MA 265 Lecture 13

Section 4.2 Vector Spaces

Definition of Vector Space

is a set V of elements on which we have two operations _____ A _____ and defined with following properties: (a) If **u** and **v** are any elements in V, then $\mathbf{u} \oplus \mathbf{v}$ is in V. (V is closed under the operation \oplus) 1. 2.3. 4. (b) If **u** is any element in V, and c is a real number, then $c \odot \mathbf{u}$ is in V. (V is closed under the operation \odot) 5.6. 7. 8. • The elements of V are called _____, and elements of the set of real numbers \mathbb{R} are called _____. • The operation \oplus is called _____, and \odot is called _____. • The vector **0** (in item (3)) is called _____. • The vector $-\mathbf{u}$ (in item (4)) is called _____.

Example 1. The set M_{mn} of all $m \times n$ matrices with matrix addition as \oplus and scalar multiplications as \odot is a vector space.

Example 2. Let V be the set of all 2×2 matrices with trace (sum of diagonal elements) equal to zero; that is

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ is in } V \text{ provided } Tr(A) = a + d = 0.$$

The operation \oplus is matrix addition and the operation \odot is scalar multiplications. Is V a vector space?

Example 3. Let V be the set of all 2×2 with the (1, 1)-th entry equal to 1; that is

$$A = \left[\begin{array}{cc} 1 & b \\ c & d \end{array} \right] \text{ is in } V.$$

The operation \oplus is matrix addition and the operation \odot is scalar multiplications. Is V a vector space?

Example 4. Let V be the set of all real numbers with the operations

 $\mathbf{u} \oplus \mathbf{v} = \mathbf{u} - \mathbf{v}, \qquad c \odot \mathbf{u} = c\mathbf{u}$

Is V a vector space?

Example 5. Let V be the set of all integers; define \oplus as ordinary addition and \odot as ordinary multiplication. Is V a vector space?