MA 265 Lecture 14

Section 4.3 Subspaces

Definition of Subspaces

Let V be a vector space and W a nonempty subset of V. If

To check W is a subspace of V, we only need to check <u>closure</u> property for \oplus and \odot on W:

Theorem Let V be a vector space with operation \oplus and \odot , and let W be a nonempty subset of V. Then W a nonempty subset of V if and only if

Example 1. Every vector space has at least two subspaces:

Example 2. Let P be the set of all polynomials.

- Let P_2 be the set of all polynomials of degree ≤ 2 . Is P_2 a subset of P?
- Let Q_2 be the set all polynomials of degree = 2. If Q_2 a subset of P?

Example 3. Which of the following subsets of \mathbb{R}^2 with usual operations of vector addition and scalar multiplication are subspaces?

1.
$$W_1$$
 is the set of all vectors of the form $\begin{bmatrix} x \\ y \end{bmatrix}$, where $x \ge 0$.
2. W_2 is the set of all vectors of the form $\begin{bmatrix} x \\ y \end{bmatrix}$, where $x \ge 0$, and $y \ge 0$.
3. W_3 is the set of all vectors of the form $\begin{bmatrix} x \\ y \end{bmatrix}$, where $x = 0$.

Example 4. Let W be the set of vectors in \mathbb{R}^3 of the form $\begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$, where a and b are any real numbers. Is W a subspace of \mathbb{R}^3 ?

Example 5. Let \mathbf{v}_1 and \mathbf{v}_2 be fixed vectors in a space V. Let W be the set of all vectors in the form $a\mathbf{v}_1 + b\mathbf{v}_2$, where a and b are any real numbers. Is W a subspace of V?