MA 265 Lecture 12

Section 4.1 Vectors in the Plane and in 3-Space

Definitions of scalar and vector

- Measurable quantities that can be completely described by giving their magnitude are called __________ For example, ____________________.

- Measurable quantities that require for description not only magnitude, but also a sense of direction, are called __________ For example, ____________________.

Vector in Plane

- A pair of perpendicular lines intersect at a point O, which is called the __________.

- The horizontal line is called __________, and the vertical line is called __________

- The x- and y- axes together are called __________, and they form a __________________ or a __________.

- With each point P in the plane, we associate an order pair (x, y) of real numbers, its __________, and denoted by __________.

- Draw a direct line segment from O to P, denoted by __________. Here O is called its __________ and P is called its __________.

- The line segment has a __________, indicated by the arrow at its head. The length of the line segment is called the __________.
Definition

A vector in the plane is

Remark Two vectors are equal if and only if

Example 1. Find the values of a and b such that the following vectors are equal:

\[
\begin{bmatrix} a + b \\ 2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 3 \\ a - b \end{bmatrix}
\]

• A directed line segment \overrightarrow{PQ} from the point $P(x, y)$ to the point $Q(x', y')$ is also a __________.

• The head and tail of this vector is __________ and __________, respectively. The vector \overrightarrow{PQ} can be represented by

Remark Different direct lines
Vector Operations

Let \(\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \) and \(\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \) be two vectors. Let \(c \) be a scaler (a real number).

- The **sum** of the vector \(\mathbf{u} \) and \(\mathbf{v} \) is

- The **scalar multiple** \(c \mathbf{u} \) is

The vector \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \) is called ___________ and denoted by __________.

Parallelogram Law

Example 2. Let

\[
\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}
\]

Find \(\mathbf{u} + \mathbf{v}, \mathbf{u} - \mathbf{v}, 2\mathbf{u}, \text{ and } -\mathbf{u} \)
Vector in Space

In space, there are three coordinate axes which are called x-, y-, and z- axes. There are two types of coordinate systems.

Right-Handed Coordinate System \hspace{1cm} **Left-Handed Coordinate System**

Properties of vector in \mathbb{R}^2 and \mathbb{R}^3

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in \mathbb{R}^2 or \mathbb{R}^3, and c, d be real numbers.

1.

2.

3.

4.

5.

6.

7.

8.