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Abstract.

1. Introduction

Let K be a field, R = K[x1, . . . , xN ] be a polynomial ring over K, and I be an ideal of R
generated by n forms of degrees d1, . . . , dn. We will denote the projective dimension of a module
over R by pdR(M). Stillman (see [21]) conjectured that the projective dimension of I can be
bounded in terms of n and d1, . . . , dn but independent of N . We will refer to such bounds
as Stillman bounds. Ananyan and Hochster were the first to give an affirmative answer to
Stillman’s conjecture in [1], where they showed the existence of Stillman bounds by proving the
existence of small subalgebras and small subalgebra bounds ηB (defined in [1, Theorem B] or
Theorem 2.2). Stillman’s conjecture was later reproved in [12] and [17], both using topological
Noetherianity results from [11].

With the existence proven, the next question is to find explicit Stillman bounds. While many
early and recent works [2] [3] [4] [5] [8] [16] [15] [18] [19] [20] have established Stillman bounds
for degree 4 or less, the question for degree 5 and higher remains untouched. We attempt to
give explicit Stillman bounds for all degrees. We notice that if we proves a bound called D(k, d),
which controls the number of generators of a minimal prime over an ideal of a regular sequence
of k or fewer polynomials with degree d, and supplements D(k, d) into Ananyan and Hochster’s
proof in [1], then theoretically we can make their proof into a recursive algorithm to obtain
explicit Stillman bounds for all degrees.

We prove the following lemma which establish an effective value for D(k, d). In [1], Ananyan
and Hochster only showed the existence of D(k, d). Notice that the function ηB(k, d) is defined
in Corollary 2.3 of Section 2.

Lemma 3. Let K be an algebraically closed field, P ⊂ K[x1, . . . , xN ] be a minimal prime of an
ideal generated by a regular sequence of k or fewer forms of degree at most d. Then the minimal
number of generators of P is bounded by

D(k, d) = (2d)2
1B(k,d)−1

.

Notice that in the above lemma, the assumption of the field being algebraically closed is
needed only for existence of 1B(k, d) as in [1, Theorem B], and the proof still works if we drop

this assumption and replace 1B(k, d) by pdR(R/P ) or N (see Theorem 3.5).
However, after a closer examination of [2], we realize that the computational complexity of

Ananyan and Hochster’s inductive proof would make the bound too large to be meaningful as d
gets larger. We explain the reason in Subsection 3. Moreover we give an estimate of the bound

Date: December 4, 2021.
2010 Mathematics Subject Classification. Primary 13D02, 13F20, 13P20.
Key words and phrases. Stillman bound, projective dimension, regular sequence, Rη .

1



EXPLICIT STILLMAN BOUNDS FOR ALL DEGREES 2

1B(n, d) for degree 2, 3 and a general description for degree 4, to give the reader a feeling about
its bad behavior.

This section is organized as follows. In Section 2, we first state the small subalgebra theorems
of [1] after giving their necessary definitions, then set up notations needed for the next section.
In Section 3, we construct the bound D(k, d), discuss how we insert the bound D(k, d) into
Ananyan and Hochster’s proof, and conclude the section with a theorem establishing our bounds
for ηB with a recurrence relation.

2. Notation

We first recall some definitions in [1, §1] which are needed for stating the theorems in [1]. Let
R = K[x1, . . . , xN ] be a polynomial ring over a field K. Let V be a finite dimensional graded
vector space of R, then we say V has dimension sequence δ = (δ1, . . . , δd) if V = V1 ⊕ · · · ⊕ Vd
as a direct sum of its graded components with dimK Vi = δi.

A function of several variables is called ascending if it is increasing in any one variable while
the other variables are fixed.

A form F ∈ R has a k-collapse if it can be written as a graded combination of k or fewer
forms of strictly smaller positive degree. We say F has strength k if it has a k + 1-collapse but
no k-collapse. By convention we set the strength of a linear form to be +∞.

A sequence of elements G1, . . . , Gs in a Noetherian ring R is a prime sequence (respectively,
an Rη-sequence) if for 0 ≤ i ≤ s, R/(G1, . . . , Gi) is a domain (respectively, satisfies the Serre
condition Rη). When R is a polynomial ring, for any η ≥ 1 an Rη-sequence is a prime sequence
and hence a regular sequence.

Our goal is to give explicit bounds to the functions ηA and ηB for any degree, which are
defined in Theorem A, Theorem B, and Corollary B of [1].

Theorem 2.1 (Ananyan-Hochster [1]). There are ascending functions A = (A1, . . . , Ad) and,
for every integer η ≥ 1, ηA = (ηA1, . . . ,

ηAd) from dimension sequences δ = (δ1, . . . , δd) ∈ Nd to
Nd with the following property: For every algebraically closed field K and every positive integer
N , if R = K[x1, . . . , xN ] is a polynomial ring, and V denotes a graded K-vector subspace of
R of vector space dimension n with dimension sequence (δ1, . . . , δd), such that for 1 ≤ i ≤ d,
the strength of every nonzero element of Vi is at least Ai(δ) (respectively, ηAi(δ)), then every
sequence of K-linearly independent forms in V is a regular sequence (respectively, is an Rη-
sequence).

Theorem 2.2 (Ananyan-Hochster [1]). There is an ascending function B from dimension
sequences δ = (δ1, . . . , δd) to Z+ with the following property. If K is an algebraically closed
field and V is a finite-dimensional Z+-graded K-vector subspace of a polynomial ring R over
K with dimension sequence δ, then V (and, hence, the K-subalgebra of R generated by V ) is
contained in a K-subalgebra of R generated by a regular sequence G1, . . . , Gs of forms of degree
at most d, where s ≤ B(δ). Moreover, for every η ≥ 1 there is such a function ηB with the
additional property that every sequence consisting of linearly independent homogeneous linear
combinations of the elements in G1, . . . , Gs is an Rη-sequence.

The next corollary, as remarked in [1], follows immediately by taking ηB(n, d) to be the
maximum of ηB(δ) over all dimension sequences with at most d entries and sum of entries at
most n.

Corollary 2.3 (Ananyan-Hochster [1]). There is an ascending function ηB(n, d), independent of
K and N , such that for all polynomial rings R = K[x1, . . . , xN ] over an algebraically closed field
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K and all graded vector subspaces V of R of dimension at most n whose homogeneous elements
have positive degree at most d, the elements of V are contained in a subring K[G1, . . . , GB],
where B ≤ ηB(n, d) and G1, . . . , GB is an Rη-sequence of forms of degree at most d.

We next introduce notations that are needed for the proof of Lemma 3.2 and Lemma 3.3.
For a finitely generated graded R-module M , let βij(M) be the graded Betti numbers of M
and βi(M) =

∑
j βij(M) be the i-th Betti number of M . The Castelnuovo-Mumford regularity

of M is defined as reg(M) =maxi,j{j − i : βij(M) 6= 0}.
Let J be a monomial ideal. We say J is strongly stable if for each monomial u of J , xi|u

implies xju/xi ∈ I for each j < i. Let G(J) be the set of minimal monomial generators of J and
D(J) be the largest degree of monomials in G(J). If u is a monomial, let m(u) := max{i : xi|u}.
By the Eliahou-Kervaire resolution in [14], if J is strongly stable then βi(J) =

∑
u∈G(J)

(
m(u)−1

i

)
.

Let I be a monomial ideal in K[x1, . . . , xN ] where K is an infinite field, we may assume I
is generated by monic monomials, if K ′ is any other field then let IK′ be the ideal generated
by the image of these monomials in K ′[x1, . . . , xN ]. Let ginrlex(I) be the generic initial ideal of
I with respect to the degree reverse lexicographical order. The zero-generic initial ideal of I
with respect to the degree reverse lexicographical order is defined to be

Gin0(I) := (ginrlex((ginrlex(I))Q))K .

The zero-generic initial ideal is explored in more details in [7]. We need this notion in §3 to
treat the positive characteristic cases. Notice that in characteristic 0, the zero-generic initial
ideal is equal to the usual generic initial ideal.

3. Procedures to realize the bound via a recursive algorithm

We start this section by constructing a bound, denoted D(k, d) in [1], for the number of
generators of a minimal prime of an ideal generated by a regular sequence of k or fewer forms of
degree d. We note that this bound is independent of the number of variables in the polynomial
ring, which is necessary for our purpose. The following lemma, see [9, Theorem 27], tells us
that the above minimal prime can be written as the ideal of the regular sequence colon by a
form with bounded degree, which is key to the proof of Lemma 3.2.

Lemma 3.1 (Chardin [9]). Let P ⊂ K[x1, . . . , xN ] be a minimal prime of an ideal generated by
a homogeneous regular sequence f1, . . . , fk of degrees d1, . . . , dk. There exists a form f of degree
at most d1 + · · ·+ dk − k such that

P = (f1, . . . , fk) : (f).

The next two lemmas justify the fact that we can choose D(k, d) to be (2d)2
1B(k,d)−1

. Assuming
the number of variables is known, we show in Lemma 3.2 how to bound the minimal number
of generators of a particular kind of colon ideals as in Lemma 3.1. In pursuance of an optimal
bound, we extensively apply results and proofs of [6] and [7]. For an alternate way to obtain
a value for D(k, d), we refer the reader to Remark 3.4, which could still be used to construct
explicit but larger bounds for ηB(δ).

Lemma 3.2. Let I ⊂ K[x1, . . . , xB+1] be an ideal generated by a regular sequence of c forms
of degree at most d, and f be a form of degree at most cd − c. Then the minimal number of
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generators of I : (f) is bounded by

β0(I : (f)) ≤ B(d+ 1)(2d)
B∏
i=3

((d2 + 2d− 1)2
i−3

+ 1) + 1.

If we further assume B, d ≥ 3 or B ≥ 4, then we have the additional inequality

β0(I : (f)) ≤ (2d)2
B−1

.

Proof. If c = 1 then β0(I : (f)) = 1, so assume c ≥ 2. After a faithfully flat base change,
we may assume K is infinite. Denote R := K[x1, . . . , xB+1] and let f1, . . . , fc be the regular
sequence with deg(fi) ≤ d. Consider the exact sequence

0→ R/(I : (f))
f−−→ R/I −→ R/(I + (f))→ 0.

Since c ≤ β0(I + (f)) ≤ c + 1, using the long exact sequence of TorRi (−, K) induced from the
above short exact sequence, we get β0(I : (f)) ≤ β1(I + (f)) + 1.

With the notations of Section 2, let J := Gin0(I + (f)). Denote R[i] := K[x1, . . . , xi].
Let (I + (f))〈i〉 denote the image of I + (f) in R/(lB+1, . . . , li+1) ∼= R[i] where lB+1, . . . , li+1 are
general linear forms, and let m[i] denotes the homogeneous maximal ideal of R[i]. Let J[i] denote
J ∩ R[i]. By [2, Proposition 2.2], J is strongly stable with β1(I + (f)) ≤ β1(J). So by [14] and

[6, Proposition 1.6], β1(J) =
∑

u∈G(J)(m(u)− 1) ≤ B · |G(J)| ≤ B
∏B

i=1(D(J[i]) + 1). Using [7,

Theorem 2.20], we can get D(J[i]) ≤ reg((I + (f))〈i〉) for all i. Notice that reg((I + (f))〈i〉) ≤
id− i+ 1 for all i ≤ c, because mid−i+1

[i] ⊆ (I + (f))〈i〉.

To bound reg((I + (f))〈i〉) for i ≥ c+ 1, we follow the proof of [6, Theorem 2.4 and Corollary
2.6]. Let λ(M) denote the length of an Artinian module M . Using the same proof of [6,
Theorem 2.4], we can get

reg((I + (f))〈i〉) ≤ max{d, cd− c, reg((I + (f))〈i−1〉)}

+ λ

(
R[c]

(I + (f))〈c〉

) i∏
j=c+2

reg((I + (f))〈j−1〉)

≤ max{d, cd− c, reg((I + (f))〈i−1〉)}+ dc
i−1∏

j=c+1

reg((I + (f))〈j〉).

(3.1)

The last inequality holds since R[c]/(I + (f))〈c〉 is a quotient ring of R[c]/(g1, . . . , gc), where
g1, . . . , gc is the image of f1, . . . , fc in R[c] and is a regular sequence with deg(gi) ≤ d.

Now we use (3.1) recursively to bound reg((I + (f))〈i〉) for i ≥ c + 1. Set B0 := cd − c + 1,
recall that B0 bounds reg((I + (f))〈c〉). Apply 3.1 to (I + (f))〈c+1〉 to get reg((I + (f))〈c+1〉) ≤
cd− c+ 1 + dc =: B1. For j ≥ 2, we set Bj := Bj−1 + dc

∏j−1
k=1Bk ≤ (Bj−1)

2 ≤ (B1)
2j−1

. Hence

for all i ≥ c+ 1, reg((I + (f))〈i〉) ≤ Bi−c ≤ (cd− c+ 1 + dc)2
i−c−1 ≤ (d2 + 2d− 1)2

i−3
, where the

last inequality holds since the second last bound is decreasing as a function of c and c ≥ 2.
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If B ≥ 4, then B ≤ 2B−2. Combining all the previous inequalities, we get

β0(I : (f)) ≤ B(d+ 1)(2d)
B∏
i=3

((d2 + 2d− 1)2
i−3

+ 1) + 1

≤ 2B−2(d+ 1)(2d)
B∏
i=3

(d2 + 2d)2
i−3 ≤ (2d)(2d)

B∏
i=3

(2d2 + 4d)2
i−3

≤ (2d)2
B∏
i=3

(2d)2
i−2

= (2d)2
B−1

.

If B = 3 and d ≥ 3, one easily checks that β0(I : (f)) ≤ 3(d+ 1)(2d)(d2 + 2d) + 1 ≤ (2d)4. �

Lemma 3.3 constructs our value (2d)2
1B(k,d)−1

for the bound D(k, d) by passing to a polynomial
subring with at most 1B(k, d) + 1 many variables first, using Corollary 2.3, then combining the
result of Lemma 3.1 and Lemma 3.2.

Lemma 3.3. Let K be an algebraically closed field, P ⊂ K[x1, . . . , xN ] be a minimal prime
of an ideal generated by a regular sequence of k or fewer forms of degree at most d. Then the
minimal number of generators of P is bounded by

β0(P ) ≤ (2d)2
1B(k,d)−1

.

Proof. Let f1, . . . , fc be the regular sequence with c ≤ k and deg(fi) ≤ d, let I be the ideal it
generates. By Corollary 2.3, there exists a prime sequence G1, . . . , Gs with s ≤ 1B(k, d) such
that f1, . . . , fc ∈ K[G1, . . . , Gs]. Denote R = K[x1, . . . , xN ] and S = K[G1, . . . , Gs]. Then
pdR(R/I) = c ≤ s and pdS(S/P ∩ S) ≤ s. Notice that R is a free and thus faithfully flat
module over S since we can extend G1, . . . , Gs to a maximal regular sequence G1, . . . , GN in R
to get free extensions K[G1, . . . , Gs] ↪−→ K[G1, . . . , GN ] and K[G1, . . . , GN ] ↪−→ K[x1, . . . , xN ].
Consequently we get pdR(R/P ) ≤ s once we have shown P = (P ∩ S)R. By faithfully flatness
f1, . . . , fc ∈ P ∩S remains a regular sequence in S and so c = htP ≥ ht (P ∩S)R = htP ∩S ≥ c.
Now by [1, Corollary 2.9], (P ∩ S)R is a prime ideal, therefore P = (P ∩ S)R.

By Lemma 3.1, there exists a form f ∈ R of degree at most cd − c such that P = I : (f).
Consider the exact sequence

0→ R/P
f−−→ R/I −→ R/(I + (f))→ 0. (3.2)

It follows that pdR(R/(I + (f))) ≤ s + 1. Then depthR/(I + (f)) ≥ N − (s + 1) by the
Auslander-Buchsbaum formula. Let ls+2, . . . , lN ∈ R be a sequence of linear forms regular
on R/P , R/(I + (f)), and R/(f1, . . . , fc). Fix a graded isomorphism from R/(ls+2, . . . , lN)
to K[x1, . . . , xs+1], let R denote K[x1, . . . , xs+1] and “ ” denote the image of polynomials or
ideals of R in R. Notice that β0(P ) = β0(P ). Since ls+2, . . . , lN is a regular sequence on
R/(I + (f)), the short exact sequence in (3.2) remains exact after tensoring with R. It follows
that P = I : (f). Notice that f1, . . . , fc is a regular sequence in R, so we can apply Lemma 3.2

to get β0(P ) ≤ (2d)2
1B(k,d)−1

for 1B(k, d) ≥ 4, or 1B(k, d) = 3 and d ≥ 3.

If 1B(k, d) = 2, it is clear that β0(P ) = β0(P ∩S) ≤ 2. If 1B(k, d) = 3 and d = 2, then P is a
minimal prime of an ideal generated by two quadrics. Let e(R/P ) denote the Hilbert-Samuel
multiplicity of R/P with respect to the maximal ideal (x1, . . . , xN), we have e(R/P ) ≤ 4.
If either P contains a linear form or e(R/P ) = 4, then P is a complete intersection and so
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β0(P ) = 2. Otherwise P contains no linear forms and e(R/P ) = 3 = 1+ht(P ), so we can apply
[13, Theorem 4.2] to see that R/P is Cohen-Macaulay and hence β0(P ) ≤ e(R/P ) = 3. �

Remark 3.4. By using known results, there is a quick and simple way to obtain a worse upper
bound than the one derived from Lemma 3.3. The outline is the following. First one uses the
bound on the degrees of the generators of initial ideals given in [10, Corollary 3.6] and the proof
of [10, Corollary 3.7] to bound the degrees of the generators of P = I : (f). When d ≥ 2, the

bound one gets is (dc(cd−c))2s+1−c ≤ (d2(2d−2))2
1B(k,d)−1

=: D. Hence, by linear independency,

the number of minimal homogeneous generators of P is at most
(1B(k,d)+D

D

)
.

In the proof of Lemma 3.3, notice that we could replace 1B(k, d) by the projective dimension
of R modulo the minimal prime P . The same proof will give us the bound:

Theorem 3.5. Let K be an algebraically closed field, P ⊂ K[x1, . . . , xN ] be a minimal prime
of an ideal generated by a regular sequence of k or fewer forms of degree at most d. Then the
minimal number of generators of P is bounded by

β0(P ) ≤ (2d)2
pd(R/P )−1 ≤ (2d)2

N−1

.

Theorem 3.6. Let S be a standarad graded polynomial ring over a field K, and P ⊆ S a
homogeneous prime ideal of height h. For every j ≥ 0 we have that

β0,j(P ) ≤ h2
j+1−3.

n∑
j=1

h2
j+1−3 =

n−1∑
j=1

h2
j+1−3 + h2

n+1−3

≤ (n− 1)h2
n−3 + h2

n+1−3

≤ h2
n

h2
n−3 + h2

n+1−3

= 2(h2
n+1−3).

(3.3)

D(k, d) = 2(k2
d+1−3).

Let P be a minimal prime of an ideal generated by a regular sequence of k or fewer forms of
degree at most d. For the purpose of bounding the projective dimension via AH’s proof, notice
that we may take D(k, d) to be an upper bound of

∑d
j=1 β0,j(P ). To see why this is true, we

shall briefly explain the proof in the second paragraph of section 4 AH. The goal is to show that
ht(DF )R ≥ η+2 provided that the strength of a d-form F is at least 3B(D(η + 1, d− 1), d− 1)+
1. Assume for contradiction that ht(DF )R < η+ 1, then DF can be contained in a prime ideal
P where P is a minimal prime of an ideal generated by a regular sequence of η + 1 or fewer
forms of degree d. Then let J ⊂ P be the ideal generated by generators of P with degree at
most d − 1. Since DF is generated by polynomials of degree d − 1, we get that DF ⊂ J .
This is a contradiction to theorem F in AH since the number of generators of J is bounded by
D(η + 1, d − 1). Also if characteristic of the field is 0 or p > d, we can assume strength of a
d-form F is at least D(η + 1, d− 1) for the proof.

We conclude this section by explaining how to compute ηB(δ) algorithmically, where δ =
(δ1, . . . , δd) is a dimension sequence (see Theorem ??). The theoretical proof of [1, §4], which
contains an inductive argument on the degree d, can be made into a recursive algorithm with
the bound obtained in Lemma 3.3. However due to the computational complexity of AH proof,
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the bound for large degree (4 or greater) turns out to be too large to be expressed in any
meaningful function, as we will estimate the bound for d = 2, 3 at the end of this section to
give the reader a feeling about its bad behavior.

Denote ηA(i) = 3B(D(η + 1, i− 1), i− 1) + 1. Then by [1, Proposition 2.6 and Theorem A],

we have ηAi(δ) = ηA(i) + 3(
∑d

j=1 δj − 1).

Section 4 of [1] explains how to obtain ηB from ηA, which we will describe briefly as follows.
Let V be any vector space with dimension sequence δ, if for all such V , the strength of every
nonzero element of Vi is at least ηA(δ), then let ηB(δ) =

∑d
i=1 δi. Otherwise there exists a

V and a degree i for which an element of Vi has an ηAi(δ)-collapse. In this case set ηB(δ) =
maxδ′{ηB(δ′)}, where δ′ run through all dimension sequences derived from δ by keeping δj
unchanged for j > i, decreasing δi by 1, and increasing the δj’s for j < i by a total of 2 · ηAd(δ).
Notice that if d = 1, ηB((δ1)) = δ1 trivially satisfies Theorem 2.2.

Originally when we try to comprehend the above process algorithmically, we made a mistake
thinking that the worst case scenario would be δd decrease by 1 and δd−1 increase by 2 · ηAd(δ).
However after a closer examination, we figured that the worse case scenario turns out to be
much worse. In fact we need to decrease δi by 1 for the smallest 2 ≤ i ≤ d such that δi 6= 0,
and increase δi−1 by 2 · ηAd(δ).

One shall see that this recursive formula does not generate a meaningful bound as d gets
larger. The bound for degree 4 is already an incomputable bound which looks like a nested
power tower. Roughly speaking ηB(0, 0, 0, n) behaves like a recursive formula cn where c0 = 0
and ci is a power tower of base 7 and height ci−1.

Let us estimate the bound for d = 2, 3 to get a closer look at the recursive formula. With
this recursive formula we have ηB(n, d) = ηB(δ) where δ = (0, · · · , 0, n) has d entries. For

simplicity we will estimate 1B(n, d) for d = 2, 3. Notice that this also estimates the bound
1B(δ) in Theorem 2.2 since if δ is a dimension sequence with d entries whose sum equals to n,

then 1B(δ) ≤ 1B(n, d).
Assume d = 2, then

ηB(n, 2) = ηB(0, n) =
η
B(2 · ηA2(δ), n− 1) = ηB(ai, n− i) = ηB(an, 0) = an.

where ai satisfies the recurrence relation a0 = 0 and

ai = ai−1 + 2(ηA(2) + 3(ai−1 + n− (i− 1)− 1))

= 7ai−1 + 2 ηA(2) + 6n− 6i.

Notice that ai = 7i(n + 1
3
ηA(2) − 7

6
) + i − n − 1

3
ηA(2) + 7

6
is a solution of the recurrence

relation. Therefore setting i = n and using the value ηA(2) = 3B(D(η + 1, 1), 1) + 1 = η+ 2 we
get

ηB(n, 2) = an = 7n(n+
1

3
ηA(2)− 7

6
)− 1

3
ηA(2) +

7

6
≤ 7n(n+ η).

In particular

1B(n, 2) ≤ 72n.
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Now assume d = 3, then

1B(n, 3) = 1B(0, 0, n) ≤ 1
B(0, 2 · 1A(3) + 3n, n− 1)

≤
1
B(

1B(2 · 1A(3) + 4n, 2), 0, n− 1)

= 1B(b1, 0, n− 1)

≤ 1
B(b1, 2 · 1A(3) + 3b1 + 4n, n− 2)

≤ 1B(b2, 0, n− 2)

≤ 1B(bn, 0, 0),

= bn,

where bn satisfies the recurrence relation b0 = 0 and

bi =
1B(2 · 1A(3) + 4(bi−1 + n), 2)

≤ 74 1A(3)+8(bi−1+n).

By pushing up all the exponents to the very top, we get a rough estimate as follows:

bn ≤ 74 1A(3)+8(bn−1+n)

≤ expn7 (5 · 1A(3) + 9n),

where expn7 (x) = 77·
·7
x

with n 7’s.

Now we insert the bound D(2, 2) = 2(223−3) into 1A(3) = 3B(D(2, 2), 2) + 1 to see that

1B(n, 3) ≤ expn7 (5 · 1A(3) + 9n)

≤ expn7 (722
3

+ 9n)

≤ expn+3
7 (n+ 3).
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