MA 265 Lecture 28

Section 5.5 Orthogonal Complements

Definition. Let W be a subspace of an inner product space V.

- A vector **u** in V is said to be **orthogonal to** W if
- The set of all vectors in V that are orthogonal to all vectors in W is called

_____ of W in V, and is denoted by _____.

.

Example 1. Let W be the subspace spanned by the vector

$$\mathbf{w} = \begin{bmatrix} 2\\ -3\\ 4 \end{bmatrix}$$

- Find the orthogonal complement W^{\perp} of W.
- Find a basis for W^{\perp} .

Let W be a subspace of an inner product space V.

- $\bullet \ W^{\perp}$
- $W \cap W^{\perp} =$
- V =

Example 2. Let W be the subspace of \mathbb{R}_5 spanned by $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_5$ where

 $\mathbf{w_1} = \begin{bmatrix} 2 & -1 & 0 & 1 & 2 \end{bmatrix}, \quad \mathbf{w_2} = \begin{bmatrix} 1 & 3 & 1 & -2 & -4 \end{bmatrix}, \quad \mathbf{w_3} = \begin{bmatrix} 3 & 2 & 1 & -1 & -2 \end{bmatrix},$ $\mathbf{w_4} = \begin{bmatrix} 7 & 7 & 3 & -4 & -8 \end{bmatrix}, \quad \mathbf{w_5} = \begin{bmatrix} 1 & -4 & -1 & -1 & -2 \end{bmatrix}.$

Find a basis for W^{\perp} .

Projections

Let W be a subspace of an inner product space V with orthonormal basis $\{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_m\}$. For any vector \mathbf{v} in V, there exist

Moreover, the vector \mathbf{w} can be written as

which is called the

Remark If $\{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_m\}$ is an orthogonal basis for W, then

An illustration of orthogonal projection

The **distance** from \mathbf{v} to the subspace W is given by

Example 3. Let W be the subspace of \mathbb{R}^3 with orthonormal basis $\{\mathbf{w}_1, \mathbf{w}_2\}$ where

$$\mathbf{w_1} = \begin{bmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ -\frac{2}{3} \end{bmatrix}, \quad \mathbf{w_2} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Find the orthogonal projection of $\mathbf{v} = \begin{bmatrix} 2\\1\\3 \end{bmatrix}$. Find the distance from \mathbf{v} to W.