MA 266 Lecture 1

Section 1.1 Mathematical Models; Direction Fields

Question: What is a differential equation?

A differential equation is

- •
- •

Example 1. (Types of equations)

- 1. Find x in $x^2 + 2x + 1 = 0$.
- 2. Find f(t) in $f(t)\cos(t) = e^t \sin(t)$.
- 3. Find y(t) in $y'' + 3y' = e^t$.

Question: Why do we study differential equations?

- Many principles or laws in physics are relations involving ______.
- In mathematical terms, relations are _____, and rates are _____. Equations containing derivatives are _____.
- A differential equation that describes certain physical process is often called a

Example 2. (An example of mathematical model — A falling object)

Consider an object with a mass m falling near the sea level. Formulate a differential equation to model its motion.

• Notations

• Physical Law: Newton's second law

• Forces that acted on the object

Remark The falling object model contains three constants: $m,\,g,$ and γ

- - •

Direction Fields

We let m = 10kg and $\gamma = 2kg/s$ in the falling object model, so it becomes

$$\frac{dv}{dt} = 9.8 - \frac{v}{5}.$$

Basic idea of direction fields:

How to construct Direction Fields?

If we let v = 40, then

If we let v = 50, then

Note that if $9.8 - \frac{v}{5} = 0$, then

Remarks on Direction Fields

Direction fields are valuable tools in studying differential equations of the form

Two things about direction fields

- •
- •

A MATLAB Implementation on Direction Fields

1. Download the MATLAB file ${\bf dfield8.m}$ from

http://math.rice.edu/~dfield

- 2. Type **dfield8**, at MATLAB command window.
- 3. In the popup window, enter your differential equations, and the range of independent and dependent variables.
- 4. Hit **Proceed** to see the direction field of your differential equation.

Example 3. Draw a direction field of the each of the following differential equations, then determine the behavior of the solution as $t \to \infty$.

(1)
$$y' = 3 - 2y$$
, (2) $y' = 3 + 2y$, (3) $y' = -y(5 - y)$.