MA 265 Lecture 2

Section 1.2 Matrices

Definitions

• A rectangular array of $m \times n$ real or complex numbers arranged in m horizontal rows and n vertical columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
(1)

is called an _____. We say that the matrix A is _____.

• The *i*th row and the *j*th column of A are

- If m = n, we say that A is a ______, and that the numbers a_{11} , a_{22}, \dots, a_{nn} form the ______ of A.
- The number a_{ij} is called the _____ of A, or the _____ of A. We can write the matrix A as
- An $n \times 1$ matrix is called an _____ or a _____ when n is understood.
- Two $m \times n$ matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are equal if

Example 1. Examples of matrices

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1+i & 4i \\ 2-3i & -3 \end{bmatrix}, \quad C = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}.$$

Example 2. If

$$\begin{bmatrix} a+2b & 2a-b\\ 2c+d & c-2d \end{bmatrix} = \begin{bmatrix} 4 & -2\\ 4 & -3 \end{bmatrix}$$

find a, b, c, and d.

Matrix Operations

Addition: If $A = [a_{ij}]$ and $B = [b_{ij}]$ are both $m \times n$ matrices, then the sum A + B is an $m \times n$ matrix $C = [c_{ij}]$ defined by

Example 3. Let

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 3 & -4 \end{bmatrix}.$$

Then

$$A + B =$$

Remark: the sum of A and B is defined only when _____

Scalar Multiplication: If $A = [a_{ij}]$ is an $m \times n$ matrix and r is a real number, then the scalar multiple of A by r is an $m \times n$ matrix $C = [c_{ij}]$ where

Example 4. Let

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 3 & -4 \end{bmatrix}.$$

Then

$$5A =$$

$$A - B =$$

More Definitions

• If A_1, A_2, \dots, A_k are matrices of the same dimension, and c_1, c_2, \dots, c_k are real numbers, then

$$c_1A_1 + c_2A_2 + \dots + c_kA_k \tag{2}$$

is called a _____ of A_1, A_2, \cdots, A_k .

The numbers c_1, c_2, \cdots, c_k are called ______.

- The linear combination (2) can be expressed using summation notation:
- If $A = [a_{ij}]$ is an $m \times n$ matrix, then the ______ of A is an $n \times m$ matrix $A^T = [a_{ij}^T]$ defined by

$$a_{ij}^T =$$

Example 5. Let

$$A = \left[\begin{array}{rrr} 1 & -2 & 3 \\ 2 & -1 & 4 \end{array} \right]$$

Then

$$A^T =$$

Example 6. Suppose A and B are both $m \times n$ matrices. Then

$$(2A+3B)^T =$$

 $(A^T)^T =$

$$(A - 2B^T)^T =$$