MA 265 Lecture 18

Section 4.4 Span

Review of Linear Combination

If \mathbf{v}_1 and \mathbf{v}_2 are two vectors in a vector space V,

Definition of Span

If $S = {\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k}$ is a set of vectors in a vector space V,

Example 1. Let S be the set of 2×2 matrices given by

s	$\int \left[1 \right]$	0]	[0	$\left.\begin{array}{c}0\\1\end{array}\right]\right\}$
$D = \int$	0]]	0	, [0	$1 \int$

Find span S

Theorem Let $S = {\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k}$ be a set of vectors in a vector space V. Then

Example 2. Let $S = \{t^2, t\}$ be a subset of the vector space \mathcal{P}_2 (polynomials of degree no more than 2).

Definition Let S be a set of vectors in a vector space V. If every vector in V is a linear combination of the vectors in S,

Remark If span S = V, S is called

Example 3. In
$$\mathbb{R}^3$$
, let $\mathbf{v}_1 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1\\-1\\3 \end{bmatrix}$ Determine whether the $\mathbf{v} = \begin{bmatrix} 1\\5\\-7 \end{bmatrix}$ vector belongs to span $\{\mathbf{v}_1, \mathbf{v}_2\}$.

Example 4. In \mathcal{P}_2 , let

$$\mathbf{v}_1 = 2t^2 + t + 2, \quad \mathbf{v}_2 = t^2 - 2t, \quad \mathbf{v}_3 = 5t^2 - 5t + 2, \quad \mathbf{v}_4 = -t^2 - 3t - 2$$

Determine whether the vector $\mathbf{v} = t^2 + t + 2$ belongs to span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$

Example 5. Let V be the vector space \mathbb{R}^3 . Let

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$$

Determine whether the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 spans V.

Example 6. Consider the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ where

$$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ -2 & -2 & 1 & -5 \\ 1 & 1 & -1 & 3 \\ 4 & 4 & -1 & 9 \end{bmatrix}$$