MA 265 Lecture 22

Section 4.7 Homogeneous Systems

Consider the homogeneous system

 $A\mathbf{x} = \mathbf{0},$

where A is $m \times n$, The set of all solutions

Example 1. Find a basis of the solution space of the linear system

1	1	4	1	2	$\begin{bmatrix} x_1 \end{bmatrix}$		[0]
0	1	2	1	1	x_2		0
0	0	0	1	2	x_3	=	0
1	-1	0	0	2	x_4		0
2	1	6	0	1	x_5		0

Remark For the homogeneous system $A\mathbf{x} = \mathbf{0}$, if the reduced row echelon form of $[A \mid \mathbf{0}]$ has r nonzero rows, then

•

•

Relationship between Homogeneous and Nonhomogeneous Systems

For nonhomogeneous system $A\mathbf{x} = \mathbf{b}$, the set of solutions

Example 2. Consider the linear system

1	2	-3]	$\begin{bmatrix} x_1 \end{bmatrix}$		[2]
2	4	-6	x_2	=	4
3	6	-9	$\begin{bmatrix} x_3 \end{bmatrix}$		6