MA 266 Lecture 20

Section 3.7 Mechanic and Electrical Vibrations (contd)

Review For undamped free vibrations, the governing equation is

Example 1. (Problem 6) A mass of 100 g stretches a spring 5cm. If the mass is set in motion from its equilibrium position with a downward velocity of 10 cm/s, and if there is no damping, determine the position u of the mass at any time t. When does the mass first return to its equilibrium position?

Damped Free Vibrations

If we include the effect of damping, the differential equation the motion becomes

Depending the sign of $\gamma^2 - 4km$ the solution u has one of the following forms

- if $\gamma^2 4km > 0$
- if $\gamma^2 4km = 0$
- if $\gamma^2 4km < 0$

Remark

The case where $\gamma^2 - 4km < 0$ is of most interest. The solution can be written as

Example 2. (Problem 10) A mass weighing 16lb stretches a spring 3in. The mass is attached to a viscous damper with a damping constant of 2 $lb \cdot s/ft$. If the mass is set in motion from its equilibrium position with a downward velocity of 3 in/s, find its position u at any time t. Determine when the mass first returns to its equilibrium position.