MA 265 Lecture 12

Section 4.1 Vectors in the Plane and in 3-Space

Definitions of scalar and vector

- Measurable quantities that can be completely described by giving their magnitude are called ______ For example, ______.
- Measurable quantities that require for description not only magnitude, but also a sense of direction, are called ______ For example, ______.

Vector in Plane

- A pair of perpendicular lines intersect at a point O, which is called the _____.
- The horizontal line is called ______, and the vertical line is called ______
- The *x* and *y* axes together are called ______, and they form a ______, or a _____.
- With each point P in the plane, we associate an order pair (x, y) of real numbers, its _____, and denoted by _____.
- Draw a direct line segment from O to P, denoted by _____. Here O is called its _____.
- The line segment has a ______, indicated by the arrow at its head. The length of the line segment is called the _____.

Definition

A vector in the plane is

Remark Two vectors are equal if and only if

Example 1. Find the values of a and b such that the following vectors are equal:

$$\left[\begin{array}{c}a+b\\2\end{array}\right] \quad and \quad \left[\begin{array}{c}3\\a-b\end{array}\right]$$

- A directed line segment \overrightarrow{PQ} from the point P(x,y) to the point Q(x',y') is also a _____.
- The **head** and **tail** of this vector is ______ and _____, respectively. The vector \overline{PQ} can be represented by

Remark Different direct lines

Vector Operations

Let $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ be two vectors. Let c be a scaler (a real number).

- The sum of the vector \mathbf{u} and \mathbf{v} is
- The scalar multiple *c***u** is

The vector
$$\begin{bmatrix} 0\\0 \end{bmatrix}$$
 is called ______ and denoted by _____.

Parallelogram Law

Example 2. Let

$$\mathbf{u} = \begin{bmatrix} 2\\3 \end{bmatrix} \quad and \quad \mathbf{v} = \begin{bmatrix} 3\\0 \end{bmatrix}$$

Find $\mathbf{u} + \mathbf{v}$, $\mathbf{u} - \mathbf{v}$, $2\mathbf{u}$, and $-\mathbf{u}$

Vector in Space

In space, there are three coordinate axes which are called x-, y-, and z- axes. There are two types of coordinate systems.

Right-Handed Coordinate System Left-Handed Coordinate System

Properties of vector in \mathbb{R}^2 and \mathbb{R}^3

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^2 or \mathbb{R}^3 , and c, d be real numbers.

1.
2.
3.
4.
5.
6.
7.
8.