MA 265 Lecture 15

Section 4.3 Subspaces (cont)

Definition of Linear Combination

Let $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ be vectors in a vector space V.

Example 1. Every polynomial of degree ≤ 2 is a linear combination of t^2 , t, 1.

Example 2. Show that the set of all vectors in \mathbb{R}^3 of the form $\begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$ is a linear combination of $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

1

Example 3. In \mathbb{R}^3 , let

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$

Verify that the vector

$$\mathbf{v} = \begin{bmatrix} 2\\1\\5 \end{bmatrix}$$

is a linear combination of $\mathbf{v}_1,\,\mathbf{v}_2,$ and $\mathbf{v}_3.$

Example 4. Consider the homogeneous system

 $A\mathbf{x} = \mathbf{0}$

where A is an $m \times n$ matrix. The set W of solutions is a subset of \mathbb{R}^n . Verify that W is a subspace of \mathbb{R}^n (called **solution space**).

Remark The set of all solutions of the linear system $A\mathbf{x} = \mathbf{b}$, with $\mathbf{b} \neq \mathbf{0}$, is