MA 265 Lecture 20

Section 4.6 Basis and Dimension

Definition of Basis

The vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ in a vector space V are said to form a <u>basis</u> for V if

- •
- •

Remark

Example 1. In
$$\mathbb{R}^3$$
, the vectors $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, form a basis.

Remark

Example 2. Show that the set $S = \{t^2 + 1, t - 1, 2t + 2\}$ is a basis for the vector space \mathcal{P}_2 .

Example 3. Find a basis for the subspace V of \mathcal{P}_2 , consisting of all vectors of the form $at^2 + bt + c$, where c = a - b.

Theorem If $S = {\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k}$ is a basis for V,

Proof

Theorem If $S = {\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k}$, and $T = {\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_l}$ are bases for V, then

Example 4. Let

$$S = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\}, \quad T = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

Is S a basis of M_{22} ? Is T a basis of M_{22} ?

Example 5. Let
$$V = \mathbb{R}^3$$
, $s = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$, where $\mathbf{v}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\mathbf{v}_4 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$, $\mathbf{v}_5 = \begin{bmatrix} -1\\1\\-2 \end{bmatrix}$. Find a subset of S that is a basis for \mathbb{R}^3 .