Definition. Let W be a subspace of an inner product space V.

- A vector u in V is said to be orthogonal to W if

- The set of all vectors in V that are orthogonal to all vectors in W is called the orthogonal complement of W in V, and is denoted by W^\perp.

Example 1. Let W be the subspace spanned by the vector

$$w = \begin{bmatrix} 2 \\ -3 \\ -4 \end{bmatrix}.$$

- Find the orthogonal complement W^\perp of W.
- Find a basis for W^\perp.

Let W be a subspace of an inner product space V.

- W^\perp

- $W \cap W^\perp =$

- $V =$

Example 2. Let W be the subspace of \mathbb{R}_5 spanned by w_1, w_2, \ldots, w_5 where

\[
\begin{align*}
 w_1 &= [2 \ -1 \ 0 \ 1 \ 2], \quad w_2 = [1 \ 3 \ 1 \ -2 \ -4], \quad w_3 = [3 \ 2 \ 1 \ -1 \ -2], \\
 w_4 &= [7 \ 7 \ 3 \ -4 \ -8], \quad w_5 = [1 \ -4 \ -1 \ -1 \ -2].
\end{align*}
\]

Find a basis for W^\perp.

MA 265 Lecture 28 page 2 of 4
Projections

Let W be a subspace of an inner product space V with orthonormal basis
$\{w_1, w_2, \cdots, w_m\}$. For any vector v in V, there exist

Moreover, the vector w can be written as

which is called the

Remark If $\{w_1, w_2, \cdots, w_m\}$ is an orthogonal basis for W, then

An illustration of orthogonal projection

The **distance** from v to the subspace W is given by
Example 3. Let W be the subspace of \mathbb{R}^3 with orthonormal basis \{\(w_1, w_2\)\} where

\[
\begin{align*}
 w_1 &= \begin{bmatrix} 2 \\ 3 \\ -1/3 \end{bmatrix}, &
 w_2 &= \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}.
\end{align*}
\]

Find the orthogonal projection of \(v = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}\). Find the distance from \(v\) to \(W\).