MA 265 Lecture 24

Section 4.9 Rank of a Matrix (continued)

Example 1. Let A be a 6×4 matrix.

- What is the largest possible value of rank (A)?
- Are rows of A linearly independent?
- Are columns of A linearly independent?

Example 2. Let A be a 4×5 matrix.

- List all possible values of the rank of A.
- If the rank of A is 4, what is the dimension of its column space?
- If the rank of A is 3, what is the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$?

Example 3. Let

$$A = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ 2 & 1 & 6 & 0 \end{bmatrix}$$

Find the rank of A and the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$.

Theorem If A is an $m \times n$ matrix, then

Properties of Rank

Let A be an $n \times n$ matrix.

- rank(A) = n if and only if A is row equivalent to .
- A is nonsingular if and only if rank(A) =.
- $\operatorname{rank}(A) = n$ if and only if $\det(A)$.
- The homogeneous system $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if rank(A).
- The nonhomogeneous system $A\mathbf{x} = \mathbf{b}$ has a unique solution if and only if rank(A).

Example 4. Determine whether the homogeneous system has a nontrivial solution.

1 1 1	$egin{array}{c} 1 \\ 3 \\ 1 \end{array}$	$2 \\ -1 \\ 1$	-1 2 3	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$	=	0 0 0	
1 1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{3}{1}$	$\begin{bmatrix} x_3\\ x_4 \end{bmatrix}$		0	

Application to Nonhomogeneous System Ax = b

Theorem The linear system $A\mathbf{x} = \mathbf{b}$ has a solution if and only if

Example 5. Determine whether the nonhomogeneous system has a solution.

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & -3 & 4 \\ 2 & -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

Remark For the nonhomogeneous system $A\mathbf{x} = \mathbf{b}$, where A is an $n \times n$ matrix,

- If rank(A) = n,
- If rank(A) < n, and $rank(A) = rank([A | \mathbf{b}])$,
- If rank(A) < n, and $rank(A) \neq rank([A | \mathbf{b}])$,