MA 265 Lecture 29

Section 5.6 Least Squares

Recall An $m \times n$ linear system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if

Question What can we do if the system $A\mathbf{x} = \mathbf{b}$ is inconsistent?

The least square solution to the linear system $A\mathbf{x} = \mathbf{b}$ is the solution to the system

Remark If A is an $m \times n$ matrix,

Example 1. Determine the least square solution to $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 0 & -1 \\ -1 & 1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 3 \\ 1 \\ 2 \\ -1 \end{bmatrix}.$$

Least square problems often arise in constructing a mathematical model from discrete data. Example 2. The following data shows U.S. per capita health care expenditures

Year	Per Capita Expenditures (in \$)
1960	143
1970	348
1980	1,067
1990	2,738
1995	3,698
2000	4,560

- Determine the line of best fit to the given data.
- Predict the per capita expenditure for the year 2005, 2010, and 2015.