Section 1.1 Systems of Linear Equations

Definitions

• The equation
 \[a_1x_1 + a_2x_2 + \cdots + a_nx_n = b \]
 is called a ________________.

 A sequence of numbers \(s_1, s_2, \cdots, s_n\) such that (1) is satisfied when \(x_1 = s_1, x_2 = s_2,\)
 \(\cdots, x_n = s_n\) is called ________________.

• More generally, the following system of equations
 \[
 \begin{array}{rcl}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &=& b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &=& b_2 \\
 \vdots & & \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &=& b_m
 \end{array}
 \]
 is called a ________________.

 A ________________ to the linear system (2) is a sequence of \(n\) numbers \(s_1, s_2, \cdots, s_n\)
 which satisfies each equation in (2) when \(x_1 = s_1, x_2 = s_2, \cdots, x_n = s_n\).

• If the linear system (2) has no solution, it is said to be ________________.

 If the linear system (2) has a solution, it is called ________________.

• If \(b_1 = b_2 = \cdots = b_m = 0\), then (2) is called a ________________; otherwise
 it is called a ________________.

• Note that \(x_1 = x_2 = \cdots = x_n = 0\) is always a solution to a homogeneous system, and
 it is called the ________________.

 A nonzero solution to a homogeneous system is called a ________________.

1
• If there is another system of r linear equations in n unknowns:

\[
\begin{align*}
 c_{11}x_1 + c_{12}x_2 + \cdots + c_{1n}x_n &= d_1 \\
 c_{21}x_1 + c_{22}x_2 + \cdots + c_{2n}x_n &= d_2 \\
 \vdots & \quad \vdots \\
 c_{r1}x_1 + c_{r2}x_2 + \cdots + c_{rn}x_n &= d_r
\end{align*}
\]

has exactly the same solution to (2), then we say they are ____________________.

Method of Elimination

idea: eliminating some variables by adding a multiple of one equation to another to make an equivalent system which is simpler to solve.

Example 1. Solve the linear system

\[
\begin{align*}
 x - 3y &= -7 \\
 2x - 6y &= 7
\end{align*}
\]

Example 2. Solve the linear system

\[
\begin{align*}
 x + 2y + 3z &= 6 \\
 2x - 3y + 2z &= 14 \\
 3x + y - z &= -2
\end{align*}
\]
Example 3. Solve the linear system

\[\begin{align*}
x + 2y - 3z &= -4 \\
2x + y - 3z &= 4
\end{align*}\]

Remark: a linear system may have

A geometrical explanation

Consider a linear system of two equations in two unknowns \(x\) and \(y\):

\[\begin{align*}
a_1x + b_1y &= c_1 \\
a_2x + b_2y &= c_2
\end{align*}\]