, it is essential to give an upper bound on degrees of elements in Gröbner bases. In 1990, Dubé used a purely combinatorial argument and gave the following doubly exponential upper bound to the Gröbner bases degrees of ideals for any term order. For earlier results, see [11].

Theorem 1.1 (Dubé [2]). Let I be an ideal in $K[x_1, \ldots, x_n]$ generated by polynomials with maximum degree d. Then for any monomial order \prec_S, the degree of the reduced Gröbner basis G of I is bounded by

$$\deg(G) \leq 2 \left(\frac{d^2}{2} + d \right)^{2^{n-1}}.$$

In 2013, Mayr and Ritscher incorporated the ideal dimension into Dubé’s construction and proved the following dimension-dependent bound. Based on Mayr-Meyer ideals, they also constructed a family of examples that showed every bound must be at least exponential in the codimension and doubly exponential in the dimension (see [10 §4]).

Theorem 1.2 (Mayr-Ritscher [10]). Let K be an infinite field and $I \subseteq K[x_1, \ldots, x_n]$ be an ideal of dimension r generated by polynomials $F = \{f_1, \ldots, f_s\}$ of degrees $d_1 \geq \cdots \geq d_s$. Then for any monomial order \prec_S, the degree of the reduced Gröbner basis G of I is bounded by

$$\deg(G) \leq 2 \left[\frac{1}{2} \left((d_1 \cdots d_{n-r})^{2(n-r)} + d_1 \right) \right]^{2^{2r}}.$$

Date: May 17, 2019.

2010 Mathematics Subject Classification. 13B25, 13P10.

Key words and phrases. Gröbner bases, degree bound, cone decompositions, Hilbert functions.
If \(f_1, \ldots, f_s \) are homogeneous, then
\[
\deg(G) \leq 2 \left[\frac{1}{2} (d_1 \cdots d_{n-r} + 1) \right]^{2^{r-1}}.
\]

Despite the fact that Gröbner bases computations of modules are the most commonly used ones in computer algebra systems like Macaulay2, CoCoA, and Singular, surprisingly uniform bounds of the above kind are only known for ideals. Generalizing \cite{2} and \cite{10}, we prove the following two bounds on the Gröbner bases degrees of graded and non-graded submodules of a free module, respectively.

The following three theorems are the main theorems of this paper. Let \(F \) be a free module over \(K[x_1, \ldots, x_n] \) with basis elements \(e_1, \ldots, e_m \) with \(\deg(e_j) \geq 0 \) for all \(j \) and \(l = \max\{\deg(e_j) : j = 1, \ldots, m\} \). If \(G \) is a Gröbner basis, let \(\deg(G) \) denote the maximum degree of elements in \(G \).

Theorem 7.8 Let \(M \subseteq F \) be a graded submodule generated by homogeneous elements with maximum degree \(D \geq l \) and \(\dim F/M = r \). Then the degree of the reduced Gröbner basis \(G \) of \(M \) for any monomial order on \(F \) is bounded by
\[
\deg(G) \leq \begin{cases}
Dmn - n + 1, & \text{if } r = 0 \\
2 \left[\frac{1}{2} ((Dm)^{n-r} m + D) \right]^{2^{r-1}} & \text{if } r \geq 1
\end{cases}
\]

Mayr and Ritscher \cite{10} deduced their bound for inhomogeneous ideals by proving a lemma that says there exist a homogeneous regular sequence in the homogenization of \(I \) with degrees bounded by \((d_1 \cdots d_{n-r})^2 \). This lemma is recently improved in \cite{1} where this bound is sharpened to \(d_1 \cdots d_{n-r} \). Both of the proofs in \cite{10} and \cite{1} used the effective Noether normalization. In this paper we sharpen the bound further to \(d_1 + \cdots + d_{n-r} - n + r + 1 \), by using generic initial ideals and Hashemi and Lazard’s Gröbner bases degree bound for zero-dimensional ideals w.r.t. the degree reverse lexicographical order (see \cite{6} or Theorem 8.1). In particular for inhomogeneous ideals, we use our new lemma to get the bound

Theorem 8.3 Under the assumptions of Theorem 1.2, the degree of the reduced Gröbner basis \(G \) of \(I \) is bounded by
\[
\deg(G) \leq 2 \left[\frac{1}{2} ((d_1 + \cdots + d_{n-r} - n + r + 1)^{n-r} m + 1) \right]^{2^r}.
\]

Notice that this is a significant improvement of Mayr and Ritscher’s bound. The bound for non-graded modules also follows from the lemma.

Theorem 8.4 Let \(M \subseteq F \) be a submodule generated by elements of maximum degree \(D \geq l \) and \(\dim F/M = r \). Then the degree of the reduced Gröbner basis \(G \) of \(M \) for any monomial order is bounded by
\[
\deg(G) \leq 2 \left[\frac{1}{2} \left(((Dm - 1)(n-r) + 1)^{n-r} m + D \right) \right]^{2^r}.
\]

The paper is organized as follows. We review basic notations and preliminaries in Section 2. Then in Section 3-5, we generalize Dubé’s constructions to modules. In Section 3, cone decompositions (also called Stanley decompositions) are introduced to decompose a set of normal forms of a submodule \(M \) of \(F \). In Section 4, we use a module version of Dubé’s algorithm to construct a special cone decomposition of the set of normal forms of a module, so that the Gröbner basis degree can be bounded by the degree of the cone decomposition. In Section 5, the cone decomposition that
we constructed before is refined into an exact cone decomposition whose degree can be bounded by a Macaulay constant.

We switch to Mayr and Ritscher’s approach in Section 6-8. Imitating their construction, we find a regular sequence of length equal to the dimension of F/M in the zeroth Fitting ideal of F/M. Using this regular sequence, we perform two reductions in Section 6. We first reduce to a submodule IF of M where I is the ideal generated by the regular sequence, and then reduce to a monomial module generated by pure powers that share the same degrees as the regular sequence. In Section 7, we inductively construct an exact cone decomposition of the monomial module, bound its Macaulay constants, thereby deduce the bounds for graded modules. Finally in Section 8, we prove that for an ideal I there exist a homogeneous regular sequence in the homogenization of I with degrees bounded by $d_1 + \cdots + d_{n-r} - n + r + 1$. Using this lemma, we reduce the non-graded case to the graded case and deduce the bound for non-graded modules.

2. Preliminaries

2.1. Notation. The purpose of this subsection is to set up notations that will be used throughout the paper. For a more detailed introduction to Gröbner bases and other related topics, the reader can refer to [3, 4, 8], and [9].

Let $S = \mathbb{K}[x_1, \ldots, x_n]$ denote the ring of polynomials in the variables $X = \{x_1, \ldots, x_n\}$. Let $F = \mathbb{K}e_1 + \cdots + \mathbb{K}e_m$ denote a graded free S-module with $l = \max\{\deg(e_j) : j = 1, \ldots, m\}$. Without loss of generality, we may assume that all e_j have nonnegative degrees and the one with smallest degree has degree 0.

Let \prec_F be a monomial order on F, whenever there is no confusion we abbreviate \prec_F as \prec. Let $f \in F$, then the initial monomial of f, denoted by $in_{\prec}(f)$, is the greatest monomial among the monomials belonging to $supp(f)$ with respect to \prec.

If M is a submodule of F, then $in_{\prec}(M)$ is the monomial submodule generated by $\{in_{\prec}(f) : f \in M\}$. A subset $G = \{g_1, \ldots, g_l\}$ in M is called a Gröbner basis of M if $in_{\prec}(g_1), \ldots, in_{\prec}(g_l)$ generates $in_{\prec}(M)$. Denote $in_{\prec}(G) = \{in_{\prec}(g) : g \in G\}$.

Let M be a submodule of F, fix a monomial order \prec_F on F and a Gröbner basis G of M. For any $f \in F$, let $nf_G(f)$ denote the unique remainder (or normal form) of f with respect to G. Collecting all such remainders of $f \in F$, we denote

$$N_M = \{nf_G(f) : f \in F\}.$$

By Macaulay’s theorem ([3, Theorem 15.3]), we have

$$N_M = \text{span}\{u \in Mon(F) : u \notin in_{\prec}(M)\} = N_{in_{\prec}(M)}.$$

In particular N_M only depends on the monomial order \prec_F.

Similarly if I is an ideal of S, \prec_S is any monomial order on S, and G is any Gröbner basis of I, then we denote

$$N_I = \{nf_G(p) : p \in S\}.$$

Let M be a submodule of F, we denote $dim(F/M) = dim(S/M :_{S} F)$ to be the Krull dimension of the S-module F/M.

If T is a vector space over \mathbb{K}, let $dim_{\mathbb{K}}(T)$ denote the vector space dimension of T.
2.2. Hilbert function. Let $T \subseteq F$ be a graded \mathbb{K}-vector space with graded components

$$T_z = \{ f \in T : f \text{ is homogeneous of degree } z \} \cup \{0\},$$

then the Hilbert function of T is defined as

$$HF_T(z) = \dim_{\mathbb{K}}(T_z).$$

The Hilbert series of T is defined as

$$HS_T(t) = \sum_{z \geq 0} HF_T(z) t^z.$$

Let M be a submodule of F, then there exists a unique polynomial which is equal to $HF_{N_M}(z)$ for sufficiently large z. This polynomial is called the Hilbert polynomial of N_M and will be denoted as $HP_{N_M}(z)$. The Hilbert regularity of N_M is defined as $\min\{z_0 \in \mathbb{Z} : HF_{N_M}(z) = HP_{N_M}(z) \forall z \geq z_0\}$.

Notice that F/M and N_M have the same Hilbert functions, hence $\dim(F/M) = \deg(HP_{N_M}) + 1$ (with the convention that $\deg(0) = -1$).

2.3. Regular sequence. Recall that a sequence g_1, \ldots, g_t of elements in S is called a regular sequence if

1. g_k is a non-zerodivisor on $S/(g_1, \ldots, g_{k-1})$ for all $k = 1, \ldots, t$ and
2. $(g_1, \ldots, g_t) \neq S$.

One of the many nice properties that homogeneous regular sequences have is that the submodules they generate have the same Hilbert functions if they have the same degrees.

Lemma 2.1. Let $J = (g_1, \ldots, g_t)$ be an ideal generated by a homogeneous regular sequence in S with degrees d_1, \ldots, d_t. Fix an arbitrary monomial ordering on F, consider $JF \subset F$, then F/JF or equivalently N_{JF} has the Hilbert series

$$HS_{N_{JF}}(t) = \frac{(\sum_{i=1}^{m} t^{\deg(c_i)})(\prod_{i=1}^{t} (1 - t^{d_i}))}{(1 - t)^n}.$$

The Hilbert regularity of N_{JF} is $d_1 + \cdots + d_t + l - n + 1$.

Proof. See [9, Corollary 5.2.17].

It is a well-known fact that given a polynomial ideal of dimension r over an infinite field, then we may assume $n - r$ generators of I form a regular sequence. This will be one of the key constructions to achieve a dimension-dependent bound.

Lemma 2.2. Let \mathbb{K} be an infinite field and $I \subseteq S$ an ideal generated by homogeneous polynomials p_1, \ldots, p_t with degrees $d_1 \geq \cdots \geq d_t$ such that $\dim(S/I) \leq r$. Then there are a strictly decreasing sequence $t \geq j_1 > \cdots > j_{n-r} \geq 1$ and homogeneous $a_{k_i} \in S$ such that

$$g_k = \sum_{i=j_k}^{t} a_{k_i}p_i \quad \text{for } k = 1, \ldots, n-r$$

form a homogeneous regular sequence, $\dim(S/(p_{j_1}, \ldots, p_t)) = n - k$, and $\deg(g_k) = d_{j_k}$.

Proof. See [1, Proposition 4.17].
Lemma 2.7. For simplicity we will use the weaker version of the above lemma, that is, we may assume the regular sequence \(g_1, \ldots, g_{n-r} \) have (the largest \(n-r \)) degrees \(d_{n-r}, \ldots, d_1 \). So one could potentially get a better bound in Theorem \([7,7]\) by using the degrees \(d_{ij} \) in Lemma \([2.2]\).

Note that we can reduce to the weaker version since for each \(i \), there exists a regular element \(y_i \in S_1 \) on \(S/(g_1, \ldots, g_{n-r}, g_i) \), so we can replace \(g_i \) by \(g_iy_i^{d_{n-r-1}+\deg(g_i)} \).

2.4. Fitting ideal.

Definition 2.4. Let \(M \) be an \(S \)-module and choose a presentation

\[
S^* \xrightarrow{\varphi} S/I \xrightarrow{\pi} M \xrightarrow{0}
\]

of \(M \). Let \(I_k(\varphi) \) denote the \(S \)-ideal generated by all \(k \times k \) minors of \(\varphi \) (set \(I_k(\varphi) = S \) for \(k \leq 0 \) and \(I_k(\varphi) = 0 \) for \(t > \min\{s, t\} \)). Then the \(i \)th Fitting ideal of \(M \) is defined as

\[
\text{Fitt}_i(M) = I_{n-i}(\varphi),
\]

which is independent of the choice of the presentation (see \([3]\) Corollary-Definition 20.4]).

If \(I \) is an ideal in \(S \), let

\[
\sqrt{I} = \{x \in S : x^k \in I \text{ for some } k \in \mathbb{N}\}
\]

be the radical of \(I \), then \(\dim S/I = \dim S/\sqrt{I} \).

Lemma 2.5. Let \(M \) be an \(S \)-module, then the 0th Fitting ideal \(\text{Fitt}_0(M) \) satisfies

\[
\text{Fitt}_0(M) \subseteq \text{ann}_S(M) \text{ and } \sqrt{\text{Fitt}_0(M)} = \sqrt{\text{ann}_S(M)}.
\]

Proof. See \([3]\) Proposition 20.7]. \(\square \)

Applying Remark 2.3 to the 0th Fitting ideal of \(F/M \), we have

Lemma 2.6. Let \(M \) be a graded submodule of \(F \) with \(\dim(F/M) = \dim(S/M :_SF) = r \). Let \(\text{Fitt}_0(F/M) \) be the 0th Fitting ideal of \(F/M \) generated by polynomials \(p_1, \ldots, p_k \) of degrees \(d_1 \geq \cdots \geq d_k \). Then \(\text{Fitt}_0(F/M) \subseteq M :_SF \) contains a regular sequence \(g_1, \ldots, g_{n-r} \) of degrees \(d_1 \geq \cdots \geq d_{n-r} \).

Proof. Since \(\sqrt{M :_SF} = \sqrt{\text{Fitt}_0(F/M)} \), we have \(r = \dim(S/M :_SF) = \dim(S/\text{Fitt}_0(F/M)) \). Now apply Remark 2.3 to \(\text{Fitt}_0(F/M) \). \(\square \)

Notice that we need the Fitting ideal \(\text{Fitt}_0(F/M) \) in replacement of the annihilator \(M :_SF \) because the generating degree of \(\text{Fitt}_0(F/M) \) can be bounded linearly by the generating degree of \(M \), while the generating degree of \(M :_SF \) is usually much larger. We will need both the graded and non-graded versions of the following lemma.

Lemma 2.7. Let \(M \) be a submodule of \(F \) generated by (homogeneous) elements \(f_1, \ldots, f_s \) with degrees \(D = D_1 \geq \cdots \geq D_s \). If \(\text{Fitt}_0(F/M) \neq 0 \), then the maximum degree of a minimal (homogeneous) generating set of \(\text{Fitt}_0(F/M) \) is bounded by

\[
D_1 + \cdots + D_m - \sum_{j=1}^m \deg(e_j) \leq D_m.
\]

Proof. For each \(i = 1, \ldots, s \), we can write \(f_i = a_{i1}e_1 + \cdots + a_{im}e_m \) for some \(a_{ij} \in S \), \(\deg(a_{ij}) \leq D_i - \deg(e_j) \) (or \(\deg(a_{ij}) = D_i - \deg(e_j) \) if we are in the homogeneous setting and \(a_{ij} \neq 0 \)). Consider the presentation

\[
S^* \xrightarrow{\varphi} S^m \cong F \xrightarrow{F/M} 0
\]
of F/M where $\varphi = (a_{ij})_{j=1,\ldots,m, i=1,\ldots,s}$. Then $\text{Fitt}_0(F/M) = \text{I}_n(\varphi)$ is the ideal generated by all the $m \times m$ minors of φ. Every such minor corresponds to m elements f_{i1}, \ldots, f_{im} among the generators of M, so if the minor is nonzero, it will be a (homogeneous) element of degree $\leq D_{i1} + \cdots + D_{im} - \sum_{j=1}^m \deg(e_j)$. Hence the largest degree of a minimal (homogeneous) generating set of $\text{Fitt}_0(F/M)$ is bounded by $D_1 + \cdots + D_m - \sum_{j=1}^m \deg(e_j) \leq Dm$. \hfill \square

2.5. **Homogenization.** Let $f \in F$ be a nonzero element with homogeneous components f_j. Let t be a new variable, then the homogenization of f is defined as $f^h = \sum_j f_j t^\deg(f) - \deg(f_j)$. For a module $M \subseteq F$, the homogenization of M is the submodule generated by $\{f^h : f \in M\}$, denoted as $M^h = \langle f^h : f \in M \rangle$.

If $f \in F^h$, let f^deh denote the dehomogenization of f which is obtained from f by substituting t by 1. If G is a subset of F^h, let $G^\text{deh} = \{f^\text{deh} : f \in G\}$.

Given \prec a monomial order on F, we extend it to a monomial order \prec' on F^h as follows:

\[x^a t^e e_i \prec' x^b t^d e_j \iff \deg(x^a t^e e_i) < \deg(x^b t^d e_j), \]

or \(\deg(x^a t^e e_i) = \deg(x^b t^d e_j) \) and \(x^a e_i \prec x^b e_j \).

It is easy to check that $\text{in}_\prec(f^\text{deh}) = \text{in}_{\prec'}(f)^\text{deh}$ for all homogeneous $f \in F$.

Example 2.8. Let \prec be the degree reverse lexicographic order on $S = K[x_1, \ldots, x_n]$ (see [8], definition 1.4.7), then its extension \prec' is the degree reverse lexicographic order on $S[t] = K[x_1, \ldots, x_n, t]$.

Using the above extension, we can obtain a Gröbner basis of a non-graded module M from dehomogenizing a homogeneous Gröbner basis of any graded module that dehomogenizes into M.

Lemma 2.9. Let $M = Sf_1 + \cdots + Sf_s$ be a submodule of F and \prec be a monomial order on F. If N is a graded submodule of F where $S[t]f_1^h + \cdots + S[t]f_s^h \subseteq N \subseteq M^h$ and G is a homogeneous Gröbner basis of N w.r.t \prec', then G^deh is a Gröbner basis of M w.r.t. \prec.

Proof. Notice that as $S[t]f_1^h + \cdots + S[t]f_s^h \subseteq N \subseteq M^h$, we have $N^\text{deh} = Sf_1 + \cdots + Sf_s = M$. Since $\text{in}_\prec(f^\text{deh}) = \text{in}_{\prec'}(f)^\text{deh}$ for all homogeneous $f \in N$, we have $\text{in}_\prec(N^\text{deh}) = \text{in}_{\prec'}(N)^\text{deh}$. Hence $\text{in}_\prec(M) = \text{in}_\prec(N^\text{deh}) = \text{in}_{\prec'}(N)^\text{deh} = \langle \text{in}_{\prec'}(G)^\text{deh} \rangle = \langle \text{in}_\prec(G) \rangle$. \hfill \square

Under monomial orders of t-degree type (see [9], Definition 4.4.1]), the initial ideal of I^h can be generated by monomials that are free of t’s. An example of a monomial order of t-degree type is the degree reverse order.

Lemma 2.10. Let $I = (p_1, \ldots, p_k)$ be an ideal in S and \prec' be a monomial order on $S[t]$ of t-degree type. If $\{g_1, \ldots, g_s\}$ is a homogeneous Gröbner basis of $J = (p_1^h, \ldots, p_k^h)$ w.r.t. \prec', then $\{g_1/t^{a_1}, \ldots, g_s/t^{a_s}\}$ is a homogeneous Gröbner basis of I^h w.r.t. \prec' where $a_i = \max\{a \in \mathbb{N} : t^a \text{ divides } g_i\} = \max\{a \in \mathbb{N} : t^a \text{ divides } \text{in}_{\prec'}(g_i)\}$.

Proof. See [9], 4.4.9. \hfill \square
2.6. Generic initial ideal. Let $S[t] = \mathbb{K}[x_1, \ldots, x_n, t]$ and \prec be a monomial order on $S[t]$. For the rest of this subsection and Section 8, let the general linear group $GL_n(\mathbb{K})$ act on $S[t]$ by acting on the variables x_1, \ldots, x_n, i.e. if $\alpha = (\alpha_{ij}) \in GL_n(\mathbb{K})$, then $\alpha(x_j) = \sum_{i=1}^n \alpha_{ij}x_i$ for $j = 1, \ldots, n$.

Definition 2.11. Let $I \subseteq S[t]$ be a homogeneous ideal, then there is a nonempty Zariski open set $U \subseteq GL_n(\mathbb{K})$ and a monomial ideal $J \subseteq S[t]$ such that for all $\alpha \in U$, $J = \text{in}_\prec(\alpha I)$. Then J is called the *generic initial ideal* of I w.r.t x_1, \ldots, x_n, written $\text{gin}_\prec(I)$.

Remark 2.12. The reader should note that our definition is non-standard but is needed for Section 8 where we deal with homogenization. The existence of such a Zariski open set U can be proved by the same proof in [3 Theorem 15.18] or [5 Theorem 1.27].

In the following theorems, we present classical results in the context of Definition 2.11 The goal is to show that the generic initial ideal w.r.t x_1, \ldots, x_n contains a sequence of pure powers that has length equal to its height.

Theorem 2.13 (Galligo, Bayer-Stillman). If $I \subseteq S[t]$ is a homogeneous ideal, then the generic initial ideal of I w.r.t x_1, \ldots, x_n is Borel-fixed w.r.t x_1, \ldots, x_n, i.e. for all upper triangular matrices $\beta \in GL_n(\mathbb{K})$, $\beta(\text{gin}_\prec(I)) = \text{gin}_\prec(I)$.

Proof. Analogous to [3 Theorem 15.20].

Theorem 2.14 (Bayer-Stillman). If a monomial ideal $I \subseteq S[t]$ is Borel-fixed w.r.t x_1, \ldots, x_n, then I is of Borel type w.r.t. x_1, \ldots, x_n, i.e. for each monomial $u \in I$ and all integers i, j with $1 \leq j < i \leq n$, there exists an integer $a \geq 0$ such that $x_i^au/x_j^b \in I$ where $b_i = \max\{b \in \mathbb{N} : x_j^b \text{ divides } u\}$.

Proof. Analogous to [7 Proposition 4.2.9, Theorem 4.2.10].

Lemma 2.15. Let $I \subseteq S[t]$ be a monomial ideal of Borel type w.r.t x_1, \ldots, x_n and $ht(I) = n - r$, then there exists pure powers $x_1^{\alpha_1}, \ldots, x_n^{\alpha_n-r}$ that belong to the minimal monomial generating set of I.

Proof. We will construct the sequence inductively. Let B be the minimal monomial generating set of I. We may assume $n-r > 0$ since otherwise the claim is clear. Let $i < n-r$, assume $x_1^{\alpha_1}, \ldots, x_i^{\alpha_i} \in B$ have already been constructed and we want to find $x_{i+1}^{\alpha_{i+1}} \in B$. Since $i < n-r = ht(I)$, we have $I \not\subseteq (x_1, \ldots, x_i)$. So there exists a monomial $x_{i+1}^{b_{i+1}} \cdots x_n^{b_n} \in I$. Starting from this monomial, for $j = n, \ldots, i+2$ we can consecutively exchange $x_j^{b_j}$ for some $x_{i+1}^{c_{i+1}}$ to get another monomial in I that is not divisible by x_j, \ldots, x_n (we can do this because I is of Borel type w.r.t x_1, \ldots, x_n). In the end we get $x_{i+1}^{c_{i+1}} \in I$ for some c_{i+1}. As B is a generating set of I, there exists an element $x_{i+1}^{c_{i+1}} \in B$ that divides $x_{i+1}^{c_{i+1}}$.

3. Cone decomposition

In [2], Dubé introduced cone decompositions to express a subspace T in S as a finite direct sum of subspaces of the form $h \mathbb{K}[u]$, where h is a polynomial in S and u is a subset of X. In this section, we will give an introduction to cone decompositions in the context of a free module.
Definition 3.1. Let f be a homogeneous element in F and u a subset of X, then $C = C(h, u) = h\mathbb{K}[u]$ is called a cone. The degree of the cone is defined as $\text{deg}(C) = \text{deg}(h)$, the dimension of the cone is defined as $\text{dim}(C) = |u|$, and h is called the pivot of the cone.

Definition 3.2. Let $T \subseteq F$, h_1, \ldots, h_r be homogeneous elements in F, and u_1, \ldots, u_r be subsets of X. If as \mathbb{K}-vector spaces,

$$T = \bigoplus_{i=1}^r h_i\mathbb{K}[u_i],$$

then $P = \{C(h_1, u_1), \ldots, C(h_r, u_r)\}$ is called a cone decomposition of T. The degree of the cone decomposition is defined as $\text{deg}(P) = \max\{\text{deg}(C) : C \in P\}$.

If T admits a cone decomposition P, then the Hilbert function of T is a sum of the Hilbert functions of $h\mathbb{K}[u]$. Counting the number of monomials in $h\mathbb{K}[u]$, we get that if $u = \emptyset$, then

$$\text{HF}_{h\mathbb{K}[\emptyset]}(z) = \begin{cases} 0, & \text{if } z \neq \text{deg}(h) \\ 1, & \text{if } z = \text{deg}(h) \end{cases}$$

and if $|u| > 0$,

$$\text{HF}_{h\mathbb{K}[u]}(z) = \begin{cases} 0, & \text{if } z < \text{deg}(h) \\ (z - \text{deg}(h) + |u| - 1), & \text{if } z \geq \text{deg}(h) \end{cases}$$

Therefore cones of the form $h\mathbb{K}[\emptyset]$ only contribute to finitely many values of the Hilbert function HF_T. Collecting the remaining cones, we denote

$$P^+ := \{C \in P : \text{dim}(C) > 0\}$$

Definition 3.3. A cone decomposition P for T is said to be q-standard if the following two conditions hold:

1. There is no cone $C \in P^+$ with $\text{deg}(C) < q$.
2. For every $C \in P^+$ and degree d such that $q \leq d \leq \text{deg}(C)$, P contains a cone C' with $\text{deg}(C') = d$ and $\text{dim}(C') \geq \text{dim}(C)$.

Notice that if $P^+ = \emptyset$, then P is q-standard for all natural numbers q. If $P^+ \neq \emptyset$, then the only possible value for q is $\min\{\text{deg}(C) : C \in P^+\}$.

We define a special cone decomposition that splits a cone and is useful for manipulating cone decompositions.

Definition 3.4. Let $u = \{x_1, \ldots, x_h\} \subseteq X$, h a homogeneous element in F, and $C = h\mathbb{K}[u]$. Then the fan of C is defined as

$$F(C) := \{C(h, \emptyset)\} \cup \{C(x_1, h, \{x_1, \ldots, x_j\}) : i = 1, \ldots, t\}.$$

Remark 3.5. The following list contains some facts of q-standard cone decompositions that are easy to verify.

1. $\{C(e_j, X)\}$ is a $\text{deg}(e_j)$-standard cone decomposition of Se_j.
2. If C is a cone, $F(C)$ is a $(\text{deg}(C) + 1)$-standard cone decomposition of C.
3. Let $T = T_1 \oplus T_2$ and let P_1 and P_2 be q-standard cone decompositions of T_1 and T_2, respectively. Then $P_1 \cup P_2$ is a q-standard cone decompositions of T with $\text{deg}(P_1 \cup P_2) \geq \text{deg}(P_1)$.
(4) Let \(T \) be a subset of \(S \). If \(P = \{ C(p_1, u_1), \ldots, C(p_r, u_r) \} \) is a \(q \)-standard cone decomposition of \(T \), then for any homogeneous element \(f \in F \), the set \(Q = f P = \{ C(fp_1, u_1), \ldots, C(fp_r, u_r) \} \) is a \((q + \deg(f)) \)-standard cone decomposition for \(fT = \{ fp : p \in T \} \).

Lemma 3.6. Let \(T \) be a \(q \)-standard cone decomposition of a subspace \(T \subseteq F \). Then for any \(d \geq q \), there exists a \(d \)-standard cone decomposition \(P_d \) of \(T \) with \(\deg(P_d) \geq \deg(P) \) and \(\deg(P_d^+) \geq \deg(P^+) \).

Proof. If \(P^+ = \emptyset \) then the result holds trivially. Assume \(P^+ \neq \emptyset \), it suffices to show that there exists a \((q + 1) \)-standard cone decomposition \(P_{q+1} \) of \(T \) with \(\deg(P_{q+1}) \geq \deg(P) \) and \(\deg(P_{q+1}^+) \geq \deg(P^+) \). Let \(Q = \{ C \in P : \deg(C) = q \} \). Notice that \(Q \) is trivially \(q \)-standard and \(P \setminus Q \) is \((q + 1) \)-standard as \(P \) is \(q \)-standard.

By Remark 3.5[2] for each \(C \in Q \), there exists a \((q + 1) \)-standard cone decomposition \(F(C) \) of \(C \). Now apply Remark 3.5[3] to see that \(P_{q+1} := \bigcup_{C \in P} F(C) \cup (P \setminus Q) \) is a \((q + 1) \)-standard cone decomposition of \(T \). Also \(\deg(P_{q+1}) \geq \deg(P) \) and \(\deg(P_{q+1}^+) \geq \deg(P^+) \) are clear from the definition of \(F(C) \). \(\square \)

4. Decomposing a Set of Normal Forms

For an ideal \(I \), Dubé \[2\] constructed a 0-standard cone decomposition \(P \) of \(N_I \), so that the degree of \(P \) gives an upper bound to the Gröbner basis degree of \(I \). We will follow Dubé to construct an \(l \)-standard cone decomposition \(Q \) of \(N_M \) with \(\deg(Q) \) bounding the Gröbner basis degree of \(M \). Most of the statements in Dubé holds in the module case and the proofs can be applied directly with some slight modifications. Recall that \(N_M = N_{in \prec (M)} \), hence it suffices to decompose \(N_M \) for monomial modules.

Definition 4.1. Let \(P \cup Q \) be a cone decomposition of \(T \subseteq F \), and let \(M \) be a submodule of \(F \). Then \(P \) and \(Q \) are said to split \(T \) relative to \(M \) if \(C \in P \) implies \(C \subseteq M \), and \(C \in Q \) implies \(C \cap M = \emptyset \).

Lemma 4.2. Let \(P = \{ C(g_1, u_1), \ldots, C(g_r, u_r) \} \) and \(Q = \{ C(h_1, v_1), \ldots, C(h_s, v_s) \} \) split \(T \) relative to a monomial module \(M \), where for each \(C(h_i, v_i) \in Q \), \(h_i \) is a monomial in \(F \). Then \(P \) is a cone decomposition for \(T \cap M \) and \(Q \) is a cone decomposition for \(T \cap N_M \).

Proof. See \[2\] Lemma 4.1]. \(\square \)

Using Dubé’s SPLIT algorithm \[2\] §4, we can produce cone decompositions \(P \) and \(Q \) which split a cone \(h \mathbb{K}[u] \) relative to a monomial module \(M \). In order to formulate the SPLIT algorithm, first we will need an simple algorithm called QUOTIENT BASIS that computes a generating set of \(I : x_j \) for a monomial ideal \(I \). This is needed to ensure the termination of the SPLIT algorithm.

Lemma 4.3. The algorithm SPLIT terminates and is correct.

Proof. See \[2\] Lemma 4.3, 4.4]. \(\square \)

The cone decomposition \(Q \) produced by the SPLIT algorithm has the crucial property that its cone decomposition degree bounds the Gröbner basis degree of \(M \) (see Theorem 4.7). To see this, we start with the following lemma.
Algorithm 1: QUOTIENT_BASIS(B, x_j)

Input: B a monomial generating set for I \(\subseteq\) S, x_j \(\in\) X a variable

Output: B’ a monomial generating set for I : x_j

B’ := \emptyset

for f_i \(\in\) B do
 if f_i \(\in\) \(\mathbb{K}\)[X \(\setminus\) \{x_j\}] then
 B’ := B’ \cup \{f_i\}
 else
 B’ := B’ \cup \{x_j^{-1} f_i\}

return (B’)

Algorithm 2: SPLIT(h, u, M, B)

Input: h \(\in\) Mon(F), u \(\subseteq\) X a set of variables, M a monomial submodule of F, and B a monomial generating set of M : S h

Output: cone decompositions (P, Q) which splits h\(\mathbb{K}\)[u] relative to M

if 1 \(\in\) B then
 return (P = \{C(h, u)\}, Q = \emptyset)

if B \(\cap\) Mon(K[u]) = \emptyset then
 return (P = \emptyset, Q = \{C(h, u)\})

otherwise do
 Choose s \(\subseteq\) u a maximal subset such that B \(\cap\) Mon(\(\mathbb{K}\)[s]) = \emptyset
 Choose x_i \(\in\) u \(\setminus\) s // If s = u this point would not be reached
 (P_0, Q_0) := SPLIT(h, u \(\setminus\) \{x_i\}, B, M)
 B’ := QUOTIENT_BASIS(B, x_i)
 (P_1, Q_1) := SPLIT(x_i h, u, B’, M)
 return (P = P_0 \cup P_1, Q = Q_0 \cup Q_1)

Lemma 4.4. Let R_j be a minimal monomial generating set for I_j e_j, where I_j \(\subseteq\) S is a monomial ideal. Let B_j be a monomial generating set for I_j, and (P_j, Q_j) = SPLIT(e_j, X, I_j e_j). Then for every f \(\in\) R_j, Q_j contains a cone C(h, u) with \(\text{deg}(h) = \text{deg}(f) - 1\).

Proof. We sketch the proof given in [2] Lemma 4.8]. Since P_j is a cone decomposition of I_j e_j and f is part of a minimal generating set of I_j e_j, P_j must contain a cone of the form C(f, v). Then a cone of the form C(h, u) \(\in\) Q_j with \(\text{deg}(h) = \text{deg}(f) - 1\) could be found by tracing back and forth the recursions.

Corollary 4.5. Let M = \(\bigoplus_{j=1}^m I_j e_j\) where I_j are monomial ideals. For each j, let B_j be a monomial generating set of I_j and (P_j, Q_j) = SPLIT(e_j, X, I_j e_j, B_j). If I_j \(\neq\) S, then I_j e_j can be generated by the set \{f \(\in\) B_j e_j : \(\text{deg}(f) \leq 1 + \text{deg}(Q_j)\}\}. Hence M can be generated by the set \(\bigcup_{j=1}^m\{f \in B_j e_j : \text{deg}(f) \leq \max\{1 + \text{deg}(Q_j), \text{deg}(e_j)\}\}\).

Lemma 4.6. Let (P, Q) = SPLIT(h, u, M, B), then Q is a \(\text{deg}(h)\)-standard cone decomposition.

Proof. See [2] 4.10].
Combining Corollary 4.5 and Lemma 4.6 we obtain our main theorem of this section.

Theorem 4.7. Let G be a homogeneous Gröbner basis of a graded submodule $M \subseteq F$ with respect to a monomial order \prec_F. Then N_M admits a l-standard cone decomposition Q where $l = \max\{\deg(e_1), \ldots, \deg(e_m)\}$ and $G' = \{g \in G : \deg(g) \leq \max\{1 + \deg(Q), l\}\}$ is also a Gröbner basis of M with respect to \prec_F. In particular, the degree of the reduced Gröbner basis of M is bounded by $\max\{1 + \deg(Q), l\}$.

Proof. Since $in_{\prec}(M)$ is a monomial submodule, $in_{\prec}(M) = \bigoplus_{j=1}^{m} I_j e_j$ for some monomial ideals $I_j \subseteq S$. For each $j = 1, \ldots, m$, let $B_j e_j = G \cap S e_j$, then $B_j e_j$ generates $I_j e_j$. Consider $(P_j, Q_j) = \text{SPLIT}(e_j, X, I_j e_j, B_j).$ Q_j is a $\deg(e_j)$-standard cone decomposition of $N_{I_j e_j} \cap S e_j$ by Lemma 4.2 and Lemma 4.6. Then by Lemma 4.5 there exists a l-standard cone decomposition Q_j' for $N_{I_j e_j} \cap S e_j$ with $\deg(Q_j') \geq \deg(Q_j)$.

Since $N_M = N_{in_{\prec}(M)} = \bigoplus_{j=1}^{m} N_{I_j e_j} \cap S e_j$, we have that $Q := \bigcup_{j=1}^{m} Q_j'$ is a l-standard cone decomposition for N_M and clearly $\deg(Q) \geq \deg(Q_j')$. By Corollary 4.5, $in_{\prec}(M)$ can be generated by

$$\bigcup_{j=1}^{m} \{f \in B_j e_j : \deg(f) \leq \max\{1 + \deg(Q_j), \deg(e_j)\}\}$$

$$\subseteq \bigcup_{j=1}^{m} \{f \in B_j e_j : \deg(f) \leq \max\{1 + \deg(Q_j'), \deg(e_j)\}\}$$

$$\subseteq \{f \in \bigcup_{j=1}^{m} B_j e_j : \deg(f) \leq \max\{1 + \deg(Q), l\}\}$$

$$\subseteq \{in_{\prec}(g) : g \in G'\}.$$

The last inclusion holds because G is a homogeneous Gröbner basis. Hence G' is a Gröbner basis for M. \hfill \[\Box\]

The ideal version of the above theorem, which is proved in [2, §4], will also be needed in later sections. But since we only need the existence of the cone decomposition, we will only quote part of the theorem.

Theorem 4.8 ([2]). Let I be a homogeneous ideal of S and fix a monomial order \prec_S on S, then there exists a 0-standard cone decomposition of N_I.

Proof. See [2, Theorem 4.11]. \hfill \[\Box\]

5. The Exact Cone Decomposition and Macaulay Constants

One of the nice properties that a q-standard cone decomposition P has is that there are cones of every degree between q and $\deg(P)$. However, this doesn’t give us any control over the number of cones in a certain degree. Therefore the following notion is introduced to further refine a q-standard cone decomposition.

Definition 5.1. Let T be a subspace of F, then P is called an q-exact cone decomposition of T if P is a q-standard cone decomposition of T, and $\deg(C) \neq \deg(C')$ for all $C \neq C' \in P^+$.
If $P^+ \neq \emptyset$, then there is a unique value $q > 0$ such that P is q-standard. If $P^+ = \emptyset$, P is trivially q-exact for all natural numbers q, then we set P to be 0-exact for the following definition.

Definition 5.2. Let P be a q-exact cone decomposition of $T \subseteq F$. Then the Macaulay constants of P are defined as

$$b_k := \max (\{q\} \cup \{1 + \deg(C) : C \in P, \dim(C) \geq k\}) \text{ for } k = 0, \ldots, n + 1.$$

It is a simple consequence of this definition that the b_k’s satisfy $b_0 \geq b_1 \geq \cdots \geq b_{n+1} = q$, and if $P^+ \neq \emptyset$ then $b_0 = 1 + \deg(P)$ and $b_1 = 1 + \deg(P^+)$.

Once we have an exact cone decomposition P, then the Macaulay constants give a nearly complete picture of P, i.e. they control degrees of all the cones in P but not the specific pivots.

Lemma 5.3. Let P be a q-exact cone decomposition, and let b_0, \ldots, b_{n+1} be defined as above. Then for each $1, \ldots, n$ and degree d such that $b_{i+1} \leq d < b_i$, there is exactly one cone $C \in P^+$ such that $\deg(C) = d$, and for that cone $\dim(C) = i$. In particular $b_i = b_{i+1} + |\{C \in P^+ : \dim(C) = i\}|$ for $i = 1, \ldots, n$.

Proof. See [2, Lemma 6.1].

One way to make a q-standard cone decomposition q-exact is as follows: whenever there are two cones of the same degree, replace the cone of lower-dimension by its fan and the resulting cone decomposition still remains q-standard. The **EXACT** algorithm is from [10] and is a reformulation of SHIFT and EXACT in [2].

Algorithm 3: EXACT(Q)

Input: Q a q-standard cone decomposition of $T \subseteq F$

Output: P a q-exact cone decomposition of $T \subseteq F$

$P := Q$

for $d := q, \ldots, \deg(P^+)$ do

$S := \{C \in P^+ : \deg(C) = d\}$

while $|S| > 1$ do

Choose $C \in S$ with minimal dimension $\dim(C)$

$S := S \setminus \{C\}$

$P := P \setminus \{C\} \cup F(C)$

return (P)

The EXACT algorithm gives the following lemma.

Lemma 5.4. Every q-standard cone decomposition Q of a vector space $T \subseteq F$ may be refined into q-exact cone decomposition P of T with $\deg(Q) \leq \deg(P)$ and $\deg(Q^+) \leq \deg(P^+)$.

Proof. See [10, Lemma 16].

As we have seen before, if T admits a cone decomposition P, then its Hilbert polynomial is determined by P. If we further assume P is exact, then by Lemma 5.3 P is determined by the Macaulay constants of P. Hence it follows that the Hilbert polynomial HP_T is determined by the Macaulay constants.
Lemma 5.5. Let P be a q-exact cone decomposition of a subspace $T \subseteq F$, let b_0, \ldots, b_{n+1} be the Macaulay constants of P. Then for $z \geq b_0$, the Hilbert function $H_T(z)$ attains the polynomial form

$$HP_T(z) = \left(\frac{z - b_{n+1} + n}{n}\right) - 1 - \sum_{i=1}^{n} \left(\frac{z - b_i + i - 1}{i}\right).$$

In addition for $z \geq b_1$,

$$HF_T(z) = HP_T(z) + |\{C(h, \emptyset) \in P : \deg(h) = z\}|.$$

Proof. See [2, §7].

The converse of the previous lemma also holds, that is the Macaulay constants are determined by the Hilbert polynomial. In particular the Macaulay constants does not depend on the chosen q-exact cone decomposition.

Lemma 5.6. Let P be any q-exact cone decomposition for a subspace $T \subseteq F$. Then the Macaulay constants b_1, \ldots, b_{n+1} are uniquely determined by HP_T and q, and $b_0 = \min\{d \geq b_1 : HP_T(z) = HF_T(z) \forall z \geq d\}$.

Proof. See [2, Lemma 7.1].

The above lemma also shows that if T is a subspace with a known Hilbert regularity (e.g. set of normal forms of a submodule generated by a homogeneous regular sequence), then to bound b_0 it suffices to bound b_1.

6. Reduction to the complete intersection case

So far we have reduced our problem of bounding the Gröbner basis degree into bounding the Macaulay constant b_0. However as in Dubé [2, §8], attacking this problem directly requires a large amount of computations because our module is arbitrary. Mayr and Ritscher [10] used Lemma 2.2 to reduce the problem into bounding the Macaulay constant of a complete intersection, thereby simplify the computations and improve the bound for ideals of small dimension. Adopting their approach, in this section we will show that if $IF \subseteq M$ with I a complete intersection (which exists by Lemma 2.6 if K is infinite), then the Macaulay constant of N_{IF} bounds the Macaulay constant of N_M. Then by Lemma 5.1 and Lemma 5.6, if I is generated by polynomials of degrees d_1, \ldots, d_{n-r}, then it suffices to bound the Macaulay constant b_1 of N_{IF} where $J = (x_1^{d_1}, \ldots, x_{n-r}^{d_{n-r}})$.

Notice that Lemma 6.1-6.3 require a monomial order defined on S, but its sole purpose is to define N_I for an ideal I in S and is irrelevant to the main theorems.

Lemma 6.1. Let M be a submodule of F, $f \in F$, and $I = M :_S f$. Then for a fixed monomial order \prec_S on S,

$$M + Sf = M \oplus f \cdot N_I$$

Proof. See [2, §2.2 Example 2].

Corollary 6.2. Let M be a submodule of F generated by elements $g_1, \ldots, g_t, f_1 \ldots, f_s \in F$ and let $L = Sg_1 + \cdots + Sg_t \subseteq M$. Then for a fixed monomial order \prec_S on S,

$$M = L \oplus \bigoplus_{i=1}^{s} f_i \cdot N_{L_{i-1}:f_i}.$$
where \(L_k = (g_1, \ldots, g_t, f_1, \ldots, f_k) \) for \(k = 0, \ldots, s \).

Proof. Apply Lemma 6.1 to get \(L + Sf_1 = L \oplus f_1 N_L : f_1 \) and proceed inductively. \(\square \)

In order to reduce to \(IF \subseteq M \) with \(I \) a complete intersection, we show that for any submodule \(L \subseteq M \), the Macaulay constant \(b_0 \) (equivalently the degree of cone decomposition) does not decrease if we replace \(N_M \) by a vector space \(T \) whose Hilbert function equal to the Hilbert function of \(N_L \).

Lemma 6.3. Let \(M \) be a graded submodule of \(F \) generated by homogeneous elements \(g_1, \ldots, g_t, f_1, \ldots, f_s \in F \), and fix a monomial order \(\prec_S \) on \(S \) and a monomial order \(\prec_F \) on \(F \). Let \(L = Sg_1 + \cdots + Sg_t \subseteq M \) and \(D = \max \{ \deg(f_i) : i = 1, \ldots, s \} \geq l \). Then if \(Q \) is an \(l \)-standard cone decomposition of \(N_M \), then there exists a vector space \(T \subseteq F \) and a \(D \)-exact cone decomposition \(P \) of \(T \) such that \(HF_T = HF_{N_L} \) and \(\deg(Q) \leq \deg(P) \).

Proof. We use the notation defined in the previous lemma. By Theorem 6.3, there exists an \(l \)-standard cone decompositions \(Q_k \) of \(N_{L^{k-1}; f_k} \) for each \(k = 0, \ldots, s \). Hence by Remark 3.5(4) \(f_k Q_k \) is a \(\deg(f_k) \)-standard cone decompositions of \(f_k N_{L^{k-1}; f_k} \). Then by Lemma 6.3 \(Q, f_1 Q_1, \ldots, f_s Q_s \) can be converted into \(D \)-standard cone decompositions \(Q, Q_1, \ldots, Q_s \). Define \(T := \oplus_{i=1}^s f_i N_{L^{i-1}; f_i} \oplus N_M \), then we have

\[
F = M \oplus N_M = L \oplus \bigoplus_{i=1}^s f_i N_{L^{i-1}; f_i} \oplus N_M = L \oplus T,
\]

so the union \(Q' = \hat{Q} \cup \hat{Q}_1 \cup \cdots \cup \hat{Q}_s \) is a \(D \)-standard cone decomposition of \(T \) and \(HF_T = HF_{N_L} \) is clear. Finally by Lemma 5.4 \(Q' \) can be refined to a \(D \)-exact cone decomposition \(P \) of \(T \). Notice that applying the two lemmas and taking union does not decrease the degree of the cone decomposition, hence \(\deg(Q) \leq \deg(Q') \leq \deg(P) \). \(\square \)

Now it remains to reduce from a vector space \(T \) with \(HF_T = HF_{N_{IF}} \) and \(I \) generated by a regular sequence of degrees \(d_1, \ldots, d_{n-r} \) to the monomial submodule \((x_1^{d_1}, \ldots, x_{n-r}^{d_{n-r}})F \), using the fact that they have the same Hilbert function. We connect the two reductions to get our main theorem of this section. Recall that if \(k \) is infinite, Lemma 2.6 guarantees that there exists an ideal \(I \subseteq S \) generated by a regular sequence of degrees \(d_1, \ldots, d_{n-r} \) with \(IF \subseteq M \), hence the assumption of the following theorem can be satisfied for an arbitrary module with \(\dim(F/M) = r \).

Theorem 6.4. Let \(M \subseteq F \) be a graded submodule generated by homogeneous elements \(\{ g_i e_j : i = 1, \ldots, n-r, j = 1, \ldots, m \} \cup \{ f_1, \ldots, f_s \} \), where \(g_1, \ldots, g_{n-r} \in S \) is a homogeneous regular sequence of degrees \(d_1, \ldots, d_{n-r} \) and \(D = \max \{ \deg(f_i) : i = 1, \ldots, s \} \geq l \). Fix a monomial order \(\prec_F \) on \(F \), if \(Q \) is a \(l \)-standard cone decomposition of \(N_M \), then

\[
1 + \deg(Q) \leq \max \{ 1 + \deg(P^+), d_1 + \cdots + d_{n-r} + l - n + 1 \}
\]

where \(P \) is a \(D \)-exact cone decomposition of \(N_{IF} \) and \(J = (x_1^{d_1}, \ldots, x_{n-r}^{d_{n-r}}) \).

Proof. Let \(I = (g_1, \ldots, g_{n-r}) \subseteq S \) and \(L = IF \subseteq M \). By Lemma 6.3, we can complete any \(l \)-standard cone decomposition \(Q \) of \(N_M \) to a \(D \)-exact cone decomposition \(\hat{Q} \) of a vector space \(T \subseteq F \) with \(HF_T = HF_{N_L} \) with \(\deg(\hat{Q}) \geq \deg(Q) \). Since \(g_1, \ldots, g_{n-r} \) and \(x_1^{d_1}, \ldots, x_{n-r}^{d_{n-r}} \) are both regular sequences of the same degrees, \(N_L \)
and N_{JF} have the same Hilbert function by Lemma 7.3. As $HF_T = HF_{N_k} = HF_{N_{JF}}$, by Lemma 5.6 the Macaulay constant b_0 of Q and P are the same, so $\text{deg}(Q) = \text{deg}(P)$. Finally by Lemma 5.3 and 5.6, $1 + \text{deg}(Q) \leq 1 + \text{deg}(\tilde{Q}) = 1 + \text{deg}(P) = \max\{1 + \text{deg}(\tilde{P})^+, d_1 + \cdots + d_{n-r} + l - n + 1\}$. \hfill \Box

7. Bounding the Macaulay Constants

By Theorem 4.7 and Theorem 6.4 it remains to bound the Macaulay constant b_1 of N_{JF} where $J = (x_1^{d_1}, \ldots, x_{n-r}^{d_{n-r}})$. As a result of the simple structure of JF, using induction we can explicitly construct a D-exact cone decomposition of N_{JF} (without using the EXACT algorithm), which will give us the bound on b_1 easily. This section is a generalization of Section 3.3 in [10], in which Mayr and Ritscher bound the Macaulay constant b_1 of $N_J \subseteq S$.

Since the subspace N_{JF} is independent of any monomial order on F, the assumption on the monomial order will be omitted in the following lemmas.

Notice that $r = \text{dim}(S/J) = \text{dim}(F/J)$ tells us that $b_i = D$ for all $i > r$. In particular if $r = 0$ then $b_1 = D$, so it suffices to bound b_1 for $r \geq 1$.

Lemma 7.1. Let $J = (x_1^{d_1}, \ldots, x_{n-r}^{d_{n-r}}) \subseteq S$ and b_0, \ldots, b_{r+1} be the Macaulay constants of a D-exact cone decomposition P of N_{JF}. Then

\[b_{n+1} = b_n = \cdots = b_{r+1} = D. \]

Proof. It follows from the fact $\text{deg}(HP_{N_{JF}}) = r - 1$ and Lemma 5.3. \hfill \Box

The following lemma presents the base case of the induction needed for Lemma 7.1 and is obvious from the definition of N_{JF}.

Lemma 7.2. Let $J = (x_1^{d_1}, \ldots, x_{n-r}^{d_{n-r}})$ be an ideal of S. Then N_{JF} may be decomposed as

\[N_{JF} = T_r \times \mathbb{K}[x_{n-r+1}, \ldots, x_n] = \bigoplus_{h \in \text{Mon}(T_r)} h\mathbb{K}[x_{n-r+1}, \ldots, x_n], \]

where the vector space T_r is given by

\[T_r = \text{span}_\mathbb{K}\{x^\alpha e_j \in F : j = 1, \ldots, m, x^\alpha \in \mathbb{K}[x_1, \ldots, x_{n-r}], 0 \leq \alpha_i < d_i \text{ for } i = 1, \ldots, n-r\}. \]

When $r \geq 1$, we can compute b_r using the decomposition in Lemma 7.2 and the following lemma.

Lemma 7.3. Let $T_k \subseteq F$ be a finite dimensional vector space generated by monomials and P_k a cone decomposition of $T_k \times \mathbb{K}[x_{n-k+1}, \ldots, x_n]$. Then P_k has exactly $\text{dim}_\mathbb{K}(T_k)$ cones of dimension k.

Proof. See [10 Lemma 29]. \hfill \Box

Corollary 7.4. Let $J = (x_1^{d_1}, \ldots, x_{n-r}^{d_{n-r}})$ be an ideal of S and b_0, \ldots, b_{r+1} the Macaulay constants of a D-exact cone decomposition P of N_{JF}.

If $r \geq 1$, then

\[b_r = d_1 \cdots d_{n-r} m + D. \]

Proof. Apply Lemma 5.3 and the previous three lemmas to get $b_r = b_{r+1} + \text{dim}_\mathbb{K}T_r = D + d_1 \cdots d_{n-r} m$. \hfill \Box
Now we construct a D-exact cone decomposition P of N_{JF} layer by layer. That is to say in the kth inductive step, we "peel off" from $T_k \times \mathbb{K}[x_{n-k+1}, \ldots, x_n]$ dimension T_k many cones of dimension k, which will become all the dimension k cones in P, and take $T_{k-1} \times \mathbb{K}[x_{n-k+2}, \ldots, x_n]$ to be the complement.

Lemma 7.5. Let $J = (x_1^{d_1}, \ldots, x_{n-r}^{d_{n-r}})$ be an ideal of S. Then for any $D \geq \max \{2, l\}$ and $k = 0, \ldots, r$, there exists a D-exact cone decomposition P_k and a finite-dimensional subspace $T_k \subseteq N_{JF} \cap \oplus_{j=1}^{m} \mathbb{K}[x_1, \ldots, x_{n-k}]v_j$ which have a monomial basis such that

\[N_{JF} = (T_k \times \mathbb{K}[x_{n-k+1}, \ldots, x_n]) \oplus \bigoplus_{C \in P_k} C. \]

Let b_0, \ldots, b_{n+1} be the Macaulay constants of P_0, then $b_{k-1} \leq \frac{1}{2}b_k^2$ for $k = 2, \ldots, r$.

Proof. We will first construct P_0, \ldots, P_r first and then bound b_1, \ldots, b_{r-1}. Inductively, we construct $P_{k-1} \supseteq P_k$ and $T_{k-1} \times \mathbb{K}[x_{n-k+2}, \ldots, x_n] \subseteq T_k \times \mathbb{K}[x_{n-k+1}, \ldots, x_n]$, so that the following three conditions hold:

1. $P_{k-1} \setminus P_k$ consists of $\dim_K(T_{k-1})$ cones of dimension k.
2. If $\{h_1, \ldots, h_s\}$ is a monomial basis of T_{k-1} with $\deg(h_1) \leq \cdots \leq \deg(h_s)$, then $\deg(h_i) \leq \deg(h_{i-1}) + 1$ whenever $\deg(h_i) \geq l + 1$.
3. $N_{JF} = (T_{k-1} \times \mathbb{K}[x_{n-k+2}, \ldots, x_n]) \oplus \bigoplus_{C \in P_{k-1}} C$.

Notice that condition (1) implies that $b_{k-1} = b_k + \dim_K(T_{k-1})$ for $k = 2, \ldots, r$.

The inductions starts with $k = r$. Let $P_r = \emptyset$ and T_r be as in Lemma 7.2 then it is easy to see that they satisfy the three conditions. Let $1 \leq k \leq r$ and assume P_k and T_k have been constructed, we want to construct P_{k-1} and T_{k-1}. Notice that $P_k \subseteq P_0$ contains all cones of dimension larger than k, therefore b_0, \ldots, b_{k+1} are fixed. Let $\{h_1, \ldots, h_s\}$ is a monomial basis of T_k with $\deg(h_1) \leq \cdots \leq \deg(h_s)$ and choose

\[C_i = h_i x_{n-k+1}^{b_{k+1} + i - \deg(h_i) - 1} \mathbb{K}[x_{n-k+1}, \ldots, x_n] \text{ for } i = 1, \ldots, s. \]

In order for these C_i’s to be well-defined, we need to show that $b_{k+1} + i - \deg(h_i) - 1 \geq 0$. Since $b_{k+1} \geq b_{n+1} = d \geq l$, if $\deg(h_i) \leq l$, then $b_{k+1} + i - \deg(h_i) - 1 \geq l + i - l - 1 \geq 0$. If $\deg(h_i) \geq l + 1$, then as T_k satisfies condition (2),

\[
\begin{align*}
0 &\leq b_{k+1} + (i - 1) - \deg(h_{i-1}) - 1 \\
&\leq b_{k+1} + (i - 1) - (\deg(h_i) - 1) - 1 \\
&= b_{k+1} + i - \deg(h_i) - 1.
\end{align*}
\]

Hence the C_i’s are well-defined. It is easy to see that $C_i \subseteq T_k \times \mathbb{K}[x_{n-k+1}, \ldots, x_n]$, $\deg(C_i) = b_{k+1} + i - 1$, and $\dim(C_i) = k$. Thus $P_{k-1} = P_k \cup \{C_1, \ldots, C_s\}$ is a D-exact cone decomposition. Define

\[
T_{k-1} = \text{span}_K \{h_i x_{n-k+1}^c : i = 1, \ldots, s, c = 0, \ldots, b_{k+1} + i - \deg(h_i) - 2\}
\]

\[
\subseteq \bigoplus_{j=1}^{m} \mathbb{K}[x_1, \ldots, x_{n-k+1}]v_j.
\]

Notice that T_{k-1} satisfies condition (2) as T_k does, and

\[
T_k \times \mathbb{K}[x_{n-k+1}, \ldots, x_n] = C_1 \oplus \cdots \oplus C_s \oplus (T_{k-1} \times \mathbb{K}[x_{n-k+2}, \ldots, x_n]).
\]
hence it follows by induction that

\[N_{JF} = (T_{k-1} \times \mathbb{K}[x_{n-k+2}, \ldots, x_n]) \oplus \bigoplus_{C \in F_{k-1}} C. \]

Inductively we have constructed \(P_0, \ldots, P_r \), now we turn to the computation of the Macaulay constants \(b_1, \ldots, b_r \) of \(P_0 \). Let \(2 \leq k \leq r \) and we want to prove

\[b_{k-1} \leq \frac{1}{2}b_k^2. \]

As \(b_{k-1} = b_k + \dim \operatorname{K}_{k-1} \) (from condition (1)), it suffices to bound \(\dim \operatorname{K}_{k-1} \). By definition of \(\operatorname{K}_{k-1} \),

\[\dim \operatorname{K}_{k-1} = \sum_{i=1}^{s} (b_{k+1} + i - \deg(h_i) - 1) \leq \sum_{i=1}^{s} (b_{k+1} + i - 1) = sb_{k+1} + \frac{1}{2}s(s-1). \]

Since \(s = \dim \operatorname{K}_k = b_k - b_{k+1} \), the induction hypothesis and \(b_{k+1} \geq D \geq 2 \) imply

\[b_{k-1} = \dim \operatorname{K}_{k-1} + b_k \leq (b_k - b_{k+1})b_{k+1} + \frac{1}{2}(b_k - b_{k+1})(b_k - b_{k+1} - 1) + b_k \]

\[= \frac{1}{2}(b_k^2 - b_{k+1}^2 + b_k + b_{k+1}) \]

\[\leq \frac{1}{2}(b_k^2 - b_{k+1}^2 + \frac{1}{2}b_{k+1}^2) \leq \frac{1}{2}b_k^2 \]

\[\square \]

Notice that Lemma 7.5 shows that if \(\{h_1, \ldots, h_s\} \) is a monomial basis of \(T_0 \), then \(P = P_0 \cup \{C(h_i, \emptyset) : i = 1, \ldots, s\} \) is a \(D \)-exact cone decomposition of \(N_{JF} \) with Macaulay constants \(b_1, \ldots, b_{n+1} \) equal to those of \(P_0 \). Combining Corollary 7.5 and Lemma 7.5, we have

Corollary 7.6. Let \(J = (x_1^{d_1}, \ldots, x_n^{d_{n-r}}) \subseteq S \) and \(b_0, \ldots, b_{n+1} \) the Macaulay constants of a \(D \)-exact cone decomposition \(P \) of \(N_{JF} \) where \(D \geq \max\{2, l\} \). Then if \(r \geq 1 \),

\[b_k \leq 2 \left[\frac{1}{2}(d_1 \cdots d_{n-r}m + D) \right]^{2^{r-k}} \text{ for } k = 1, \ldots, r. \]

Finally, we combine all the previous results to obtain a bound for the Gröbner basis degree of an arbitrary graded module. Recall that \(F = S e_1 \oplus \cdots \oplus S e_m \) with \(\deg(e_j) \geq 0 \) for all \(j \) and \(l = \max\{\deg(e_j) : j = 1, \ldots, m\} \). Without loss of generality we may assume the maximum degree \(D \) of a generating set of \(M \) is greater or equal to \(l \), since otherwise \(M \) and the first summand \(S e_1 \) are irrelevant so we may replace \(F \) by \(S e_2 \oplus \cdots \oplus S e_m \).

We first prove Theorem 7.7 which uses assumption on the generating degrees of the 0th Fitting ideal, and then prove Theorem 7.8 which uses only the generating degree of \(M \). Notice that if \(M = I \) is an ideal in \(S \), then as \(I = \operatorname{Fitt}_0(S/I) \), Theorem 7.7 gives the same bound as the bound of Mayr and Ritscher (see Theorem 1.2).

Theorem 7.7. Let \(M \subseteq F \) be a graded submodule generated by homogeneous elements of maximum degree \(D \) where \(D \geq l \) and \(\dim F/M = r \). Let \(\operatorname{Fitt}_0(F/M) \) be generated by homogeneous polynomials \(p_1, \ldots, p_k \) of degrees \(d_1 \geq \cdots \geq d_k \).

If \(r = 0 \), then the degree of the reduced Gröbner basis \(G \) of \(M \) for any monomial order on \(F \) is bounded by

\[\deg(G) \leq d_1 + \cdots + d_n + l - n + 1. \]
If $r \geq 1$, then the degree of the reduced Gröbner basis G of M for any monomial order on F is bounded by
\[
\deg(G) \leq 2 \left(\frac{1}{2}(d_1 \cdots d_{n-r}m + D) \right)^{2^{r-1}}.
\]

Proof. Without loss of generality we may assume \mathbb{K} is infinite. If $r = 0$, notice that $d_1 + \cdots + d_n + l - n + 1 \geq D \geq l$, so we are done by Theorem 4.7, Theorem 6.3, and Lemma 7.1.

Assume $r \geq 1$. Let f_1, \ldots, f_s be a generating set of M with $D = \max \{ \deg(f_i) : i = 1, \ldots, s \}$. We may assume $D \geq 2$, since otherwise it is easy to see that the Gröbner basis degree of M is bounded by 1. By Lemma 7.6, $\text{Fit}_0(F/M) \subseteq M : S F$ contains a regular sequence g_1, \ldots, g_{n-r} of degrees $d_1 \geq \cdots \geq d_{n-r}$. Then $g_ie_j \in M$ for $i = 1, \ldots, n-r$ and $j = 1, \ldots, m$, and so \(\{ g_ie_j : i = 1, \ldots, n-r, j = 1, \ldots, m \} \cup \{ f_1, \ldots, f_s \} \) is a generating set of M. Let $J = (x_1^{d_1}, \ldots, x_n^{d_{n-r}})$ and let P be a D-exact cone decomposition of N_JF with Macaulay constants b_0, \ldots, b_{n+1}. By Corollary 10.8, $\deg(P^+) = b_1$ is bounded by $2 \left(\frac{1}{2}(d_1 \cdots d_{n-r}m + D) \right)^{2^{r-1}}$, which is greater than $d_1 + \cdots + d_{n-r} + l - n + 1$ and l. Hence by Theorem 4.7 and Theorem 6.3, the reduced Gröbner basis degree is bounded by
\[
\deg(G) \leq \max \{ 1 + \deg(P^+), d_1 + \cdots + d_{n-r} + l - n + 1, l \}
\leq 2 \left(\frac{1}{2}(d_1 \cdots d_{n-r}m + D) \right)^{2^{r-1}}.
\]

□

Theorem 7.8. Let $M \subseteq F$ be a graded submodule generated by homogeneous elements f_1, \ldots, f_s with degrees $D_1 \geq \cdots \geq D_n$, $D = D_1 \geq l$, and $\dim F/M = r$.

If $r = 0$, then the degree of the reduced Gröbner basis G of M for any monomial order on F is bounded by
\[
\deg(G) \leq \left(D_1 + \cdots + D_m - \sum_{j=1}^{m} \deg(e_j) \right)n + l - n + 1 \leq Dmn - n + 1.
\]

If $r \geq 1$, then the degree of the reduced Gröbner basis G of M for any monomial order on F is bounded by
\[
\deg(G) \leq \left(\frac{1}{2}(D_1 + \cdots + D_m + \sum_{j=1}^{m} \deg(e_j))^n m + D \right)^{2^{r-1}}
\leq 2 \left(\frac{1}{2}(Dm)^n m + D \right)^{2^{r-1}}.
\]

Proof. Choose a minimal homogeneous generating set of $\text{Fit}_0(M)$ with degrees $d_1 \geq \cdots \geq d_k$ and use Lemma 2.7 to bound d_1, \ldots, d_{n-r}, then apply Theorem 7.7.

A bound only depending on n, m, and D can be easily deduced from Theorem 7.8. If $r = n$, then $\deg(G) \leq 2 \left(\frac{1}{2}(m + D) \right)^{2^{n-1}}$. If $r \leq n - 1$, the bound decreases when r decreases, so $\deg(G) \leq 2 \left(\frac{1}{2}(Dm^2 + D) \right)^{2^{n-2}}$. Picking a bound that is greater than both, we have:
Corollary 7.9. Let $M \subseteq F$ be a graded submodule generated by homogeneous elements with maximum degree $D \geq 1$. Then the degree of the reduced Gröbner basis G for any monomial order on F is bounded by

$$\deg(G) \leq 2(Dm)^{n-1}.$$

8. Non-graded case

To solve the non-graded case, it seems natural to homogenize M using an additional variable t and deduce the non-graded bound from the graded bound simply by replacing n with $n+1$. However this approach is false for a dimension-dependent bound since homogenizing an ideal may increase the dimension (see [10] Example 3.4). We fixed this problem by using generic initial ideal and Hashemi and Lazard’s Gröbner basis degree bound for zero-dimensional ideals w.r.t the degree revlex order. For reference we present Hashemi and Lazard’s bound in the lemma below.

Notice that our linear bound in Lemma 8.2 is a significant improvement of [1] Theorem 4.19 in which the regular sequence has degrees bounded by $d_1 \cdots d_{n-r}$.

Lemma 8.1 (Hashemi-Lazard [6]). Let I be a zero-dimensional ideal in $\mathbb{K}[x_1, \ldots, x_n]$ generated by polynomials of degrees $d_1 \geq \cdots \geq d_k$. Then the elements of the reduced Gröbner basis of I w.r.t the degree revlex order have a degree at most $d_1 + \cdots + d_{n-r} + 1$.

Lemma 8.2. Let \mathbb{K} be an infinite field and $I \subseteq S = \mathbb{K}[x_1, \ldots, x_n]$ be an ideal with $\dim S/I = r$ generated by polynomials p_1, \ldots, p_k of degrees $d_1 \geq \cdots \geq d_k$. Then there are polynomials $g_1, \ldots, g_n \in I$ such that $g_1^h, \ldots, g_n^h \in I^h$ form a regular sequence and $\deg(g_i) \leq d_1 + \cdots + d_{n-r} - n + 1$ for $i = 1, \ldots, n-r$.

Proof. Fix \prec to be the degree revlex order on S and \prec' the degree revlex order on $S[t]$. Let $J = (p_1^h, \ldots, p_k^h) \subseteq S[t]$. Let $\alpha \in GL_n(\mathbb{K})$ such that the generic initial ideal of J w.r.t x_1, \ldots, x_n is equal to $\text{in}_{\prec}(\alpha J)$ (see the definition given in Definition 2.11). Notice that α fixes t so it commutes with homogenization and dehogenization, therefore $\alpha J = (\alpha(p_1^h), \ldots, \alpha(p_k^h)) = ((\alpha p_1)^h, \ldots, (\alpha p_k)^h)$ and $\alpha(I^h) = (\alpha^h)$ which we may denote as α^h. Let $G = \{f_1, \ldots, f_s\}$ be a homogeneous Gröbner basis of αJ w.r.t. \prec', then by Lemma 2.11 $(f_1/t^{a_1}, \ldots, f_s/t^{a_s})$ is a homogeneous Gröbner basis of (αI^h) w.r.t. \prec'. Notice that $\text{in}_{\prec'}(f_i/t^{a_i}) = \text{in}_{\prec'}(f_i)/t^{a_i}$.

By Theorem 2.13 and Theorem 2.14, $\text{in}_{\prec'}(\alpha I) = (\text{in}_{\prec'}(f_1), \ldots, \text{in}_{\prec'}(f_s))$ is of Borel type w.r.t x_1, \ldots, x_n, therefore $\text{in}_{\prec'}(\alpha I^h) = (\text{in}_{\prec'}(f_1)/t^{a_1}, \ldots, \text{in}_{\prec'}(f_s)/t^{a_s})$ is also of Borel type w.r.t x_1, \ldots, x_n. Since $n-r = ht(I) = ht(\alpha I) = ht(\alpha^h)$, by Lemma 2.15 the set of generators $B = \{\text{in}_{\prec'}(f_1)/t^{a_1}, \ldots, \text{in}_{\prec'}(f_s)/t^{a_s}\}$ of $\text{in}_{\prec'}(\alpha I^h)$ contains pure powers $x_1^{c_1}, x_2^{c_2}, \ldots, x_n^{c_n}$ which are part of the minimal monomial generating set of $\text{in}_{\prec'}(\alpha I^h)$. After renumbering we may assume $x_1^{c_1} = \text{in}_{\prec'}(f_1)/t^{a_1}, \ldots, x_n^{c_n}$ is a regular sequence implies that g_1^h, \ldots, g_{n-r}^h form a regular sequence. Now we claim that $\deg(g_i^n) = c_i \leq d_1 + \cdots + d_{n-r} - n + 1 + 1$ for $i = 1, \ldots, n-r$. Notice that once we have shown this claim, we are done since we can pick $g_i := (\alpha^{-1}(g_i^n)) \in I$, then $g_i^h = \alpha^{-1}(g_i^n) \in I^h$ and g_1^h, \ldots, g_{n-r}^h form a regular sequence.

To prove the claim, let \overline{f} denote f modulo x_{n-r+1}, \ldots, x_n if $f \in S$, and by an abuse of notation let \overline{g} denote g modulo x_{n-r+1}, \ldots, x_n if $g \in S[t]$. Also
Let \prec denote the degree revlex order on $\mathbb{K}[x_1, \ldots, x_{n-r}]$. Notice that $\overline{\deg}(g) = \deg(g)$ for all homogeneous $g \in S[t]$, so as $\{g_1', \ldots, g_i'\}$ is a Gröbner basis of αI^h w.r.t \prec', we have that $\{g_1', \ldots, g_i'\}$ is a Gröbner basis of αI^h w.r.t \prec. Then because $\deg(f) = \deg(g') \in \deg(\alpha I')$ for all $f \in \alpha I$, it follows that $\deg(g') = (\deg(g_1'), \ldots, \deg(g_i'))$. For $i = 1, \ldots, n-r$, $\deg(g_i') = x_i^n$, so in particular this tells us that $\deg(g')$ is zero-dimensional. Notice that $\{\deg(g_1'), \ldots, \deg(g_i')\}$ must be part of the minimal monomial generating set of $\deg(\alpha I)$ by minimality of the c_i’s. Finally by Lemma 8.1 we have $\deg(g_i') = c_i \leq d_1 + \cdots + d_{n-r} - n + r + 1$ for $i = 1, \ldots, n-r$. \hfill \Box

We will apply Lemma 8.2 to the ideal $\text{Fitt}_0(F/M)$ to get a regular sequence $g^h_1, \ldots, g^h_{n-r} \in \text{Fitt}_0(F/M)^h$. If M is generated by elements f_1, \ldots, f_s, we consider the graded module $\tilde{M} \subseteq M^h$ generated by $\{g^h_1e_j : i = 1, \ldots, n-r, j = 1, \ldots, m\} \cup \{f^h_1, \ldots, f^h_s\}$. Then since the dehomogenization of a Gröbner basis of \tilde{M} is a Gröbner basis of M, it suffices to bound the Gröbner basis degree of \tilde{M}. Now all of our previous tools can be applied as M is graded.

Notice that if $M = I$ is an ideal in S, then as $I = \text{Fitt}_0(S/I)$. Theorem 8.4 gives a bound that is sharper than Mayr and Ritscher’s bound (see Theorem 1.2).

Recall that F is a free module over $\mathbb{K}[x_1, \ldots, x_n]$ with basis elements e_1, \ldots, e_m with $\deg(e_j) \geq 0$ for all j and $l = \max(\deg(e_j) : j = 1, \ldots, m)$.

Theorem 8.3. Let $M \subseteq F$ be a submodule generated by elements of maximum degree D with $D \geq 1$ and $\dim F/M = r$. Let $\text{Fitt}_0(F/M)$ be generated by polynomials p_1, \ldots, p_k of degrees $d_1 \geq \cdots \geq d_k$. Then the degree of the reduced Gröbner basis G for any monomial order on F is bounded by

$$\deg(G) \leq 2 \left[\frac{1}{2} \left((d_1 + \cdots + d_{n-r} - n + r + 1)^{n-r}m + D \right) \right]^{2^r}.$$

Proof. Without loss of generality we may assume \mathbb{K} is infinite. Fix a monomial order \prec on F and let \prec' be its extension on F^h defined in Section 2.5. Let M be generated by $f_1, \ldots, f_s \in F$ with $D = \max(\deg(f_i) : i = 1, \ldots, s)$, and let $\text{Fitt}_0(F/M)$ be generated by p_1, \ldots, p_k of degrees $d_1 \geq \cdots \geq d_k$. By Lemma 8.2 there exists polynomials $g_1, \ldots, g_{n-r} \in \text{Fitt}_0(F/M)$ with $\deg(g_i) := d_i \leq d_1 + \cdots + d_{n-r} - n + r + 1$ for $i = 1, \ldots, n-r$, and g^h_1, \ldots, g^h_{n-r} form a regular sequence. Consider the graded module $\tilde{M} \subseteq F^h$ generated by $\{g^h_1e_j : i = 1, \ldots, n-r, j = 1, \ldots, m\} \cup \{f^h_1, \ldots, f^h_s\}$, and let \tilde{G} be a reduced Gröbner basis of \tilde{M} w.r.t \prec'. Notice that we have the inclusions $\oplus_{j=1}^m \oplus_{i=1}^{n-r} S[t](g^h_i e_j)^h \subseteq \tilde{M} \subseteq M^h$. By Lemma 2.9 \tilde{G}^{deg} is a Gröbner basis of M whose degree is clearly bounded by the degree of \tilde{G}, so it suffices to bound $\deg(\tilde{G})$.

By Theorem 4.4 there exists a l-standard cone decomposition Q of $N_{\tilde{G}}$ with $\deg(\tilde{G}) \leq \max(1 + \deg(Q), l)$. Let $J = (x_1^{d_1}, \ldots, x_{n-l+1}^{d_{(n+1)-(r+1)}})$, then by Theorem 6.4 $1 + \deg(Q) \leq \max(b_1, d_1 + \cdots + d_{n-r} + l - (n+1) + 1)$ where b_1 is the Macaulay constant of a D-exact cone decomposition P of $N_{J F}$. Notice that $r+1 \geq 1$, so by Corollary 7.6 b_1 is bounded by $2 \left[\frac{1}{2}(d_1 + \cdots + d_{n-r} + D) \right]^{2^r}$, which is greater than $d_1 + \cdots + d_{n-r} + l - (n+1) + 1$ and l.

Finally we combine the above inequalities to get
\[
\deg(G) \leq \deg(\tilde{G}) \leq \max\{b_1, d_1 + \cdots + d_{n-r} + l - (n+1) + 1, l\}
\leq 2 \left[\frac{1}{2} \left(\tilde{d}_1 \cdots \tilde{d}_{n-r} m + D \right) \right]^{2^n}.
\]

Theorem 8.4. Let \(M \subseteq F \) be a submodule generated by elements of maximum degree \(D \) with \(D \geq l \) and \(\dim F/M = r \). Then the degree of the reduced Gröbner basis \(G \) for any monomial order on \(F \) is bounded by
\[
\deg(G) \leq 2 \left[\frac{1}{2} \left(((Dm - 1)(n - r) + 1)^{n-r} m + D \right) \right]^{2^n}.
\]

Proof. Choose a minimal generating set of \(\operatorname{Fit}_{0}(M) \) with degrees \(d_1 \geq \cdots \geq d_k \) and use Lemma 2.7 to bound \(d_1, \ldots, d_{n-r} \), then apply Theorem 8.3. \(\square \)

To get a bound that does not depend on the dimension, we replace \(n \) by \(n + 1 \) in the bound given by Corollary 7.9.

Corollary 8.5. Let \(M \subseteq F \) be a submodule generated by elements of maximum degree \(D \) with \(D \geq l \). Then the degree of the reduced Gröbner basis \(G \) of \(M \) for any monomial order on \(F \) is bounded by
\[
\deg(G) \leq 2(Dm)^{2^n}.
\]

Acknowledgement

The author would like to thank her advisor Giulio Caviglia for proposing this problem and providing suggestions on how to improve the non-graded bound.

References

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, 150 N. UNIVERSITY STREET, WEST LAFAYETTE, IN47907, USA

E-mail address: liang226@purdue.edu