MA 265 Lecture 26

Section 5.3 Inner Product Spaces

Definition of Inner Product

Let V be a real vector space. An <u>inner product</u> on V is a function that assigns to each ordered pair of vectors **u** and **v** in V a real number (**u**, **v**) satisfying
(a)
(b)
(c)
(d)

Example 1. In \mathbb{R}^n , the dot product of vectors

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad and \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

is defined by

 $(\mathbf{u},\mathbf{v})=u_1v_1+u_2v_2+\cdots+u_nv_n.$

Show that the dot product is an inner product.

Example 2. Compute the (standard) inner product (\mathbf{u}, \mathbf{v}) in \mathbb{R}_4 .

- (a) $\mathbf{u} = [1 \ 2 \ 3 \ 4], \ \mathbf{v} = [0 \ 3 \ 2 \ 1]$
- **(b)** $\mathbf{u} = \begin{bmatrix} 1 \ 2 \ 3 \ 4 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} -4 & -3 \ 2 \ 1 \end{bmatrix}$
- (c) $\mathbf{u} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

Definition

- A real vector space that has an inner product defined on it is called an
- In an inner product space, we define the length of a vector ${\bf u}$ by

In an inner product space, we have the following important inequalities:

- Cauchy-Schwarz Inequality:
- Triangle Inequality:

Proof

Example 3. Verify Cauchy-Schwarz Inequality and triangle inequality with

$$\mathbf{u} = \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \quad and \quad \mathbf{v} = \begin{bmatrix} -3\\2\\2 \end{bmatrix}$$

Definition If V is an inner product space,

- we say the $\underline{distance}$ between two vectors \mathbf{u} and \mathbf{v} is
- $\bullet\,$ we say two vectors ${\bf u}$ and ${\bf v}$ are ${\bf orthogonal}$ if

Definition Let V be an inner product space.

- A set S of vectors in V is called **orthogonal** if
- If, in addition,

Example 4. Are vectors $\mathbf{u_1} = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$, $\mathbf{u_2} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$, $\mathbf{u_3} = \begin{bmatrix} 2\\0\\0 \end{bmatrix}$ orthogonal? Are they orthonomal?

Example 5. Are vectors
$$\mathbf{u_1} = \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}$$
, $\mathbf{u_2} = \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix}$, $\mathbf{u_3} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$, orthogonal? Are they orthonomal?

Remark Let $S = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n}$ be an orthogonal set of nonzero vectors in an inner product space V. Then S is linearly _____