MA 265 Lecture 19

Section 4.5 Linear Independence

<u>Recall</u> The set W of all vectors of the form $\begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$ is a subspace of \mathbb{R}^3 .

Example 1. Show that each of the following sets is a spanning set for W

$$S_1 = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}, \qquad S_2 = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\2\\5 \end{bmatrix} \right\}$$

The vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ in a vector space V are said to be **linearly dependent** if

Remark

- $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ are linearly independent if,
- $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ are linearly dependent if,
- If $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\},\$

Example 2. Determine whether the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1\\2\\-1 \end{bmatrix},$$

are linearly independent.

Example 3. Are the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix},$$

in M_{22} are linearly independent?

Example 4. Determine whether the vectors

$$\mathbf{v}_1 = \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -2\\0\\1\\1 \end{bmatrix},$$

are linearly independent.

Theorem Let $S = {\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n}$ be a set of *n* vectors in \mathbb{R}^n .

Example 5. Is $S = \{ \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 3 & 0 & -1 \end{bmatrix} \}$ a linearly independent set of vectors in \mathbb{R}^3 ?

Theorem Let S_1 , S_2 be finite subsets of a vector space. Let S_1 be a subset of S_2 . Then

٠

•