MA 265 Lecture 27

Section 5.4 Gram-Schmidt Process

In this section, we introduce a method to obtain an orthonormal basis for a finite dimensional inner product space, which is called **Gram-Schmidt Process**.

Question: Why do we want an orthonormal basis?

Example 1. Let $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ be a basis for \mathbb{R}^3 , where

$$\mathbf{u_1} = \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}, \mathbf{u_2} = \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix}, \mathbf{u_3} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}.$$

Note that S is orthonormal. Write the vector $\mathbf{v} = \begin{bmatrix} 3\\ 4\\ 5 \end{bmatrix}$ as a linear combination of vectors in S.

Gram-Schmidt Process

Let V be an inner product space, and $W \neq \{0\}$ an *m*-dimensional subspace of V. We can construct an orthonomal basis $T = \{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_m\}$ for W.

Note: We first find an orthogonal basis $T^* = {\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_m}$ for W.

Example 2. Let W be the subspace of \mathbb{R}^4 with basis $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ where

$$\mathbf{u_1} = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \mathbf{u_2} = \begin{bmatrix} -1\\0\\-1\\1 \end{bmatrix}, \mathbf{u_3} = \begin{bmatrix} -1\\0\\0\\-1 \end{bmatrix}.$$

Transform S to an orthonormal basis $T = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$

Example 3. Find an orthonormal basis for the subspace of R_4 consisting of all vectors $[a \ b \ c \ d]$ such that

$$a - b - 2c + d = 0$$