MA 265 Lecture 25

Section 5.1 Length and Direction in \mathbb{R}^2 and \mathbb{R}^3

Length of Vectors in \mathbb{R}^2

Let $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ be a vector in \mathbb{R}^2 . The ______ or _____ of \mathbf{v} , denoted by $\|\mathbf{v}\|$, is

The distance between vectors \mathbf{u} and \mathbf{v} is defined as

Length of Vectors in \mathbb{R}^3

Let $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ be a vector in \mathbb{R}^3 . The **length** of \mathbf{v} is defined as

The distance between vectors ${\bf u}$ and ${\bf v}$ is defined as

Direction

We consider the **angle** θ , $0 \le \theta \le \pi$ between two vectors.

In \mathbb{R}^2 , we plot the angle of two vectors **u** and **v**:

By law of cosines:

we have

Similarly, if ${\bf u}$ and ${\bf v}$ are vectors in $\mathbb{R}^3,$ the angle between vectors ${\bf u}$ and ${\bf v}$ is

Example 1. Let
$$\mathbf{u} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$. Find the angle θ between these vectors.

The inner product, or dot product of vectors \mathbf{u} and \mathbf{v} on \mathbb{R}^2 (or \mathbb{R}^3) are defined by

Remark

- •

Definition Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 or \mathbb{R}^3 are called

Example 2. The vectors $\mathbf{u} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ are orthogonal.

Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^2 or \mathbb{R}^3 , and c be a scalar. The inner product satisfies:

1.

- 2.
- 3.
- 4.

Unit Vector

A vector in \mathbb{R}^2 or \mathbb{R}^3 whose length is 1 is called

If ${\bf v}$ is any nonzero vector, then a unit vector in the direction of ${\bf v}$ is

Example 3. Let
$$\mathbf{v} = \begin{bmatrix} 1\\ 2\\ -2 \end{bmatrix}$$
. Find a unit vector in \mathbb{R}^3 which

- 1. is in the same direction as \mathbf{v}
- 2. is in the opposite direction as \mathbf{v}
- 3. is orthogonal to \mathbf{v}
- 4. has an angle of 60° between **v**.